1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
|
// Copyright 2016 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fpdfdoc/cpdf_nametree.h"
#include <utility>
#include <vector>
#include "core/fpdfapi/parser/cpdf_array.h"
#include "core/fpdfapi/parser/cpdf_dictionary.h"
#include "core/fpdfapi/parser/cpdf_document.h"
#include "core/fpdfapi/parser/cpdf_string.h"
#include "core/fpdfapi/parser/fpdf_parser_decode.h"
namespace {
constexpr int kNameTreeMaxRecursion = 32;
std::pair<WideString, WideString> GetNodeLimitsMaybeSwap(CPDF_Array* pLimits) {
ASSERT(pLimits);
WideString csLeft = pLimits->GetUnicodeTextAt(0);
WideString csRight = pLimits->GetUnicodeTextAt(1);
// If the lower limit is greater than the upper limit, swap them.
if (csLeft.Compare(csRight) > 0) {
pLimits->SetNewAt<CPDF_String>(0, csRight);
pLimits->SetNewAt<CPDF_String>(1, csLeft);
csLeft = pLimits->GetUnicodeTextAt(0);
csRight = pLimits->GetUnicodeTextAt(1);
}
return {csLeft, csRight};
}
// Get the limit arrays that leaf array |pFind| is under in the tree with root
// |pNode|. |pLimits| will hold all the limit arrays from the leaf up to before
// the root. Return true if successful.
bool GetNodeAncestorsLimits(const CPDF_Dictionary* pNode,
const CPDF_Array* pFind,
int nLevel,
std::vector<CPDF_Array*>* pLimits) {
if (nLevel > kNameTreeMaxRecursion)
return false;
if (pNode->GetArrayFor("Names") == pFind) {
pLimits->push_back(pNode->GetArrayFor("Limits"));
return true;
}
CPDF_Array* pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return false;
for (size_t i = 0; i < pKids->GetCount(); ++i) {
CPDF_Dictionary* pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
if (GetNodeAncestorsLimits(pKid, pFind, nLevel + 1, pLimits)) {
pLimits->push_back(pNode->GetArrayFor("Limits"));
return true;
}
}
return false;
}
// Upon the deletion of |csName| from leaf array |pFind|, update the ancestors
// of |pFind|. Specifically, the limits of |pFind|'s ancestors will be updated
// if needed, and any ancestors that are now empty will be removed.
bool UpdateNodesAndLimitsUponDeletion(CPDF_Dictionary* pNode,
const CPDF_Array* pFind,
const WideString& csName,
int nLevel) {
if (nLevel > kNameTreeMaxRecursion)
return false;
CPDF_Array* pLimits = pNode->GetArrayFor("Limits");
WideString csLeft;
WideString csRight;
if (pLimits)
std::tie(csLeft, csRight) = GetNodeLimitsMaybeSwap(pLimits);
CPDF_Array* pNames = pNode->GetArrayFor("Names");
if (pNames) {
if (pNames != pFind)
return false;
if (pNames->IsEmpty() || !pLimits)
return true;
if (csLeft != csName && csRight != csName)
return true;
// Since |csName| defines |pNode|'s limits, we need to loop through the
// names to find the new lower and upper limits.
WideString csNewLeft = csRight;
WideString csNewRight = csLeft;
for (size_t i = 0; i < pNames->GetCount() / 2; ++i) {
WideString wsName = pNames->GetUnicodeTextAt(i * 2);
if (wsName.Compare(csNewLeft) < 0)
csNewLeft = wsName;
if (wsName.Compare(csNewRight) > 0)
csNewRight = wsName;
}
pLimits->SetNewAt<CPDF_String>(0, csNewLeft);
pLimits->SetNewAt<CPDF_String>(1, csNewRight);
return true;
}
CPDF_Array* pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return false;
// Loop through the kids to find the leaf array |pFind|.
for (size_t i = 0; i < pKids->GetCount(); ++i) {
CPDF_Dictionary* pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
if (!UpdateNodesAndLimitsUponDeletion(pKid, pFind, csName, nLevel + 1))
continue;
// Remove this child node if it's empty.
if ((pKid->KeyExist("Names") && pKid->GetArrayFor("Names")->IsEmpty()) ||
(pKid->KeyExist("Kids") && pKid->GetArrayFor("Kids")->IsEmpty())) {
pKids->RemoveAt(i);
}
if (pKids->IsEmpty() || !pLimits)
return true;
if (csLeft != csName && csRight != csName)
return true;
// Since |csName| defines |pNode|'s limits, we need to loop through the
// kids to find the new lower and upper limits.
WideString csNewLeft = csRight;
WideString csNewRight = csLeft;
for (size_t j = 0; j < pKids->GetCount(); ++j) {
CPDF_Array* pKidLimits = pKids->GetDictAt(j)->GetArrayFor("Limits");
ASSERT(pKidLimits);
if (pKidLimits->GetUnicodeTextAt(0).Compare(csNewLeft) < 0)
csNewLeft = pKidLimits->GetUnicodeTextAt(0);
if (pKidLimits->GetUnicodeTextAt(1).Compare(csNewRight) > 0)
csNewRight = pKidLimits->GetUnicodeTextAt(1);
}
pLimits->SetNewAt<CPDF_String>(0, csNewLeft);
pLimits->SetNewAt<CPDF_String>(1, csNewRight);
return true;
}
return false;
}
// Search for |csName| in the tree with root |pNode|. If successful, return the
// value that |csName| points to; |nIndex| will be the index of |csName|,
// |ppFind| will be the leaf array that |csName| is found in, and |pFindIndex|
// will be the index of |csName| in |ppFind|. If |csName| is not found, |ppFind|
// will be the leaf array that |csName| should be added to, and |pFindIndex|
// will be the index that it should be added at.
CPDF_Object* SearchNameNodeByName(const CPDF_Dictionary* pNode,
const WideString& csName,
int nLevel,
size_t* nIndex,
CPDF_Array** ppFind,
int* pFindIndex) {
if (nLevel > kNameTreeMaxRecursion)
return nullptr;
CPDF_Array* pLimits = pNode->GetArrayFor("Limits");
CPDF_Array* pNames = pNode->GetArrayFor("Names");
if (pLimits) {
WideString csLeft;
WideString csRight;
std::tie(csLeft, csRight) = GetNodeLimitsMaybeSwap(pLimits);
// Skip this node if the name to look for is smaller than its lower limit.
if (csName.Compare(csLeft) < 0)
return nullptr;
// Skip this node if the name to look for is greater than its higher limit,
// and the node itself is a leaf node.
if (csName.Compare(csRight) > 0 && pNames) {
if (ppFind)
*ppFind = pNames;
if (pFindIndex)
*pFindIndex = pNames->GetCount() / 2 - 1;
return nullptr;
}
}
// If the node is a leaf node, look for the name in its names array.
if (pNames) {
size_t dwCount = pNames->GetCount() / 2;
for (size_t i = 0; i < dwCount; i++) {
WideString csValue = pNames->GetUnicodeTextAt(i * 2);
int32_t iCompare = csValue.Compare(csName);
if (iCompare > 0)
break;
if (ppFind)
*ppFind = pNames;
if (pFindIndex)
*pFindIndex = i;
if (iCompare < 0)
continue;
*nIndex += i;
return pNames->GetDirectObjectAt(i * 2 + 1);
}
*nIndex += dwCount;
return nullptr;
}
// Search through the node's children.
CPDF_Array* pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return nullptr;
for (size_t i = 0; i < pKids->GetCount(); i++) {
CPDF_Dictionary* pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
CPDF_Object* pFound = SearchNameNodeByName(pKid, csName, nLevel + 1, nIndex,
ppFind, pFindIndex);
if (pFound)
return pFound;
}
return nullptr;
}
// Get the key-value pair at |nIndex| in the tree with root |pNode|. If
// successful, return the value object; |csName| will be the key, |ppFind|
// will be the leaf array that this pair is in, and |pFindIndex| will be the
// index of the pair in |pFind|.
CPDF_Object* SearchNameNodeByIndex(const CPDF_Dictionary* pNode,
size_t nIndex,
int nLevel,
size_t* nCurIndex,
WideString* csName,
CPDF_Array** ppFind,
int* pFindIndex) {
if (nLevel > kNameTreeMaxRecursion)
return nullptr;
CPDF_Array* pNames = pNode->GetArrayFor("Names");
if (pNames) {
size_t nCount = pNames->GetCount() / 2;
if (nIndex >= *nCurIndex + nCount) {
*nCurIndex += nCount;
return nullptr;
}
if (ppFind)
*ppFind = pNames;
if (pFindIndex)
*pFindIndex = nIndex - *nCurIndex;
*csName = pNames->GetUnicodeTextAt((nIndex - *nCurIndex) * 2);
return pNames->GetDirectObjectAt((nIndex - *nCurIndex) * 2 + 1);
}
CPDF_Array* pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return nullptr;
for (size_t i = 0; i < pKids->GetCount(); i++) {
CPDF_Dictionary* pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
CPDF_Object* pFound = SearchNameNodeByIndex(
pKid, nIndex, nLevel + 1, nCurIndex, csName, ppFind, pFindIndex);
if (pFound)
return pFound;
}
return nullptr;
}
// Get the total number of key-value pairs in the tree with root |pNode|.
size_t CountNamesInternal(CPDF_Dictionary* pNode, int nLevel) {
if (nLevel > kNameTreeMaxRecursion)
return 0;
CPDF_Array* pNames = pNode->GetArrayFor("Names");
if (pNames)
return pNames->GetCount() / 2;
CPDF_Array* pKids = pNode->GetArrayFor("Kids");
if (!pKids)
return 0;
size_t nCount = 0;
for (size_t i = 0; i < pKids->GetCount(); i++) {
CPDF_Dictionary* pKid = pKids->GetDictAt(i);
if (!pKid)
continue;
nCount += CountNamesInternal(pKid, nLevel + 1);
}
return nCount;
}
} // namespace
CPDF_NameTree::CPDF_NameTree(CPDF_Dictionary* pRoot) : m_pRoot(pRoot) {}
CPDF_NameTree::CPDF_NameTree(const CPDF_Document* pDoc,
const ByteString& category)
: m_pRoot(nullptr) {
const CPDF_Dictionary* pRoot = pDoc->GetRoot();
if (!pRoot)
return;
CPDF_Dictionary* pNames = pRoot->GetDictFor("Names");
if (!pNames)
return;
m_pRoot = pNames->GetDictFor(category);
}
CPDF_NameTree::~CPDF_NameTree() {}
size_t CPDF_NameTree::GetCount() const {
return m_pRoot ? CountNamesInternal(m_pRoot.Get(), 0) : 0;
}
int CPDF_NameTree::GetIndex(const WideString& csName) const {
if (!m_pRoot)
return -1;
size_t nIndex = 0;
if (!SearchNameNodeByName(m_pRoot.Get(), csName, 0, &nIndex, nullptr,
nullptr)) {
return -1;
}
return nIndex;
}
bool CPDF_NameTree::AddValueAndName(std::unique_ptr<CPDF_Object> pObj,
const WideString& name) {
if (!m_pRoot)
return false;
size_t nIndex = 0;
CPDF_Array* pFind = nullptr;
int nFindIndex = -1;
// Fail if the tree already contains this name or if the tree is too deep.
if (SearchNameNodeByName(m_pRoot.Get(), name, 0, &nIndex, &pFind,
&nFindIndex)) {
return false;
}
// If the returned |pFind| is a nullptr, then |name| is smaller than all
// existing entries in the tree, and we did not find a leaf array to place
// |name| into. We instead will find the leftmost leaf array in which to place
// |name| and |pObj|.
if (!pFind) {
size_t nCurIndex = 0;
WideString csName;
SearchNameNodeByIndex(m_pRoot.Get(), 0, 0, &nCurIndex, &csName, &pFind,
nullptr);
}
ASSERT(pFind);
// Insert the name and the object into the leaf array found. Note that the
// insertion position is right after the key-value pair returned by |index|.
size_t nNameIndex = (nFindIndex + 1) * 2;
size_t nValueIndex = nNameIndex + 1;
pFind->InsertNewAt<CPDF_String>(nNameIndex, name);
pFind->InsertAt(nValueIndex, std::move(pObj));
// Expand the limits that the newly added name is under, if the name falls
// outside of the limits of its leaf array or any arrays above it.
std::vector<CPDF_Array*> pLimits;
GetNodeAncestorsLimits(m_pRoot.Get(), pFind, 0, &pLimits);
for (auto* pLimit : pLimits) {
if (!pLimit)
continue;
if (name.Compare(pLimit->GetUnicodeTextAt(0)) < 0)
pLimit->SetNewAt<CPDF_String>(0, name);
if (name.Compare(pLimit->GetUnicodeTextAt(1)) > 0)
pLimit->SetNewAt<CPDF_String>(1, name);
}
return true;
}
bool CPDF_NameTree::DeleteValueAndName(int nIndex) {
if (!m_pRoot)
return false;
size_t nCurIndex = 0;
WideString csName;
CPDF_Array* pFind = nullptr;
int nFindIndex = -1;
// Fail if the tree does not contain |nIndex|.
if (!SearchNameNodeByIndex(m_pRoot.Get(), nIndex, 0, &nCurIndex, &csName,
&pFind, &nFindIndex)) {
return false;
}
// Remove the name and the object from the leaf array |pFind|.
pFind->RemoveAt(nFindIndex * 2);
pFind->RemoveAt(nFindIndex * 2);
// Delete empty nodes and update the limits of |pFind|'s ancestors as needed.
UpdateNodesAndLimitsUponDeletion(m_pRoot.Get(), pFind, csName, 0);
return true;
}
CPDF_Object* CPDF_NameTree::LookupValueAndName(int nIndex,
WideString* csName) const {
csName->clear();
if (!m_pRoot)
return nullptr;
size_t nCurIndex = 0;
return SearchNameNodeByIndex(m_pRoot.Get(), nIndex, 0, &nCurIndex, csName,
nullptr, nullptr);
}
CPDF_Object* CPDF_NameTree::LookupValue(const WideString& csName) const {
if (!m_pRoot)
return nullptr;
size_t nIndex = 0;
return SearchNameNodeByName(m_pRoot.Get(), csName, 0, &nIndex, nullptr,
nullptr);
}
CPDF_Array* CPDF_NameTree::LookupNamedDest(CPDF_Document* pDoc,
const WideString& sName) {
CPDF_Object* pValue = LookupValue(sName);
if (!pValue) {
CPDF_Dictionary* pDests = pDoc->GetRoot()->GetDictFor("Dests");
if (!pDests)
return nullptr;
pValue = pDests->GetDirectObjectFor(PDF_EncodeText(sName));
}
if (!pValue)
return nullptr;
if (CPDF_Array* pArray = pValue->AsArray())
return pArray;
if (CPDF_Dictionary* pDict = pValue->AsDictionary())
return pDict->GetArrayFor("D");
return nullptr;
}
|