1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
|
// Copyright 2017 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
#include "core/fxcrt/fx_system.h"
#include <limits>
#include "core/fxcrt/fx_extension.h"
namespace {
template <typename IntType, typename CharType>
IntType FXSYS_StrToInt(const CharType* str) {
if (!str)
return 0;
// Process the sign.
bool neg = *str == '-';
if (neg || *str == '+')
str++;
IntType num = 0;
while (*str && FXSYS_isDecimalDigit(*str)) {
IntType val = FXSYS_DecimalCharToInt(*str);
if (num > (std::numeric_limits<IntType>::max() - val) / 10) {
if (neg && std::numeric_limits<IntType>::is_signed) {
// Return MIN when the represented number is signed type and is smaller
// than the min value.
return std::numeric_limits<IntType>::min();
} else {
// Return MAX when the represented number is signed type and is larger
// than the max value, or the number is unsigned type and out of range.
return std::numeric_limits<IntType>::max();
}
}
num = num * 10 + val;
str++;
}
// When it is a negative value, -num should be returned. Since num may be of
// unsigned type, use ~num + 1 to avoid the warning of applying unary minus
// operator to unsigned type.
return neg ? ~num + 1 : num;
}
template <typename T, typename UT, typename STR_T>
STR_T FXSYS_IntToStr(T value, STR_T str, int radix) {
if (radix < 2 || radix > 16) {
str[0] = 0;
return str;
}
if (value == 0) {
str[0] = '0';
str[1] = 0;
return str;
}
int i = 0;
UT uvalue;
if (value < 0) {
str[i++] = '-';
// Standard trick to avoid undefined behaviour when negating INT_MIN.
uvalue = static_cast<UT>(-(value + 1)) + 1;
} else {
uvalue = value;
}
int digits = 1;
T order = uvalue / radix;
while (order > 0) {
digits++;
order = order / radix;
}
for (int d = digits - 1; d > -1; d--) {
str[d + i] = "0123456789abcdef"[uvalue % radix];
uvalue /= radix;
}
str[digits + i] = 0;
return str;
}
} // namespace
int FXSYS_round(float d) {
if (d < static_cast<float>(std::numeric_limits<int>::min()))
return std::numeric_limits<int>::min();
if (d > static_cast<float>(std::numeric_limits<int>::max()))
return std::numeric_limits<int>::max();
return static_cast<int>(round(d));
}
int32_t FXSYS_atoi(const char* str) {
return FXSYS_StrToInt<int32_t, char>(str);
}
uint32_t FXSYS_atoui(const char* str) {
return FXSYS_StrToInt<uint32_t>(str);
}
int32_t FXSYS_wtoi(const wchar_t* str) {
return FXSYS_StrToInt<int32_t, wchar_t>(str);
}
int64_t FXSYS_atoi64(const char* str) {
return FXSYS_StrToInt<int64_t, char>(str);
}
const char* FXSYS_i64toa(int64_t value, char* str, int radix) {
return FXSYS_IntToStr<int64_t, uint64_t, char*>(value, str, radix);
}
#if _FXM_PLATFORM_ != _FXM_PLATFORM_WINDOWS_
int FXSYS_GetACP() {
return 0;
}
char* FXSYS_strlwr(char* str) {
if (!str) {
return nullptr;
}
char* s = str;
while (*str) {
*str = FXSYS_tolower(*str);
str++;
}
return s;
}
char* FXSYS_strupr(char* str) {
if (!str) {
return nullptr;
}
char* s = str;
while (*str) {
*str = FXSYS_toupper(*str);
str++;
}
return s;
}
wchar_t* FXSYS_wcslwr(wchar_t* str) {
if (!str) {
return nullptr;
}
wchar_t* s = str;
while (*str) {
*str = FXSYS_tolower(*str);
str++;
}
return s;
}
wchar_t* FXSYS_wcsupr(wchar_t* str) {
if (!str) {
return nullptr;
}
wchar_t* s = str;
while (*str) {
*str = FXSYS_toupper(*str);
str++;
}
return s;
}
int FXSYS_stricmp(const char* dst, const char* src) {
int f;
int l;
do {
f = FXSYS_toupper(*dst);
l = FXSYS_toupper(*src);
++dst;
++src;
} while (f && f == l);
return f - l;
}
int FXSYS_wcsicmp(const wchar_t* dst, const wchar_t* src) {
wchar_t f;
wchar_t l;
do {
f = FXSYS_toupper(*dst);
l = FXSYS_toupper(*src);
++dst;
++src;
} while (f && f == l);
return f - l;
}
char* FXSYS_itoa(int value, char* str, int radix) {
return FXSYS_IntToStr<int32_t, uint32_t, char*>(value, str, radix);
}
int FXSYS_WideCharToMultiByte(uint32_t codepage,
uint32_t dwFlags,
const wchar_t* wstr,
int wlen,
char* buf,
int buflen,
const char* default_str,
int* pUseDefault) {
int len = 0;
for (int i = 0; i < wlen; i++) {
if (wstr[i] < 0x100) {
if (buf && len < buflen)
buf[len] = static_cast<char>(wstr[i]);
len++;
}
}
return len;
}
int FXSYS_MultiByteToWideChar(uint32_t codepage,
uint32_t dwFlags,
const char* bstr,
int blen,
wchar_t* buf,
int buflen) {
int wlen = 0;
for (int i = 0; i < blen; i++) {
if (buf && wlen < buflen) {
buf[wlen] = bstr[i];
}
wlen++;
}
return wlen;
}
#else // _FXM_PLATFORM_ != _FXM_PLATFORM_WINDOWS_
size_t FXSYS_wcsftime(wchar_t* strDest,
size_t maxsize,
const wchar_t* format,
const struct tm* timeptr) {
// Avoid tripping an invalid parameter handler and crashing process.
// Note: leap seconds may cause tm_sec == 60.
if (timeptr->tm_year < -1900 || timeptr->tm_year > 8099 ||
timeptr->tm_mon < 0 || timeptr->tm_mon > 11 || timeptr->tm_mday < 1 ||
timeptr->tm_mday > 31 || timeptr->tm_hour < 0 || timeptr->tm_hour > 23 ||
timeptr->tm_min < 0 || timeptr->tm_min > 59 || timeptr->tm_sec < 0 ||
timeptr->tm_sec > 60 || timeptr->tm_wday < 0 || timeptr->tm_wday > 6 ||
timeptr->tm_yday < 0 || timeptr->tm_yday > 365) {
strDest[0] = L'\0';
return 0;
}
return wcsftime(strDest, maxsize, format, timeptr);
}
#endif // _FXM_PLATFORM_ != _FXM_PLATFORM_WINDOWS_
|