// Copyright 2014 PDFium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com // Original code is licensed as follows: /* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "xfa/src/fxbarcode/barcode.h" #include "xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.h" #include "xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonGF256.h" #include "xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonGF256Poly.h" CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field) { m_field = field; } CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder() {} void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received, int32_t twoS, int32_t& e) { CBC_ReedSolomonGF256Poly poly; poly.Init(m_field, received, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CFX_Int32Array syndromeCoefficients; syndromeCoefficients.SetSize(twoS); FX_BOOL dataMatrix = FALSE; FX_BOOL noError = TRUE; for (int32_t i = 0; i < twoS; i++) { int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i)); syndromeCoefficients[twoS - 1 - i] = eval; if (eval != 0) { noError = FALSE; } } if (noError) { return; } CBC_ReedSolomonGF256Poly syndrome; syndrome.Init(m_field, &syndromeCoefficients, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CBC_AutoPtr temp(rsg); CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CBC_AutoPtr sigmaOmega(pa); CBC_AutoPtr sigma( (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]); CBC_AutoPtr omega( (CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]); CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e); BC_EXCEPTION_CHECK_ReturnVoid(e); CBC_AutoPtr errorLocations(ia1); CFX_Int32Array* ia2 = FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e); BC_EXCEPTION_CHECK_ReturnVoid(e); CBC_AutoPtr errorMagnitudes(ia2); for (int32_t k = 0; k < errorLocations->GetSize(); k++) { int32_t position = received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e); BC_EXCEPTION_CHECK_ReturnVoid(e); if (position < 0) { e = BCExceptionBadErrorLocation; BC_EXCEPTION_CHECK_ReturnVoid(e); } (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract( (*received)[position], (*errorMagnitudes)[k]); } } CFX_PtrArray* CBC_ReedSolomonDecoder::RunEuclideanAlgorithm( CBC_ReedSolomonGF256Poly* a, CBC_ReedSolomonGF256Poly* b, int32_t R, int32_t& e) { if (a->GetDegree() < b->GetDegree()) { CBC_ReedSolomonGF256Poly* temp = a; a = b; b = temp; } CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr rLast(rsg1); CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr r(rsg2); CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr sLast(rsg3); CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr s(rsg4); CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr tLast(rsg5); CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr t(rsg6); while (r->GetDegree() >= R / 2) { CBC_AutoPtr rLastLast = rLast; CBC_AutoPtr sLastLast = sLast; CBC_AutoPtr tLastlast = tLast; rLast = r; sLast = s; tLast = t; if (rLast->IsZero()) { e = BCExceptionR_I_1IsZero; BC_EXCEPTION_CHECK_ReturnValue(e, NULL); } CBC_ReedSolomonGF256Poly* rsg7 = rLastLast->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr rTemp(rsg7); r = rTemp; CBC_ReedSolomonGF256Poly* rsg8 = m_field->GetZero()->Clone(e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr q(rsg8); int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree()); int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) { int32_t degreeDiff = r->GetDegree() - rLast->GetDegree(); int32_t scale = m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse); CBC_ReedSolomonGF256Poly* rsgp1 = m_field->BuildMonomial(degreeDiff, scale, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr build(rsgp1); CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp(rsgp2); q = temp; CBC_ReedSolomonGF256Poly* rsgp3 = rLast->MultiplyByMonomial(degreeDiff, scale, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr multiply(rsgp3); CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp3(rsgp4); r = temp3; } CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp1(rsg9); CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp2(rsg10); s = temp2; CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp5(rsg11); CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr temp6(rsg12); t = temp6; } int32_t sigmaTildeAtZero = t->GetCoefficients(0); if (sigmaTildeAtZero == 0) { e = BCExceptionIsZero; BC_EXCEPTION_CHECK_ReturnValue(e, NULL); } int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr sigma(rsg13); CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); CBC_AutoPtr omega(rsg14); CFX_PtrArray* temp = new CFX_PtrArray; temp->Add(sigma.release()); temp->Add(omega.release()); return temp; } CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorLocations( CBC_ReedSolomonGF256Poly* errorLocator, int32_t& e) { int32_t numErrors = errorLocator->GetDegree(); if (numErrors == 1) { CBC_AutoPtr temp(new CFX_Int32Array); temp->Add(errorLocator->GetCoefficients(1)); return temp.release(); } CFX_Int32Array* tempT = new CFX_Int32Array; tempT->SetSize(numErrors); CBC_AutoPtr result(tempT); int32_t ie = 0; for (int32_t i = 1; i < 256 && ie < numErrors; i++) { if (errorLocator->EvaluateAt(i) == 0) { (*result)[ie] = m_field->Inverse(i, ie); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); ie++; } } if (ie != numErrors) { e = BCExceptionDegreeNotMatchRoots; BC_EXCEPTION_CHECK_ReturnValue(e, NULL); } return result.release(); } CFX_Int32Array* CBC_ReedSolomonDecoder::FindErrorMagnitudes( CBC_ReedSolomonGF256Poly* errorEvaluator, CFX_Int32Array* errorLocations, FX_BOOL dataMatrix, int32_t& e) { int32_t s = errorLocations->GetSize(); CFX_Int32Array* temp = new CFX_Int32Array; temp->SetSize(s); CBC_AutoPtr result(temp); for (int32_t i = 0; i < s; i++) { int32_t xiInverse = m_field->Inverse(errorLocations->operator[](i), e); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); int32_t denominator = 1; for (int32_t j = 0; j < s; j++) { if (i != j) { denominator = m_field->Multiply( denominator, CBC_ReedSolomonGF256::AddOrSubtract( 1, m_field->Multiply(errorLocations->operator[](j), xiInverse))); } } int32_t temp = m_field->Inverse(denominator, temp); BC_EXCEPTION_CHECK_ReturnValue(e, NULL); (*result)[i] = m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse), temp); } return result.release(); }