summaryrefslogtreecommitdiff
path: root/core/fpdfapi/page/fpdf_page_func.cpp
blob: bf44a1e7c5666b49f9a3c4faff099c240ebf7018 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com

#include "core/fpdfapi/page/pageint.h"

#include <limits.h>

#include <algorithm>
#include <memory>
#include <utility>
#include <vector>

#include "core/fpdfapi/page/cpdf_psengine.h"
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_simple_parser.h"
#include "core/fpdfapi/parser/cpdf_stream.h"
#include "core/fpdfapi/parser/cpdf_stream_acc.h"
#include "core/fxcrt/fx_safe_types.h"
#include "third_party/base/numerics/safe_conversions_impl.h"

class CPDF_PSOP {
 public:
  explicit CPDF_PSOP(PDF_PSOP op) : m_op(op), m_value(0) {
    ASSERT(m_op != PSOP_CONST);
    ASSERT(m_op != PSOP_PROC);
  }
  explicit CPDF_PSOP(FX_FLOAT value) : m_op(PSOP_CONST), m_value(value) {}
  explicit CPDF_PSOP(std::unique_ptr<CPDF_PSProc> proc)
      : m_op(PSOP_PROC), m_value(0), m_proc(std::move(proc)) {}

  FX_FLOAT GetFloatValue() const {
    if (m_op == PSOP_CONST)
      return m_value;

    ASSERT(false);
    return 0;
  }
  CPDF_PSProc* GetProc() const {
    if (m_op == PSOP_PROC)
      return m_proc.get();
    ASSERT(false);
    return nullptr;
  }

  PDF_PSOP GetOp() const { return m_op; }

 private:
  const PDF_PSOP m_op;
  const FX_FLOAT m_value;
  std::unique_ptr<CPDF_PSProc> m_proc;
};

FX_BOOL CPDF_PSEngine::Execute() {
  return m_MainProc.Execute(this);
}

CPDF_PSProc::CPDF_PSProc() {}
CPDF_PSProc::~CPDF_PSProc() {}

FX_BOOL CPDF_PSProc::Execute(CPDF_PSEngine* pEngine) {
  for (size_t i = 0; i < m_Operators.size(); ++i) {
    const PDF_PSOP op = m_Operators[i]->GetOp();
    if (op == PSOP_PROC)
      continue;

    if (op == PSOP_CONST) {
      pEngine->Push(m_Operators[i]->GetFloatValue());
      continue;
    }

    if (op == PSOP_IF) {
      if (i == 0 || m_Operators[i - 1]->GetOp() != PSOP_PROC)
        return FALSE;

      if (static_cast<int>(pEngine->Pop()))
        m_Operators[i - 1]->GetProc()->Execute(pEngine);
    } else if (op == PSOP_IFELSE) {
      if (i < 2 || m_Operators[i - 1]->GetOp() != PSOP_PROC ||
          m_Operators[i - 2]->GetOp() != PSOP_PROC) {
        return FALSE;
      }
      size_t offset = static_cast<int>(pEngine->Pop()) ? 2 : 1;
      m_Operators[i - offset]->GetProc()->Execute(pEngine);
    } else {
      pEngine->DoOperator(op);
    }
  }
  return TRUE;
}

CPDF_PSEngine::CPDF_PSEngine() {
  m_StackCount = 0;
}
CPDF_PSEngine::~CPDF_PSEngine() {}
void CPDF_PSEngine::Push(FX_FLOAT v) {
  if (m_StackCount == PSENGINE_STACKSIZE) {
    return;
  }
  m_Stack[m_StackCount++] = v;
}
FX_FLOAT CPDF_PSEngine::Pop() {
  if (m_StackCount == 0) {
    return 0;
  }
  return m_Stack[--m_StackCount];
}
const struct PDF_PSOpName {
  const FX_CHAR* name;
  PDF_PSOP op;
} PDF_PSOpNames[] = {{"add", PSOP_ADD},         {"sub", PSOP_SUB},
                     {"mul", PSOP_MUL},         {"div", PSOP_DIV},
                     {"idiv", PSOP_IDIV},       {"mod", PSOP_MOD},
                     {"neg", PSOP_NEG},         {"abs", PSOP_ABS},
                     {"ceiling", PSOP_CEILING}, {"floor", PSOP_FLOOR},
                     {"round", PSOP_ROUND},     {"truncate", PSOP_TRUNCATE},
                     {"sqrt", PSOP_SQRT},       {"sin", PSOP_SIN},
                     {"cos", PSOP_COS},         {"atan", PSOP_ATAN},
                     {"exp", PSOP_EXP},         {"ln", PSOP_LN},
                     {"log", PSOP_LOG},         {"cvi", PSOP_CVI},
                     {"cvr", PSOP_CVR},         {"eq", PSOP_EQ},
                     {"ne", PSOP_NE},           {"gt", PSOP_GT},
                     {"ge", PSOP_GE},           {"lt", PSOP_LT},
                     {"le", PSOP_LE},           {"and", PSOP_AND},
                     {"or", PSOP_OR},           {"xor", PSOP_XOR},
                     {"not", PSOP_NOT},         {"bitshift", PSOP_BITSHIFT},
                     {"true", PSOP_TRUE},       {"false", PSOP_FALSE},
                     {"if", PSOP_IF},           {"ifelse", PSOP_IFELSE},
                     {"pop", PSOP_POP},         {"exch", PSOP_EXCH},
                     {"dup", PSOP_DUP},         {"copy", PSOP_COPY},
                     {"index", PSOP_INDEX},     {"roll", PSOP_ROLL}};

FX_BOOL CPDF_PSEngine::Parse(const FX_CHAR* str, int size) {
  CPDF_SimpleParser parser((uint8_t*)str, size);
  CFX_ByteStringC word = parser.GetWord();
  if (word != "{") {
    return FALSE;
  }
  return m_MainProc.Parse(&parser, 0);
}

FX_BOOL CPDF_PSProc::Parse(CPDF_SimpleParser* parser, int depth) {
  if (depth > kMaxDepth)
    return FALSE;

  while (1) {
    CFX_ByteStringC word = parser->GetWord();
    if (word.IsEmpty()) {
      return FALSE;
    }
    if (word == "}") {
      return TRUE;
    }
    if (word == "{") {
      std::unique_ptr<CPDF_PSProc> proc(new CPDF_PSProc);
      std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(std::move(proc)));
      m_Operators.push_back(std::move(op));
      if (!m_Operators.back()->GetProc()->Parse(parser, depth + 1)) {
        return FALSE;
      }
    } else {
      bool found = false;
      for (const PDF_PSOpName& op_name : PDF_PSOpNames) {
        if (word == CFX_ByteStringC(op_name.name)) {
          std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(op_name.op));
          m_Operators.push_back(std::move(op));
          found = true;
          break;
        }
      }
      if (!found) {
        std::unique_ptr<CPDF_PSOP> op(new CPDF_PSOP(FX_atof(word)));
        m_Operators.push_back(std::move(op));
      }
    }
  }
}

FX_BOOL CPDF_PSEngine::DoOperator(PDF_PSOP op) {
  int i1, i2;
  FX_FLOAT d1, d2;
  switch (op) {
    case PSOP_ADD:
      d1 = Pop();
      d2 = Pop();
      Push(d1 + d2);
      break;
    case PSOP_SUB:
      d2 = Pop();
      d1 = Pop();
      Push(d1 - d2);
      break;
    case PSOP_MUL:
      d1 = Pop();
      d2 = Pop();
      Push(d1 * d2);
      break;
    case PSOP_DIV:
      d2 = Pop();
      d1 = Pop();
      Push(d1 / d2);
      break;
    case PSOP_IDIV:
      i2 = (int)Pop();
      i1 = (int)Pop();
      Push(i2 ? i1 / i2 : 0);
      break;
    case PSOP_MOD:
      i2 = (int)Pop();
      i1 = (int)Pop();
      Push(i2 ? i1 % i2 : 0);
      break;
    case PSOP_NEG:
      d1 = Pop();
      Push(-d1);
      break;
    case PSOP_ABS:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_fabs(d1));
      break;
    case PSOP_CEILING:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_ceil(d1));
      break;
    case PSOP_FLOOR:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_floor(d1));
      break;
    case PSOP_ROUND:
      d1 = Pop();
      Push(FXSYS_round(d1));
      break;
    case PSOP_TRUNCATE:
      i1 = (int)Pop();
      Push(i1);
      break;
    case PSOP_SQRT:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_sqrt(d1));
      break;
    case PSOP_SIN:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_sin(d1 * FX_PI / 180.0f));
      break;
    case PSOP_COS:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_cos(d1 * FX_PI / 180.0f));
      break;
    case PSOP_ATAN:
      d2 = Pop();
      d1 = Pop();
      d1 = (FX_FLOAT)(FXSYS_atan2(d1, d2) * 180.0 / FX_PI);
      if (d1 < 0) {
        d1 += 360;
      }
      Push(d1);
      break;
    case PSOP_EXP:
      d2 = Pop();
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_pow(d1, d2));
      break;
    case PSOP_LN:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_log(d1));
      break;
    case PSOP_LOG:
      d1 = Pop();
      Push((FX_FLOAT)FXSYS_log10(d1));
      break;
    case PSOP_CVI:
      i1 = (int)Pop();
      Push(i1);
      break;
    case PSOP_CVR:
      break;
    case PSOP_EQ:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 == d2));
      break;
    case PSOP_NE:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 != d2));
      break;
    case PSOP_GT:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 > d2));
      break;
    case PSOP_GE:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 >= d2));
      break;
    case PSOP_LT:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 < d2));
      break;
    case PSOP_LE:
      d2 = Pop();
      d1 = Pop();
      Push((int)(d1 <= d2));
      break;
    case PSOP_AND:
      i1 = (int)Pop();
      i2 = (int)Pop();
      Push(i1 & i2);
      break;
    case PSOP_OR:
      i1 = (int)Pop();
      i2 = (int)Pop();
      Push(i1 | i2);
      break;
    case PSOP_XOR:
      i1 = (int)Pop();
      i2 = (int)Pop();
      Push(i1 ^ i2);
      break;
    case PSOP_NOT:
      i1 = (int)Pop();
      Push((int)!i1);
      break;
    case PSOP_BITSHIFT: {
      int shift = (int)Pop();
      int i = (int)Pop();
      if (shift > 0) {
        Push(i << shift);
      } else {
        Push(i >> -shift);
      }
      break;
    }
    case PSOP_TRUE:
      Push(1);
      break;
    case PSOP_FALSE:
      Push(0);
      break;
    case PSOP_POP:
      Pop();
      break;
    case PSOP_EXCH:
      d2 = Pop();
      d1 = Pop();
      Push(d2);
      Push(d1);
      break;
    case PSOP_DUP:
      d1 = Pop();
      Push(d1);
      Push(d1);
      break;
    case PSOP_COPY: {
      int n = static_cast<int>(Pop());
      if (n < 0 || m_StackCount + n > PSENGINE_STACKSIZE ||
          n > static_cast<int>(m_StackCount))
        break;
      for (int i = 0; i < n; i++)
        m_Stack[m_StackCount + i] = m_Stack[m_StackCount + i - n];
      m_StackCount += n;
      break;
    }
    case PSOP_INDEX: {
      int n = static_cast<int>(Pop());
      if (n < 0 || n >= static_cast<int>(m_StackCount))
        break;
      Push(m_Stack[m_StackCount - n - 1]);
      break;
    }
    case PSOP_ROLL: {
      int j = static_cast<int>(Pop());
      int n = static_cast<int>(Pop());
      if (m_StackCount == 0)
        break;
      if (n < 0 || n > static_cast<int>(m_StackCount))
        break;
      if (j < 0) {
        for (int i = 0; i < -j; i++) {
          FX_FLOAT first = m_Stack[m_StackCount - n];
          for (int ii = 0; ii < n - 1; ii++)
            m_Stack[m_StackCount - n + ii] = m_Stack[m_StackCount - n + ii + 1];
          m_Stack[m_StackCount - 1] = first;
        }
      } else {
        for (int i = 0; i < j; i++) {
          FX_FLOAT last = m_Stack[m_StackCount - 1];
          int ii;
          for (ii = 0; ii < n - 1; ii++)
            m_Stack[m_StackCount - ii - 1] = m_Stack[m_StackCount - ii - 2];
          m_Stack[m_StackCount - ii - 1] = last;
        }
      }
      break;
    }
    default:
      break;
  }
  return TRUE;
}

// See PDF Reference 1.7, page 170, table 3.36.
bool IsValidBitsPerSample(uint32_t x) {
  switch (x) {
    case 1:
    case 2:
    case 4:
    case 8:
    case 12:
    case 16:
    case 24:
    case 32:
      return true;
    default:
      return false;
  }
}

// See PDF Reference 1.7, page 170.
FX_FLOAT PDF_Interpolate(FX_FLOAT x,
                         FX_FLOAT xmin,
                         FX_FLOAT xmax,
                         FX_FLOAT ymin,
                         FX_FLOAT ymax) {
  FX_FLOAT divisor = xmax - xmin;
  return ymin + (divisor ? (x - xmin) * (ymax - ymin) / divisor : 0);
}

class CPDF_PSFunc : public CPDF_Function {
 public:
  CPDF_PSFunc() : CPDF_Function(Type::kType4PostScript) {}
  ~CPDF_PSFunc() override {}

  // CPDF_Function
  FX_BOOL v_Init(CPDF_Object* pObj) override;
  FX_BOOL v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const override;

 private:
  CPDF_PSEngine m_PS;
};

FX_BOOL CPDF_PSFunc::v_Init(CPDF_Object* pObj) {
  CPDF_StreamAcc acc;
  acc.LoadAllData(pObj->AsStream(), FALSE);
  return m_PS.Parse(reinterpret_cast<const FX_CHAR*>(acc.GetData()),
                    acc.GetSize());
}

FX_BOOL CPDF_PSFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
  CPDF_PSEngine& PS = const_cast<CPDF_PSEngine&>(m_PS);
  PS.Reset();
  for (uint32_t i = 0; i < m_nInputs; i++)
    PS.Push(inputs[i]);
  PS.Execute();
  if (PS.GetStackSize() < m_nOutputs)
    return FALSE;
  for (uint32_t i = 0; i < m_nOutputs; i++)
    results[m_nOutputs - i - 1] = PS.Pop();
  return TRUE;
}

CPDF_SampledFunc::CPDF_SampledFunc() : CPDF_Function(Type::kType0Sampled) {}

CPDF_SampledFunc::~CPDF_SampledFunc() {}

FX_BOOL CPDF_SampledFunc::v_Init(CPDF_Object* pObj) {
  CPDF_Stream* pStream = pObj->AsStream();
  if (!pStream)
    return false;

  CPDF_Dictionary* pDict = pStream->GetDict();
  CPDF_Array* pSize = pDict->GetArrayFor("Size");
  CPDF_Array* pEncode = pDict->GetArrayFor("Encode");
  CPDF_Array* pDecode = pDict->GetArrayFor("Decode");
  m_nBitsPerSample = pDict->GetIntegerFor("BitsPerSample");
  if (!IsValidBitsPerSample(m_nBitsPerSample))
    return FALSE;

  m_SampleMax = 0xffffffff >> (32 - m_nBitsPerSample);
  m_pSampleStream.reset(new CPDF_StreamAcc);
  m_pSampleStream->LoadAllData(pStream, FALSE);
  FX_SAFE_UINT32 nTotalSampleBits = 1;
  m_EncodeInfo.resize(m_nInputs);
  for (uint32_t i = 0; i < m_nInputs; i++) {
    m_EncodeInfo[i].sizes = pSize ? pSize->GetIntegerAt(i) : 0;
    if (!pSize && i == 0)
      m_EncodeInfo[i].sizes = pDict->GetIntegerFor("Size");
    nTotalSampleBits *= m_EncodeInfo[i].sizes;
    if (pEncode) {
      m_EncodeInfo[i].encode_min = pEncode->GetFloatAt(i * 2);
      m_EncodeInfo[i].encode_max = pEncode->GetFloatAt(i * 2 + 1);
    } else {
      m_EncodeInfo[i].encode_min = 0;
      m_EncodeInfo[i].encode_max =
          m_EncodeInfo[i].sizes == 1 ? 1 : (FX_FLOAT)m_EncodeInfo[i].sizes - 1;
    }
  }
  nTotalSampleBits *= m_nBitsPerSample;
  nTotalSampleBits *= m_nOutputs;
  FX_SAFE_UINT32 nTotalSampleBytes = nTotalSampleBits;
  nTotalSampleBytes += 7;
  nTotalSampleBytes /= 8;
  if (!nTotalSampleBytes.IsValid() || nTotalSampleBytes.ValueOrDie() == 0 ||
      nTotalSampleBytes.ValueOrDie() > m_pSampleStream->GetSize()) {
    return FALSE;
  }
  m_DecodeInfo.resize(m_nOutputs);
  for (uint32_t i = 0; i < m_nOutputs; i++) {
    if (pDecode) {
      m_DecodeInfo[i].decode_min = pDecode->GetFloatAt(2 * i);
      m_DecodeInfo[i].decode_max = pDecode->GetFloatAt(2 * i + 1);
    } else {
      m_DecodeInfo[i].decode_min = m_pRanges[i * 2];
      m_DecodeInfo[i].decode_max = m_pRanges[i * 2 + 1];
    }
  }
  return TRUE;
}

FX_BOOL CPDF_SampledFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
  int pos = 0;
  CFX_FixedBufGrow<FX_FLOAT, 16> encoded_input_buf(m_nInputs);
  FX_FLOAT* encoded_input = encoded_input_buf;
  CFX_FixedBufGrow<uint32_t, 32> int_buf(m_nInputs * 2);
  uint32_t* index = int_buf;
  uint32_t* blocksize = index + m_nInputs;
  for (uint32_t i = 0; i < m_nInputs; i++) {
    if (i == 0)
      blocksize[i] = 1;
    else
      blocksize[i] = blocksize[i - 1] * m_EncodeInfo[i - 1].sizes;
    encoded_input[i] =
        PDF_Interpolate(inputs[i], m_pDomains[i * 2], m_pDomains[i * 2 + 1],
                        m_EncodeInfo[i].encode_min, m_EncodeInfo[i].encode_max);
    index[i] = std::min((uint32_t)std::max(0.f, encoded_input[i]),
                        m_EncodeInfo[i].sizes - 1);
    pos += index[i] * blocksize[i];
  }
  FX_SAFE_INT32 bits_to_output = m_nOutputs;
  bits_to_output *= m_nBitsPerSample;
  if (!bits_to_output.IsValid())
    return FALSE;

  FX_SAFE_INT32 bitpos = pos;
  bitpos *= bits_to_output.ValueOrDie();
  if (!bitpos.IsValid())
    return FALSE;

  FX_SAFE_INT32 range_check = bitpos;
  range_check += bits_to_output.ValueOrDie();
  if (!range_check.IsValid())
    return FALSE;

  const uint8_t* pSampleData = m_pSampleStream->GetData();
  if (!pSampleData)
    return FALSE;

  for (uint32_t j = 0; j < m_nOutputs; j++) {
    uint32_t sample =
        GetBits32(pSampleData, bitpos.ValueOrDie() + j * m_nBitsPerSample,
                  m_nBitsPerSample);
    FX_FLOAT encoded = (FX_FLOAT)sample;
    for (uint32_t i = 0; i < m_nInputs; i++) {
      if (index[i] == m_EncodeInfo[i].sizes - 1) {
        if (index[i] == 0)
          encoded = encoded_input[i] * (FX_FLOAT)sample;
      } else {
        FX_SAFE_INT32 bitpos2 = blocksize[i];
        bitpos2 += pos;
        bitpos2 *= m_nOutputs;
        bitpos2 += j;
        bitpos2 *= m_nBitsPerSample;
        if (!bitpos2.IsValid())
          return FALSE;
        uint32_t sample1 =
            GetBits32(pSampleData, bitpos2.ValueOrDie(), m_nBitsPerSample);
        encoded += (encoded_input[i] - index[i]) *
                   ((FX_FLOAT)sample1 - (FX_FLOAT)sample);
      }
    }
    results[j] =
        PDF_Interpolate(encoded, 0, (FX_FLOAT)m_SampleMax,
                        m_DecodeInfo[j].decode_min, m_DecodeInfo[j].decode_max);
  }
  return TRUE;
}

CPDF_ExpIntFunc::CPDF_ExpIntFunc()
    : CPDF_Function(Type::kType2ExpotentialInterpolation),
      m_pBeginValues(nullptr),
      m_pEndValues(nullptr) {}

CPDF_ExpIntFunc::~CPDF_ExpIntFunc() {
  FX_Free(m_pBeginValues);
  FX_Free(m_pEndValues);
}
FX_BOOL CPDF_ExpIntFunc::v_Init(CPDF_Object* pObj) {
  CPDF_Dictionary* pDict = pObj->GetDict();
  if (!pDict) {
    return FALSE;
  }
  CPDF_Array* pArray0 = pDict->GetArrayFor("C0");
  if (m_nOutputs == 0) {
    m_nOutputs = 1;
    if (pArray0) {
      m_nOutputs = pArray0->GetCount();
    }
  }
  CPDF_Array* pArray1 = pDict->GetArrayFor("C1");
  m_pBeginValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
  m_pEndValues = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
  for (uint32_t i = 0; i < m_nOutputs; i++) {
    m_pBeginValues[i] = pArray0 ? pArray0->GetFloatAt(i) : 0.0f;
    m_pEndValues[i] = pArray1 ? pArray1->GetFloatAt(i) : 1.0f;
  }
  m_Exponent = pDict->GetFloatFor("N");
  m_nOrigOutputs = m_nOutputs;
  if (m_nOutputs && m_nInputs > INT_MAX / m_nOutputs) {
    return FALSE;
  }
  m_nOutputs *= m_nInputs;
  return TRUE;
}
FX_BOOL CPDF_ExpIntFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* results) const {
  for (uint32_t i = 0; i < m_nInputs; i++)
    for (uint32_t j = 0; j < m_nOrigOutputs; j++) {
      results[i * m_nOrigOutputs + j] =
          m_pBeginValues[j] +
          (FX_FLOAT)FXSYS_pow(inputs[i], m_Exponent) *
              (m_pEndValues[j] - m_pBeginValues[j]);
    }
  return TRUE;
}

CPDF_StitchFunc::CPDF_StitchFunc()
    : CPDF_Function(Type::kType3Stitching),
      m_pBounds(nullptr),
      m_pEncode(nullptr) {}

CPDF_StitchFunc::~CPDF_StitchFunc() {
  FX_Free(m_pBounds);
  FX_Free(m_pEncode);
}

FX_BOOL CPDF_StitchFunc::v_Init(CPDF_Object* pObj) {
  CPDF_Dictionary* pDict = pObj->GetDict();
  if (!pDict) {
    return FALSE;
  }
  if (m_nInputs != kRequiredNumInputs) {
    return FALSE;
  }
  CPDF_Array* pArray = pDict->GetArrayFor("Functions");
  if (!pArray) {
    return FALSE;
  }
  uint32_t nSubs = pArray->GetCount();
  if (nSubs == 0)
    return FALSE;
  m_nOutputs = 0;
  for (uint32_t i = 0; i < nSubs; i++) {
    CPDF_Object* pSub = pArray->GetDirectObjectAt(i);
    if (pSub == pObj)
      return FALSE;
    std::unique_ptr<CPDF_Function> pFunc(CPDF_Function::Load(pSub));
    if (!pFunc)
      return FALSE;
    // Check that the input dimensionality is 1, and that all output
    // dimensionalities are the same.
    if (pFunc->CountInputs() != kRequiredNumInputs)
      return FALSE;
    if (pFunc->CountOutputs() != m_nOutputs) {
      if (m_nOutputs)
        return FALSE;

      m_nOutputs = pFunc->CountOutputs();
    }

    m_pSubFunctions.push_back(std::move(pFunc));
  }
  m_pBounds = FX_Alloc(FX_FLOAT, nSubs + 1);
  m_pBounds[0] = m_pDomains[0];
  pArray = pDict->GetArrayFor("Bounds");
  if (!pArray)
    return FALSE;
  for (uint32_t i = 0; i < nSubs - 1; i++)
    m_pBounds[i + 1] = pArray->GetFloatAt(i);
  m_pBounds[nSubs] = m_pDomains[1];
  m_pEncode = FX_Alloc2D(FX_FLOAT, nSubs, 2);
  pArray = pDict->GetArrayFor("Encode");
  if (!pArray)
    return FALSE;

  for (uint32_t i = 0; i < nSubs * 2; i++)
    m_pEncode[i] = pArray->GetFloatAt(i);
  return TRUE;
}

FX_BOOL CPDF_StitchFunc::v_Call(FX_FLOAT* inputs, FX_FLOAT* outputs) const {
  FX_FLOAT input = inputs[0];
  size_t i;
  for (i = 0; i < m_pSubFunctions.size() - 1; i++) {
    if (input < m_pBounds[i + 1])
      break;
  }
  input = PDF_Interpolate(input, m_pBounds[i], m_pBounds[i + 1],
                          m_pEncode[i * 2], m_pEncode[i * 2 + 1]);
  int nresults;
  m_pSubFunctions[i]->Call(&input, kRequiredNumInputs, outputs, nresults);
  return TRUE;
}

// static
std::unique_ptr<CPDF_Function> CPDF_Function::Load(CPDF_Object* pFuncObj) {
  std::unique_ptr<CPDF_Function> pFunc;
  if (!pFuncObj)
    return pFunc;

  int iType = -1;
  if (CPDF_Stream* pStream = pFuncObj->AsStream())
    iType = pStream->GetDict()->GetIntegerFor("FunctionType");
  else if (CPDF_Dictionary* pDict = pFuncObj->AsDictionary())
    iType = pDict->GetIntegerFor("FunctionType");

  Type type = IntegerToFunctionType(iType);
  if (type == Type::kType0Sampled)
    pFunc.reset(new CPDF_SampledFunc());
  else if (type == Type::kType2ExpotentialInterpolation)
    pFunc.reset(new CPDF_ExpIntFunc());
  else if (type == Type::kType3Stitching)
    pFunc.reset(new CPDF_StitchFunc());
  else if (type == Type::kType4PostScript)
    pFunc.reset(new CPDF_PSFunc());

  if (!pFunc || !pFunc->Init(pFuncObj))
    return std::unique_ptr<CPDF_Function>();
  return pFunc;
}

// static
CPDF_Function::Type CPDF_Function::IntegerToFunctionType(int iType) {
  switch (iType) {
    case 0:
    case 2:
    case 3:
    case 4:
      return static_cast<Type>(iType);
    default:
      return Type::kTypeInvalid;
  }
}

CPDF_Function::CPDF_Function(Type type)
    : m_pDomains(nullptr), m_pRanges(nullptr), m_Type(type) {}

CPDF_Function::~CPDF_Function() {
  FX_Free(m_pDomains);
  FX_Free(m_pRanges);
}

FX_BOOL CPDF_Function::Init(CPDF_Object* pObj) {
  CPDF_Stream* pStream = pObj->AsStream();
  CPDF_Dictionary* pDict = pStream ? pStream->GetDict() : pObj->AsDictionary();

  CPDF_Array* pDomains = pDict->GetArrayFor("Domain");
  if (!pDomains)
    return FALSE;

  m_nInputs = pDomains->GetCount() / 2;
  if (m_nInputs == 0)
    return FALSE;

  m_pDomains = FX_Alloc2D(FX_FLOAT, m_nInputs, 2);
  for (uint32_t i = 0; i < m_nInputs * 2; i++) {
    m_pDomains[i] = pDomains->GetFloatAt(i);
  }
  CPDF_Array* pRanges = pDict->GetArrayFor("Range");
  m_nOutputs = 0;
  if (pRanges) {
    m_nOutputs = pRanges->GetCount() / 2;
    m_pRanges = FX_Alloc2D(FX_FLOAT, m_nOutputs, 2);
    for (uint32_t i = 0; i < m_nOutputs * 2; i++)
      m_pRanges[i] = pRanges->GetFloatAt(i);
  }
  uint32_t old_outputs = m_nOutputs;
  if (!v_Init(pObj))
    return FALSE;
  if (m_pRanges && m_nOutputs > old_outputs) {
    m_pRanges = FX_Realloc(FX_FLOAT, m_pRanges, m_nOutputs * 2);
    if (m_pRanges) {
      FXSYS_memset(m_pRanges + (old_outputs * 2), 0,
                   sizeof(FX_FLOAT) * (m_nOutputs - old_outputs) * 2);
    }
  }
  return TRUE;
}

FX_BOOL CPDF_Function::Call(FX_FLOAT* inputs,
                            uint32_t ninputs,
                            FX_FLOAT* results,
                            int& nresults) const {
  if (m_nInputs != ninputs) {
    return FALSE;
  }
  nresults = m_nOutputs;
  for (uint32_t i = 0; i < m_nInputs; i++) {
    if (inputs[i] < m_pDomains[i * 2])
      inputs[i] = m_pDomains[i * 2];
    else if (inputs[i] > m_pDomains[i * 2 + 1])
      inputs[i] = m_pDomains[i * 2] + 1;
  }
  v_Call(inputs, results);
  if (m_pRanges) {
    for (uint32_t i = 0; i < m_nOutputs; i++) {
      if (results[i] < m_pRanges[i * 2])
        results[i] = m_pRanges[i * 2];
      else if (results[i] > m_pRanges[i * 2 + 1])
        results[i] = m_pRanges[i * 2 + 1];
    }
  }
  return TRUE;
}

const CPDF_SampledFunc* CPDF_Function::ToSampledFunc() const {
  return m_Type == Type::kType0Sampled
             ? static_cast<const CPDF_SampledFunc*>(this)
             : nullptr;
}

const CPDF_ExpIntFunc* CPDF_Function::ToExpIntFunc() const {
  return m_Type == Type::kType2ExpotentialInterpolation
             ? static_cast<const CPDF_ExpIntFunc*>(this)
             : nullptr;
}

const CPDF_StitchFunc* CPDF_Function::ToStitchFunc() const {
  return m_Type == Type::kType3Stitching
             ? static_cast<const CPDF_StitchFunc*>(this)
             : nullptr;
}