/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2008, 2011-2012, Centre National d'Etudes Spatiales (CNES), FR * Copyright (c) 2012, CS Systemes d'Information, France * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #if defined(__SSE__) && !defined(_M_IX86) && !defined(__i386) #define USE_SSE #include <xmmintrin.h> #endif #if defined(__SSE2__) && !defined(_M_IX86) && !defined(__i386) #define USE_SSE2 #include <emmintrin.h> #endif #if defined(__SSE4_1__) && !defined(_M_IX86) && !defined(__i386) #define USE_SSE4 #include <smmintrin.h> #endif #include "opj_includes.h" /* <summary> */ /* This table contains the norms of the basis function of the reversible MCT. */ /* </summary> */ static const OPJ_FLOAT64 opj_mct_norms[3] = { 1.732, .8292, .8292 }; /* <summary> */ /* This table contains the norms of the basis function of the irreversible MCT. */ /* </summary> */ static const OPJ_FLOAT64 opj_mct_norms_real[3] = { 1.732, 1.805, 1.573 }; const OPJ_FLOAT64 * opj_mct_get_mct_norms () { return opj_mct_norms; } const OPJ_FLOAT64 * opj_mct_get_mct_norms_real () { return opj_mct_norms_real; } /* <summary> */ /* Forward reversible MCT. */ /* </summary> */ #ifdef USE_SSE2 void opj_mct_encode( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; for(i = 0; i < (len & ~3U); i += 4) { __m128i y, u, v; __m128i r = _mm_load_si128((const __m128i *)&(c0[i])); __m128i g = _mm_load_si128((const __m128i *)&(c1[i])); __m128i b = _mm_load_si128((const __m128i *)&(c2[i])); y = _mm_add_epi32(g, g); y = _mm_add_epi32(y, b); y = _mm_add_epi32(y, r); y = _mm_srai_epi32(y, 2); u = _mm_sub_epi32(b, g); v = _mm_sub_epi32(r, g); _mm_store_si128((__m128i *)&(c0[i]), y); _mm_store_si128((__m128i *)&(c1[i]), u); _mm_store_si128((__m128i *)&(c2[i]), v); } for(; i < len; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = (r + (g * 2) + b) >> 2; OPJ_INT32 u = b - g; OPJ_INT32 v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #else void opj_mct_encode( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; for(i = 0; i < len; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = (r + (g * 2) + b) >> 2; OPJ_INT32 u = b - g; OPJ_INT32 v = r - g; c0[i] = y; c1[i] = u; c2[i] = v; } } #endif /* <summary> */ /* Inverse reversible MCT. */ /* </summary> */ #ifdef USE_SSE2 void opj_mct_decode( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; for(i = 0; i < (len & ~3U); i += 4) { __m128i r, g, b; __m128i y = _mm_load_si128((const __m128i *)&(c0[i])); __m128i u = _mm_load_si128((const __m128i *)&(c1[i])); __m128i v = _mm_load_si128((const __m128i *)&(c2[i])); g = y; g = _mm_sub_epi32(g, _mm_srai_epi32(_mm_add_epi32(u, v), 2)); r = _mm_add_epi32(v, g); b = _mm_add_epi32(u, g); _mm_store_si128((__m128i *)&(c0[i]), r); _mm_store_si128((__m128i *)&(c1[i]), g); _mm_store_si128((__m128i *)&(c2[i]), b); } for (; i < len; ++i) { OPJ_INT32 y = c0[i]; OPJ_INT32 u = c1[i]; OPJ_INT32 v = c2[i]; OPJ_INT32 g = y - ((u + v) >> 2); OPJ_INT32 r = v + g; OPJ_INT32 b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #else void opj_mct_decode( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_UINT32 i; for (i = 0; i < n; ++i) { OPJ_INT32 y = c0[i]; OPJ_INT32 u = c1[i]; OPJ_INT32 v = c2[i]; OPJ_INT32 g = y - ((u + v) >> 2); OPJ_INT32 r = v + g; OPJ_INT32 b = u + g; c0[i] = r; c1[i] = g; c2[i] = b; } } #endif /* <summary> */ /* Get norm of basis function of reversible MCT. */ /* </summary> */ OPJ_FLOAT64 opj_mct_getnorm(OPJ_UINT32 compno) { return opj_mct_norms[compno]; } /* <summary> */ /* Forward irreversible MCT. */ /* </summary> */ #ifdef USE_SSE4 void opj_mct_encode_real( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_SIZE_T i; const OPJ_SIZE_T len = n; const __m128i ry = _mm_set1_epi32(2449); const __m128i gy = _mm_set1_epi32(4809); const __m128i by = _mm_set1_epi32(934); const __m128i ru = _mm_set1_epi32(1382); const __m128i gu = _mm_set1_epi32(2714); /* const __m128i bu = _mm_set1_epi32(4096); */ /* const __m128i rv = _mm_set1_epi32(4096); */ const __m128i gv = _mm_set1_epi32(3430); const __m128i bv = _mm_set1_epi32(666); const __m128i mulround = _mm_shuffle_epi32(_mm_cvtsi32_si128(4096), _MM_SHUFFLE(1, 0, 1, 0)); for(i = 0; i < (len & ~3U); i += 4) { __m128i lo, hi; __m128i y, u, v; __m128i r = _mm_load_si128((const __m128i *)&(c0[i])); __m128i g = _mm_load_si128((const __m128i *)&(c1[i])); __m128i b = _mm_load_si128((const __m128i *)&(c2[i])); lo = r; hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, ry); hi = _mm_mul_epi32(hi, ry); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); y = _mm_blend_epi16(lo, hi, 0xCC); lo = g; hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, gy); hi = _mm_mul_epi32(hi, gy); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); lo = b; hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, by); hi = _mm_mul_epi32(hi, by); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); y = _mm_add_epi32(y, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *)&(c0[i]), y); /*lo = b; hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, mulround); hi = _mm_mul_epi32(hi, mulround);*/ lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 2, 0))); hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(b, _MM_SHUFFLE(3, 2, 3, 1))); lo = _mm_slli_epi64(lo, 12); hi = _mm_slli_epi64(hi, 12); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); u = _mm_blend_epi16(lo, hi, 0xCC); lo = r; hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, ru); hi = _mm_mul_epi32(hi, ru); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); lo = g; hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, gu); hi = _mm_mul_epi32(hi, gu); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); u = _mm_sub_epi32(u, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *)&(c1[i]), u); /*lo = r; hi = _mm_shuffle_epi32(r, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, mulround); hi = _mm_mul_epi32(hi, mulround);*/ lo = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 2, 0))); hi = _mm_cvtepi32_epi64(_mm_shuffle_epi32(r, _MM_SHUFFLE(3, 2, 3, 1))); lo = _mm_slli_epi64(lo, 12); hi = _mm_slli_epi64(hi, 12); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); v = _mm_blend_epi16(lo, hi, 0xCC); lo = g; hi = _mm_shuffle_epi32(g, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, gv); hi = _mm_mul_epi32(hi, gv); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); lo = b; hi = _mm_shuffle_epi32(b, _MM_SHUFFLE(3, 3, 1, 1)); lo = _mm_mul_epi32(lo, bv); hi = _mm_mul_epi32(hi, bv); lo = _mm_add_epi64(lo, mulround); hi = _mm_add_epi64(hi, mulround); lo = _mm_srli_epi64(lo, 13); hi = _mm_slli_epi64(hi, 32-13); v = _mm_sub_epi32(v, _mm_blend_epi16(lo, hi, 0xCC)); _mm_store_si128((__m128i *)&(c2[i]), v); } for(; i < len; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934); OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096); OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666); c0[i] = y; c1[i] = u; c2[i] = v; } } #else void opj_mct_encode_real( OPJ_INT32* restrict c0, OPJ_INT32* restrict c1, OPJ_INT32* restrict c2, OPJ_UINT32 n) { OPJ_UINT32 i; for(i = 0; i < n; ++i) { OPJ_INT32 r = c0[i]; OPJ_INT32 g = c1[i]; OPJ_INT32 b = c2[i]; OPJ_INT32 y = opj_int_fix_mul(r, 2449) + opj_int_fix_mul(g, 4809) + opj_int_fix_mul(b, 934); OPJ_INT32 u = -opj_int_fix_mul(r, 1382) - opj_int_fix_mul(g, 2714) + opj_int_fix_mul(b, 4096); OPJ_INT32 v = opj_int_fix_mul(r, 4096) - opj_int_fix_mul(g, 3430) - opj_int_fix_mul(b, 666); c0[i] = y; c1[i] = u; c2[i] = v; } } #endif /* <summary> */ /* Inverse irreversible MCT. */ /* </summary> */ void opj_mct_decode_real( OPJ_FLOAT32* restrict c0, OPJ_FLOAT32* restrict c1, OPJ_FLOAT32* restrict c2, OPJ_UINT32 n) { OPJ_UINT32 i; #ifdef USE_SSE __m128 vrv, vgu, vgv, vbu; vrv = _mm_set1_ps(1.402f); vgu = _mm_set1_ps(0.34413f); vgv = _mm_set1_ps(0.71414f); vbu = _mm_set1_ps(1.772f); for (i = 0; i < (n >> 3); ++i) { __m128 vy, vu, vv; __m128 vr, vg, vb; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; vy = _mm_load_ps(c0); vu = _mm_load_ps(c1); vv = _mm_load_ps(c2); vr = _mm_add_ps(vy, _mm_mul_ps(vv, vrv)); vg = _mm_sub_ps(_mm_sub_ps(vy, _mm_mul_ps(vu, vgu)), _mm_mul_ps(vv, vgv)); vb = _mm_add_ps(vy, _mm_mul_ps(vu, vbu)); _mm_store_ps(c0, vr); _mm_store_ps(c1, vg); _mm_store_ps(c2, vb); c0 += 4; c1 += 4; c2 += 4; } n &= 7; #endif for(i = 0; i < n; ++i) { OPJ_FLOAT32 y = c0[i]; OPJ_FLOAT32 u = c1[i]; OPJ_FLOAT32 v = c2[i]; OPJ_FLOAT32 r = y + (v * 1.402f); OPJ_FLOAT32 g = y - (u * 0.34413f) - (v * (0.71414f)); OPJ_FLOAT32 b = y + (u * 1.772f); c0[i] = r; c1[i] = g; c2[i] = b; } } /* <summary> */ /* Get norm of basis function of irreversible MCT. */ /* </summary> */ OPJ_FLOAT64 opj_mct_getnorm_real(OPJ_UINT32 compno) { return opj_mct_norms_real[compno]; } OPJ_BOOL opj_mct_encode_custom( OPJ_BYTE * pCodingdata, OPJ_UINT32 n, OPJ_BYTE ** pData, OPJ_UINT32 pNbComp, OPJ_UINT32 isSigned) { OPJ_FLOAT32 * lMct = (OPJ_FLOAT32 *) pCodingdata; OPJ_UINT32 i; OPJ_UINT32 j; OPJ_UINT32 k; OPJ_UINT32 lNbMatCoeff = pNbComp * pNbComp; OPJ_INT32 * lCurrentData = 00; OPJ_INT32 * lCurrentMatrix = 00; OPJ_INT32 ** lData = (OPJ_INT32 **) pData; OPJ_UINT32 lMultiplicator = 1 << 13; OPJ_INT32 * lMctPtr; OPJ_ARG_NOT_USED(isSigned); lCurrentData = (OPJ_INT32 *) opj_malloc((pNbComp + lNbMatCoeff) * sizeof(OPJ_INT32)); if (! lCurrentData) { return OPJ_FALSE; } lCurrentMatrix = lCurrentData + pNbComp; for (i =0;i<lNbMatCoeff;++i) { lCurrentMatrix[i] = (OPJ_INT32) (*(lMct++) * (OPJ_FLOAT32)lMultiplicator); } for (i = 0; i < n; ++i) { lMctPtr = lCurrentMatrix; for (j=0;j<pNbComp;++j) { lCurrentData[j] = (*(lData[j])); } for (j=0;j<pNbComp;++j) { *(lData[j]) = 0; for (k=0;k<pNbComp;++k) { *(lData[j]) += opj_int_fix_mul(*lMctPtr, lCurrentData[k]); ++lMctPtr; } ++lData[j]; } } opj_free(lCurrentData); return OPJ_TRUE; } OPJ_BOOL opj_mct_decode_custom( OPJ_BYTE * pDecodingData, OPJ_UINT32 n, OPJ_BYTE ** pData, OPJ_UINT32 pNbComp, OPJ_UINT32 isSigned) { OPJ_FLOAT32 * lMct; OPJ_UINT32 i; OPJ_UINT32 j; OPJ_UINT32 k; OPJ_FLOAT32 * lCurrentData = 00; OPJ_FLOAT32 * lCurrentResult = 00; OPJ_FLOAT32 ** lData = (OPJ_FLOAT32 **) pData; OPJ_ARG_NOT_USED(isSigned); lCurrentData = (OPJ_FLOAT32 *) opj_malloc (2 * pNbComp * sizeof(OPJ_FLOAT32)); if (! lCurrentData) { return OPJ_FALSE; } lCurrentResult = lCurrentData + pNbComp; for (i = 0; i < n; ++i) { lMct = (OPJ_FLOAT32 *) pDecodingData; for (j=0;j<pNbComp;++j) { lCurrentData[j] = (OPJ_FLOAT32) (*(lData[j])); } for (j=0;j<pNbComp;++j) { lCurrentResult[j] = 0; for (k=0;k<pNbComp;++k) { lCurrentResult[j] += *(lMct++) * lCurrentData[k]; } *(lData[j]++) = (OPJ_FLOAT32) (lCurrentResult[j]); } } opj_free(lCurrentData); return OPJ_TRUE; } void opj_calculate_norms( OPJ_FLOAT64 * pNorms, OPJ_UINT32 pNbComps, OPJ_FLOAT32 * pMatrix) { OPJ_UINT32 i,j,lIndex; OPJ_FLOAT32 lCurrentValue; OPJ_FLOAT64 * lNorms = (OPJ_FLOAT64 *) pNorms; OPJ_FLOAT32 * lMatrix = (OPJ_FLOAT32 *) pMatrix; for (i=0;i<pNbComps;++i) { lNorms[i] = 0; lIndex = i; for (j=0;j<pNbComps;++j) { lCurrentValue = lMatrix[lIndex]; lIndex += pNbComps; lNorms[i] += lCurrentValue * lCurrentValue; } lNorms[i] = sqrt(lNorms[i]); } }