1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
// Copyright 2015 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits>
#include <string>
#include "core/fxcrt/fx_system.h"
#include "testing/fx_string_testhelpers.h"
#include "testing/gtest/include/gtest/gtest.h"
// Unit test covering cases where PDFium replaces well-known library
// functionality on any given platformn.
#if _FXM_PLATFORM_ != _FXM_PLATFORM_WINDOWS_
namespace {
const char kSentinel = 0x7f;
void Check32BitBase16Itoa(int32_t input, const char* expected_output) {
const size_t kBufLen = 11; // "-" + 8 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_itoa(input, buf, 16);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
void Check32BitBase10Itoa(int32_t input, const char* expected_output) {
const size_t kBufLen = 13; // "-" + 10 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_itoa(input, buf, 10);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
void Check32BitBase2Itoa(int32_t input, const char* expected_output) {
const size_t kBufLen = 35; // "-" + 32 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_itoa(input, buf, 2);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
void Check64BitBase16Itoa(int64_t input, const char* expected_output) {
const size_t kBufLen = 19; // "-" + 16 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_i64toa(input, buf, 16);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
void Check64BitBase10Itoa(int64_t input, const char* expected_output) {
const size_t kBufLen = 22; // "-" + 19 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_i64toa(input, buf, 10);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
void Check64BitBase2Itoa(int64_t input, const char* expected_output) {
const size_t kBufLen = 67; // "-" + 64 digits + NUL + sentinel.
char buf[kBufLen];
buf[kBufLen - 1] = kSentinel;
FXSYS_i64toa(input, buf, 2);
EXPECT_EQ(std::string(expected_output), buf);
EXPECT_EQ(kSentinel, buf[kBufLen - 1]);
}
} // namespace
TEST(fxcrt, FXSYS_itoa_InvalidRadix) {
char buf[32];
FXSYS_itoa(42, buf, 17); // Ours stops at 16.
EXPECT_EQ(std::string(""), buf);
FXSYS_itoa(42, buf, 1);
EXPECT_EQ(std::string(""), buf);
FXSYS_itoa(42, buf, 0);
EXPECT_EQ(std::string(""), buf);
FXSYS_itoa(42, buf, -1);
EXPECT_EQ(std::string(""), buf);
}
TEST(fxcrt, FXSYS_itoa) {
Check32BitBase16Itoa(std::numeric_limits<int32_t>::min(), "-80000000");
Check32BitBase10Itoa(std::numeric_limits<int32_t>::min(), "-2147483648");
Check32BitBase2Itoa(std::numeric_limits<int32_t>::min(),
"-10000000000000000000000000000000");
Check32BitBase16Itoa(-1, "-1");
Check32BitBase10Itoa(-1, "-1");
Check32BitBase2Itoa(-1, "-1");
Check32BitBase16Itoa(0, "0");
Check32BitBase10Itoa(0, "0");
Check32BitBase2Itoa(0, "0");
Check32BitBase16Itoa(42, "2a");
Check32BitBase10Itoa(42, "42");
Check32BitBase2Itoa(42, "101010");
Check32BitBase16Itoa(std::numeric_limits<int32_t>::max(), "7fffffff");
Check32BitBase10Itoa(std::numeric_limits<int32_t>::max(), "2147483647");
Check32BitBase2Itoa(std::numeric_limits<int32_t>::max(),
"1111111111111111111111111111111");
}
TEST(fxcrt, FXSYS_i64toa_InvalidRadix) {
char buf[32];
FXSYS_i64toa(42, buf, 17); // Ours stops at 16.
EXPECT_EQ(std::string(""), buf);
FXSYS_i64toa(42, buf, 1);
EXPECT_EQ(std::string(""), buf);
FXSYS_i64toa(42, buf, 0);
EXPECT_EQ(std::string(""), buf);
FXSYS_i64toa(42, buf, -1);
EXPECT_EQ(std::string(""), buf);
}
TEST(fxcrt, FXSYS_i64toa) {
Check64BitBase16Itoa(std::numeric_limits<int64_t>::min(),
"-8000000000000000");
Check64BitBase10Itoa(std::numeric_limits<int64_t>::min(),
"-9223372036854775808");
Check64BitBase2Itoa(
std::numeric_limits<int64_t>::min(),
"-1000000000000000000000000000000000000000000000000000000000000000");
Check64BitBase16Itoa(-1, "-1");
Check64BitBase10Itoa(-1, "-1");
Check64BitBase2Itoa(-1, "-1");
Check64BitBase16Itoa(0, "0");
Check64BitBase10Itoa(0, "0");
Check64BitBase2Itoa(0, "0");
Check64BitBase16Itoa(42, "2a");
Check64BitBase10Itoa(42, "42");
Check64BitBase2Itoa(42, "101010");
Check64BitBase16Itoa(std::numeric_limits<int64_t>::max(), "7fffffffffffffff");
Check64BitBase10Itoa(std::numeric_limits<int64_t>::max(),
"9223372036854775807");
Check64BitBase2Itoa(
std::numeric_limits<int64_t>::max(),
"111111111111111111111111111111111111111111111111111111111111111");
}
#endif // _FXM_PLATFORM_ != _FXM_PLATFORM_WINDOWS_
TEST(fxcrt, FXSYS_wcsftime) {
struct tm good_time = {};
good_time.tm_year = 74; // 1900-based.
good_time.tm_mon = 7; // 0-based.
good_time.tm_mday = 9; // 1-based.
good_time.tm_hour = 11;
good_time.tm_min = 59;
good_time.tm_sec = 59;
wchar_t buf[100] = {};
EXPECT_EQ(19u, FXSYS_wcsftime(buf, FX_ArraySize(buf), L"%Y-%m-%dT%H:%M:%S",
&good_time));
EXPECT_STREQ(L"1974-08-09T11:59:59", buf);
// Ensure wcsftime handles a wide range of years without crashing.
struct tm year_time = {};
year_time.tm_mon = 7; // 0-based.
year_time.tm_mday = 9; // 1-based.
year_time.tm_hour = 11;
year_time.tm_min = 59;
year_time.tm_sec = 59;
for (int year = -2500; year <= 2500; ++year) {
year_time.tm_year = year;
wchar_t buf[100] = {};
FXSYS_wcsftime(buf, FX_ArraySize(buf), L"%Y-%m-%dT%H:%M:%S", &year_time);
}
// Ensure wcsftime handles bad years, etc. without crashing.
struct tm bad_time = {};
bad_time.tm_year = -1;
bad_time.tm_mon = -1;
bad_time.tm_mday = -1;
bad_time.tm_hour = -1;
bad_time.tm_min = -1;
bad_time.tm_sec = -1;
FXSYS_wcsftime(buf, FX_ArraySize(buf), L"%y-%m-%dT%H:%M:%S", &bad_time);
// Ensure wcsftime handles bad-ish day without crashing (Feb 30).
struct tm feb_time = {};
feb_time.tm_year = 115; // 1900-based.
feb_time.tm_mon = 1; // 0-based.
feb_time.tm_mday = 30; // 1-based.
feb_time.tm_hour = 12;
feb_time.tm_min = 00;
feb_time.tm_sec = 00;
FXSYS_wcsftime(buf, FX_ArraySize(buf), L"%y-%m-%dT%H:%M:%S", &feb_time);
}
|