// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com // Original code is licensed as follows: /* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "xfa/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.h" #include #include #include "xfa/fxbarcode/common/reedsolomon/BC_ReedSolomonGF256.h" #include "xfa/fxbarcode/common/reedsolomon/BC_ReedSolomonGF256Poly.h" CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field) { m_field = field; } CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder() {} void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received, int32_t twoS, int32_t& e) { CBC_ReedSolomonGF256Poly poly; poly.Init(m_field, received, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CFX_Int32Array syndromeCoefficients; syndromeCoefficients.SetSize(twoS); FX_BOOL dataMatrix = FALSE; FX_BOOL noError = TRUE; for (int32_t i = 0; i < twoS; i++) { int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i)); syndromeCoefficients[twoS - 1 - i] = eval; if (eval != 0) { noError = FALSE; } } if (noError) { return; } CBC_ReedSolomonGF256Poly syndrome; syndrome.Init(m_field, &syndromeCoefficients, e); BC_EXCEPTION_CHECK_ReturnVoid(e); std::unique_ptr temp( m_field->BuildMonomial(twoS, 1, e)); BC_EXCEPTION_CHECK_ReturnVoid(e); std::unique_ptr> sigmaOmega( RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e)); BC_EXCEPTION_CHECK_ReturnVoid(e); std::unique_ptr sigma((*sigmaOmega)[0]); std::unique_ptr omega((*sigmaOmega)[1]); std::unique_ptr errorLocations( FindErrorLocations(sigma.get(), e)); BC_EXCEPTION_CHECK_ReturnVoid(e); std::unique_ptr errorMagnitudes( FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e)); BC_EXCEPTION_CHECK_ReturnVoid(e); for (int32_t k = 0; k < errorLocations->GetSize(); k++) { int32_t position = received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e); BC_EXCEPTION_CHECK_ReturnVoid(e); if (position < 0) { e = BCExceptionBadErrorLocation; BC_EXCEPTION_CHECK_ReturnVoid(e); } (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract( (*received)[position], (*errorMagnitudes)[k]); } } CFX_ArrayTemplate* CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(CBC_ReedSolomonGF256Poly* a, CBC_ReedSolomonGF256Poly* b, int32_t R, int32_t& e) { if (a->GetDegree() < b->GetDegree()) { CBC_ReedSolomonGF256Poly* temp = a; a = b; b = temp; } std::unique_ptr rLast(a->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr r(b->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr sLast(m_field->GetOne()->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr s(m_field->GetZero()->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr tLast(m_field->GetZero()->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr t(m_field->GetOne()->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); while (r->GetDegree() >= R / 2) { std::unique_ptr rLastLast = std::move(rLast); std::unique_ptr sLastLast = std::move(sLast); std::unique_ptr tLastlast = std::move(tLast); rLast = std::move(r); sLast = std::move(s); tLast = std::move(t); if (rLast->IsZero()) { e = BCExceptionR_I_1IsZero; BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); } r.reset(rLastLast->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr q(m_field->GetZero()->Clone(e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree()); int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) { int32_t degreeDiff = r->GetDegree() - rLast->GetDegree(); int32_t scale = m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse); std::unique_ptr build( m_field->BuildMonomial(degreeDiff, scale, e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); q.reset(q->AddOrSubtract(build.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr multiply( rLast->MultiplyByMonomial(degreeDiff, scale, e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); r.reset(r->AddOrSubtract(multiply.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); } std::unique_ptr temp1( q->Multiply(sLast.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); s.reset(temp1->AddOrSubtract(sLastLast.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr temp5( q->Multiply(tLast.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); t.reset(temp5->AddOrSubtract(tLastlast.get(), e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); } int32_t sigmaTildeAtZero = t->GetCoefficients(0); if (sigmaTildeAtZero == 0) { e = BCExceptionIsZero; BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); } int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr sigma(t->Multiply(inverse, e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); std::unique_ptr omega(r->Multiply(inverse, e)); BC_EXCEPTION_CHECK_ReturnValue(e, nullptr); CFX_ArrayTemplate* temp = new CFX_ArrayTemplate(); temp->Add(sigma.release()); temp->Add(omega.release()); return temp; } CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorLocations( CBC_ReedSolomonGF256Poly* errorLocator, int32_t& e) { int32_t numErrors = errorLocator->GetDegree(); if (numErrors == 1) { std::unique_ptr temp(new CFX_Int32Array); temp->Add(errorLocator->GetCoefficients(1)); return temp.release(); } CFX_Int32Array* tempT = new CFX_Int32Array; tempT->SetSize(numErrors); std::unique_ptr result(tempT); int32_t ie = 0; for (int32_t i = 1; i < 256 && ie < numErrors; i++) { if (errorLocator->EvaluateAt(i) == 0) { (*result)[ie] = m_field->Inverse(i, ie); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); ie++; } } if (ie != numErrors) { e = BCExceptionDegreeNotMatchRoots; BC_EXCEPTION_CHECK_ReturnValue(e, NULL); } return result.release(); } CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorMagnitudes( CBC_ReedSolomonGF256Poly* errorEvaluator, CFX_Int32Array* errorLocations, FX_BOOL dataMatrix, int32_t& e) { int32_t s = errorLocations->GetSize(); CFX_Int32Array* temp = new CFX_Int32Array; temp->SetSize(s); std::unique_ptr result(temp); for (int32_t i = 0; i < s; i++) { int32_t xiInverse = m_field->Inverse(errorLocations->operator[](i), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); int32_t denominator = 1; for (int32_t j = 0; j < s; j++) { if (i != j) { denominator = m_field->Multiply( denominator, CBC_ReedSolomonGF256::AddOrSubtract( 1, m_field->Multiply(errorLocations->operator[](j), xiInverse))); } } int32_t temp = m_field->Inverse(denominator, temp); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); (*result)[i] = m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse), temp); } return result.release(); }