/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef OPJ_INTMATH_H #define OPJ_INTMATH_H /** @file opj_intmath.h @brief Implementation of operations on integers (INT) The functions in OPJ_INTMATH.H have for goal to realize operations on integers. */ /** @defgroup OPJ_INTMATH OPJ_INTMATH - Implementation of operations on integers */ /*@{*/ /** @name Exported functions (see also openjpeg.h) */ /*@{*/ /* ----------------------------------------------------------------------- */ /** Get the minimum of two integers @return Returns a if a < b else b */ static INLINE OPJ_INT32 opj_int_min(OPJ_INT32 a, OPJ_INT32 b) { return a < b ? a : b; } /** Get the minimum of two integers @return Returns a if a < b else b */ static INLINE OPJ_UINT32 opj_uint_min(OPJ_UINT32 a, OPJ_UINT32 b) { return a < b ? a : b; } /** Get the maximum of two integers @return Returns a if a > b else b */ static INLINE OPJ_INT32 opj_int_max(OPJ_INT32 a, OPJ_INT32 b) { return (a > b) ? a : b; } /** Get the maximum of two integers @return Returns a if a > b else b */ static INLINE OPJ_UINT32 opj_uint_max(OPJ_UINT32 a, OPJ_UINT32 b) { return (a > b) ? a : b; } /** Get the saturated sum of two unsigned integers @return Returns saturated sum of a+b */ static INLINE OPJ_UINT32 opj_uint_adds(OPJ_UINT32 a, OPJ_UINT32 b) { OPJ_UINT64 sum = (OPJ_UINT64)a + (OPJ_UINT64)b; return (OPJ_UINT32)(-(OPJ_INT32)(sum >> 32)) | (OPJ_UINT32)sum; } /** Get the saturated difference of two unsigned integers @return Returns saturated sum of a-b */ static INLINE OPJ_UINT32 opj_uint_subs(OPJ_UINT32 a, OPJ_UINT32 b) { return (a >= b) ? a - b : 0; } /** Clamp an integer inside an interval @return