1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fdrm/crypto/fx_crypt.h"
#ifdef __cplusplus
extern "C" {
#endif
struct rc4_state {
int x, y, m[256];
};
void CRYPT_ArcFourSetup(void* context, const uint8_t* key, uint32_t length) {
rc4_state* s = (rc4_state*)context;
int i, j, k, *m, a;
s->x = 0;
s->y = 0;
m = s->m;
for (i = 0; i < 256; i++) {
m[i] = i;
}
j = k = 0;
for (i = 0; i < 256; i++) {
a = m[i];
j = (j + a + key[k]) & 0xFF;
m[i] = m[j];
m[j] = a;
if (++k >= (int)length) {
k = 0;
}
}
}
void CRYPT_ArcFourCrypt(void* context, unsigned char* data, uint32_t length) {
struct rc4_state* s = (struct rc4_state*)context;
int i, x, y, *m, a, b;
x = s->x;
y = s->y;
m = s->m;
for (i = 0; i < (int)length; i++) {
x = (x + 1) & 0xFF;
a = m[x];
y = (y + a) & 0xFF;
m[x] = b = m[y];
m[y] = a;
data[i] ^= m[(a + b) & 0xFF];
}
s->x = x;
s->y = y;
}
void CRYPT_ArcFourCryptBlock(uint8_t* pData,
uint32_t size,
const uint8_t* key,
uint32_t keylen) {
rc4_state s;
CRYPT_ArcFourSetup(&s, key, keylen);
CRYPT_ArcFourCrypt(&s, pData, size);
}
#define GET_UINT32(n, b, i) \
{ \
(n) = (uint32_t)((uint8_t*)b)[(i)] | \
(((uint32_t)((uint8_t*)b)[(i) + 1]) << 8) | \
(((uint32_t)((uint8_t*)b)[(i) + 2]) << 16) | \
(((uint32_t)((uint8_t*)b)[(i) + 3]) << 24); \
}
#define PUT_UINT32(n, b, i) \
{ \
(((uint8_t*)b)[(i)]) = (uint8_t)(((n)) & 0xFF); \
(((uint8_t*)b)[(i) + 1]) = (uint8_t)(((n) >> 8) & 0xFF); \
(((uint8_t*)b)[(i) + 2]) = (uint8_t)(((n) >> 16) & 0xFF); \
(((uint8_t*)b)[(i) + 3]) = (uint8_t)(((n) >> 24) & 0xFF); \
}
void md5_process(struct CRYPT_md5_context* ctx, const uint8_t data[64]) {
uint32_t A, B, C, D, X[16];
GET_UINT32(X[0], data, 0);
GET_UINT32(X[1], data, 4);
GET_UINT32(X[2], data, 8);
GET_UINT32(X[3], data, 12);
GET_UINT32(X[4], data, 16);
GET_UINT32(X[5], data, 20);
GET_UINT32(X[6], data, 24);
GET_UINT32(X[7], data, 28);
GET_UINT32(X[8], data, 32);
GET_UINT32(X[9], data, 36);
GET_UINT32(X[10], data, 40);
GET_UINT32(X[11], data, 44);
GET_UINT32(X[12], data, 48);
GET_UINT32(X[13], data, 52);
GET_UINT32(X[14], data, 56);
GET_UINT32(X[15], data, 60);
#define S(x, n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
#define P(a, b, c, d, k, s, t) \
{ \
a += F(b, c, d) + X[k] + t; \
a = S(a, s) + b; \
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
#define F(x, y, z) (z ^ (x & (y ^ z)))
P(A, B, C, D, 0, 7, 0xD76AA478);
P(D, A, B, C, 1, 12, 0xE8C7B756);
P(C, D, A, B, 2, 17, 0x242070DB);
P(B, C, D, A, 3, 22, 0xC1BDCEEE);
P(A, B, C, D, 4, 7, 0xF57C0FAF);
P(D, A, B, C, 5, 12, 0x4787C62A);
P(C, D, A, B, 6, 17, 0xA8304613);
P(B, C, D, A, 7, 22, 0xFD469501);
P(A, B, C, D, 8, 7, 0x698098D8);
P(D, A, B, C, 9, 12, 0x8B44F7AF);
P(C, D, A, B, 10, 17, 0xFFFF5BB1);
P(B, C, D, A, 11, 22, 0x895CD7BE);
P(A, B, C, D, 12, 7, 0x6B901122);
P(D, A, B, C, 13, 12, 0xFD987193);
P(C, D, A, B, 14, 17, 0xA679438E);
P(B, C, D, A, 15, 22, 0x49B40821);
#undef F
#define F(x, y, z) (y ^ (z & (x ^ y)))
P(A, B, C, D, 1, 5, 0xF61E2562);
P(D, A, B, C, 6, 9, 0xC040B340);
P(C, D, A, B, 11, 14, 0x265E5A51);
P(B, C, D, A, 0, 20, 0xE9B6C7AA);
P(A, B, C, D, 5, 5, 0xD62F105D);
P(D, A, B, C, 10, 9, 0x02441453);
P(C, D, A, B, 15, 14, 0xD8A1E681);
P(B, C, D, A, 4, 20, 0xE7D3FBC8);
P(A, B, C, D, 9, 5, 0x21E1CDE6);
P(D, A, B, C, 14, 9, 0xC33707D6);
P(C, D, A, B, 3, 14, 0xF4D50D87);
P(B, C, D, A, 8, 20, 0x455A14ED);
P(A, B, C, D, 13, 5, 0xA9E3E905);
P(D, A, B, C, 2, 9, 0xFCEFA3F8);
P(C, D, A, B, 7, 14, 0x676F02D9);
P(B, C, D, A, 12, 20, 0x8D2A4C8A);
#undef F
#define F(x, y, z) (x ^ y ^ z)
P(A, B, C, D, 5, 4, 0xFFFA3942);
P(D, A, B, C, 8, 11, 0x8771F681);
P(C, D, A, B, 11, 16, 0x6D9D6122);
P(B, C, D, A, 14, 23, 0xFDE5380C);
P(A, B, C, D, 1, 4, 0xA4BEEA44);
P(D, A, B, C, 4, 11, 0x4BDECFA9);
P(C, D, A, B, 7, 16, 0xF6BB4B60);
P(B, C, D, A, 10, 23, 0xBEBFBC70);
P(A, B, C, D, 13, 4, 0x289B7EC6);
P(D, A, B, C, 0, 11, 0xEAA127FA);
P(C, D, A, B, 3, 16, 0xD4EF3085);
P(B, C, D, A, 6, 23, 0x04881D05);
P(A, B, C, D, 9, 4, 0xD9D4D039);
P(D, A, B, C, 12, 11, 0xE6DB99E5);
P(C, D, A, B, 15, 16, 0x1FA27CF8);
P(B, C, D, A, 2, 23, 0xC4AC5665);
#undef F
#define F(x, y, z) (y ^ (x | ~z))
P(A, B, C, D, 0, 6, 0xF4292244);
P(D, A, B, C, 7, 10, 0x432AFF97);
P(C, D, A, B, 14, 15, 0xAB9423A7);
P(B, C, D, A, 5, 21, 0xFC93A039);
P(A, B, C, D, 12, 6, 0x655B59C3);
P(D, A, B, C, 3, 10, 0x8F0CCC92);
P(C, D, A, B, 10, 15, 0xFFEFF47D);
P(B, C, D, A, 1, 21, 0x85845DD1);
P(A, B, C, D, 8, 6, 0x6FA87E4F);
P(D, A, B, C, 15, 10, 0xFE2CE6E0);
P(C, D, A, B, 6, 15, 0xA3014314);
P(B, C, D, A, 13, 21, 0x4E0811A1);
P(A, B, C, D, 4, 6, 0xF7537E82);
P(D, A, B, C, 11, 10, 0xBD3AF235);
P(C, D, A, B, 2, 15, 0x2AD7D2BB);
P(B, C, D, A, 9, 21, 0xEB86D391);
#undef F
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
}
void CRYPT_MD5Start(void* context) {
struct CRYPT_md5_context* ctx = (struct CRYPT_md5_context*)context;
ctx->total[0] = 0;
ctx->total[1] = 0;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
}
void CRYPT_MD5Update(void* pctx, const uint8_t* input, uint32_t length) {
struct CRYPT_md5_context* ctx = (struct CRYPT_md5_context*)pctx;
uint32_t left, fill;
if (!length) {
return;
}
left = (ctx->total[0] >> 3) & 0x3F;
fill = 64 - left;
ctx->total[0] += length << 3;
ctx->total[1] += length >> 29;
ctx->total[0] &= 0xFFFFFFFF;
ctx->total[1] += ctx->total[0] < length << 3;
if (left && length >= fill) {
FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, fill);
md5_process(ctx, ctx->buffer);
length -= fill;
input += fill;
left = 0;
}
while (length >= 64) {
md5_process(ctx, input);
length -= 64;
input += 64;
}
if (length) {
FXSYS_memcpy((void*)(ctx->buffer + left), (void*)input, length);
}
}
const uint8_t md5_padding[64] = {
0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
void CRYPT_MD5Finish(void* pctx, uint8_t digest[16]) {
struct CRYPT_md5_context* ctx = (struct CRYPT_md5_context*)pctx;
uint32_t last, padn;
uint8_t msglen[8];
PUT_UINT32(ctx->total[0], msglen, 0);
PUT_UINT32(ctx->total[1], msglen, 4);
last = (ctx->total[0] >> 3) & 0x3F;
padn = (last < 56) ? (56 - last) : (120 - last);
CRYPT_MD5Update(ctx, md5_padding, padn);
CRYPT_MD5Update(ctx, msglen, 8);
PUT_UINT32(ctx->state[0], digest, 0);
PUT_UINT32(ctx->state[1], digest, 4);
PUT_UINT32(ctx->state[2], digest, 8);
PUT_UINT32(ctx->state[3], digest, 12);
}
void CRYPT_MD5Generate(const uint8_t* input,
uint32_t length,
uint8_t digest[16]) {
CRYPT_md5_context ctx;
CRYPT_MD5Start(&ctx);
CRYPT_MD5Update(&ctx, input, length);
CRYPT_MD5Finish(&ctx, digest);
}
static bool (*g_PubKeyDecryptor)(const uint8_t* pData,
uint32_t size,
uint8_t* data_buf,
uint32_t& data_len) = nullptr;
void CRYPT_SetPubKeyDecryptor(bool (*func)(const uint8_t* pData,
uint32_t size,
uint8_t* data_buf,
uint32_t& data_len)) {
g_PubKeyDecryptor = func;
}
#ifdef __cplusplus
};
#endif
|