summaryrefslogtreecommitdiff
path: root/core/src/fxcodec/fx_libopenjpeg/libopenjpeg20/dwt.c
blob: e1f8a337d414b70d7e5e8ff6d33dafcf19e52ae7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
/*
 * The copyright in this software is being made available under the 2-clauses 
 * BSD License, included below. This software may be subject to other third 
 * party and contributor rights, including patent rights, and no such rights
 * are granted under this license.
 *
 * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium
 * Copyright (c) 2002-2014, Professor Benoit Macq
 * Copyright (c) 2001-2003, David Janssens
 * Copyright (c) 2002-2003, Yannick Verschueren
 * Copyright (c) 2003-2007, Francois-Olivier Devaux 
 * Copyright (c) 2003-2014, Antonin Descampe
 * Copyright (c) 2005, Herve Drolon, FreeImage Team
 * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net>
 * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS'
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifdef __SSE__
#include <xmmintrin.h>
#endif

#include "opj_includes.h"

/** @defgroup DWT DWT - Implementation of a discrete wavelet transform */
/*@{*/

#define OPJ_WS(i) v->mem[(i)*2]
#define OPJ_WD(i) v->mem[(1+(i)*2)]

/** @name Local data structures */
/*@{*/

typedef struct dwt_local {
	OPJ_INT32* mem;
	OPJ_INT32 dn;
	OPJ_INT32 sn;
	OPJ_INT32 cas;
} opj_dwt_t;

typedef union {
	OPJ_FLOAT32	f[4];
} opj_v4_t;

typedef struct v4dwt_local {
	opj_v4_t*	wavelet ;
	OPJ_INT32		dn ;
	OPJ_INT32		sn ;
	OPJ_INT32		cas ;
} opj_v4dwt_t ;

static const OPJ_FLOAT32 opj_dwt_alpha =  1.586134342f; /*  12994 */
static const OPJ_FLOAT32 opj_dwt_beta  =  0.052980118f; /*    434 */
static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /*  -7233 */
static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /*  -3633 */

static const OPJ_FLOAT32 opj_K      = 1.230174105f; /*  10078 */
static const OPJ_FLOAT32 opj_c13318 = 1.625732422f;

/*@}*/

/**
Virtual function type for wavelet transform in 1-D 
*/
typedef void (*DWT1DFN)(opj_dwt_t* v);

/** @name Local static functions */
/*@{*/

/**
Forward lazy transform (horizontal)
*/
static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward lazy transform (vertical)
*/
static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas);
/**
Inverse lazy transform (horizontal)
*/
static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a);
/**
Inverse lazy transform (vertical)
*/
static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x);
/**
Forward 5-3 wavelet transform in 1-D
*/
static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Inverse 5-3 wavelet transform in 1-D
*/
static void opj_dwt_decode_1(opj_dwt_t *v);
static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Forward 9-7 wavelet transform in 1-D
*/
static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas);
/**
Explicit calculation of the Quantization Stepsizes 
*/
static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize);
/**
Inverse wavelet transform in 2-D.
*/
static OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn);

static OPJ_BOOL opj_dwt_encode_procedure(	opj_tcd_tilecomp_t * tilec,
										    void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) );

static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i);

/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt);

static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size);

static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read);

#ifdef __SSE__
static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c);

static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c);

#else
static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c);

static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c);

#endif

/*@}*/

/*@}*/

#define OPJ_S(i) a[(i)*2]
#define OPJ_D(i) a[(1+(i)*2)]
#define OPJ_S_(i) ((i)<0?OPJ_S(0):((i)>=sn?OPJ_S(sn-1):OPJ_S(i)))
#define OPJ_D_(i) ((i)<0?OPJ_D(0):((i)>=dn?OPJ_D(dn-1):OPJ_D(i)))
/* new */
#define OPJ_SS_(i) ((i)<0?OPJ_S(0):((i)>=dn?OPJ_S(dn-1):OPJ_S(i)))
#define OPJ_DD_(i) ((i)<0?OPJ_D(0):((i)>=sn?OPJ_D(sn-1):OPJ_D(i)))

/* <summary>                                                              */
/* This table contains the norms of the 5-3 wavelets for different bands. */
/* </summary>                                                             */
static const OPJ_FLOAT64 opj_dwt_norms[4][10] = {
	{1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3},
	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
	{1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9},
	{.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93}
};

/* <summary>                                                              */
/* This table contains the norms of the 9-7 wavelets for different bands. */
/* </summary>                                                             */
static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = {
	{1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9},
	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
	{2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0},
	{2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2}
};

/* 
==========================================================
   local functions
==========================================================
*/

/* <summary>			                 */
/* Forward lazy transform (horizontal).  */
/* </summary>                            */ 
void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	OPJ_INT32 * l_dest = b;
	OPJ_INT32 * l_src = a+cas;

    for (i=0; i<sn; ++i) {
		*l_dest++ = *l_src;
		l_src += 2;
	}
	
    l_dest = b + sn;
	l_src = a + 1 - cas;

    for	(i=0; i<dn; ++i)  {
		*l_dest++=*l_src;
		l_src += 2;
	}
}

/* <summary>                             */  
/* Forward lazy transform (vertical).    */
/* </summary>                            */ 
void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) {
    OPJ_INT32 i = sn;
	OPJ_INT32 * l_dest = b;
	OPJ_INT32 * l_src = a+cas;

    while (i--) {
		*l_dest = *l_src;
		l_dest += x;
		l_src += 2;
		} /* b[i*x]=a[2*i+cas]; */

	l_dest = b + sn * x;
	l_src = a + 1 - cas;
	
	i = dn;
    while (i--) {
		*l_dest = *l_src;
		l_dest += x;
		l_src += 2;
        } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/
}

/* <summary>                             */
/* Inverse lazy transform (horizontal).  */
/* </summary>                            */
void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) {
    OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = h->mem + h->cas;
    OPJ_INT32  i	= h->sn;
    while( i-- ) {
      *bi = *(ai++);
	  bi += 2;
    }
    ai	= a + h->sn;
    bi	= h->mem + 1 - h->cas;
    i	= h->dn ;
    while( i-- ) {
      *bi = *(ai++);
	  bi += 2;
    }
}

/* <summary>                             */  
/* Inverse lazy transform (vertical).    */
/* </summary>                            */ 
void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) {
    OPJ_INT32 *ai = a;
    OPJ_INT32 *bi = v->mem + v->cas;
    OPJ_INT32  i = v->sn;
    while( i-- ) {
      *bi = *ai;
	  bi += 2;
	  ai += x;
    }
    ai = a + (v->sn * x);
    bi = v->mem + 1 - v->cas;
    i = v->dn ;
    while( i-- ) {
      *bi = *ai;
	  bi += 2;  
	  ai += x;
    }
}


/* <summary>                            */
/* Forward 5-3 wavelet transform in 1-D. */
/* </summary>                           */
void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	
	if (!cas) {
		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
			for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
		}
	} else {
		if (!sn && dn == 1)		    /* NEW :  CASE ONE ELEMENT */
			OPJ_S(0) *= 2;
		else {
			for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
			for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
		}
	}
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary>                           */ 
void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	
	if (!cas) {
		if ((dn > 0) || (sn > 1)) { /* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2;
			for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1;
		}
	} else {
		if (!sn  && dn == 1)          /* NEW :  CASE ONE ELEMENT */
			OPJ_S(0) /= 2;
		else {
			for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2;
			for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1;
		}
	}
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 1-D. */
/* </summary>                           */ 
void opj_dwt_decode_1(opj_dwt_t *v) {
	opj_dwt_decode_1_(v->mem, v->dn, v->sn, v->cas);
}

/* <summary>                             */
/* Forward 9-7 wavelet transform in 1-D. */
/* </summary>                            */
void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) {
	OPJ_INT32 i;
	if (!cas) {
		if ((dn > 0) || (sn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++)
				OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993);
			for (i = 0; i < sn; i++)
				OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434);
			for (i = 0; i < dn; i++)
				OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233);
			for (i = 0; i < sn; i++)
				OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633);
			for (i = 0; i < dn; i++)
				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038);	/*5038 */
			for (i = 0; i < sn; i++)
				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659);	/*6660 */
		}
	} else {
		if ((sn > 0) || (dn > 1)) {	/* NEW :  CASE ONE ELEMENT */
			for (i = 0; i < dn; i++)
				OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993);
			for (i = 0; i < sn; i++)
				OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434);
			for (i = 0; i < dn; i++)
				OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233);
			for (i = 0; i < sn; i++)
				OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633);
			for (i = 0; i < dn; i++)
				OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038);	/*5038 */
			for (i = 0; i < sn; i++)
				OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659);	/*6660 */
		}
	}
}

void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) {
	OPJ_INT32 p, n;
	p = opj_int_floorlog2(stepsize) - 13;
	n = 11 - opj_int_floorlog2(stepsize);
	bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff;
	bandno_stepsize->expn = numbps - p;
}

/* 
==========================================================
   DWT interface
==========================================================
*/


/* <summary>                            */
/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
INLINE OPJ_BOOL opj_dwt_encode_procedure(opj_tcd_tilecomp_t * tilec,void (*p_function)(OPJ_INT32 *, OPJ_INT32,OPJ_INT32,OPJ_INT32) )
{
	OPJ_INT32 i, j, k;
	OPJ_INT32 *a = 00;
	OPJ_INT32 *aj = 00;
	OPJ_INT32 *bj = 00;
	OPJ_INT32 w, l;

	OPJ_INT32 rw;			/* width of the resolution level computed   */
	OPJ_INT32 rh;			/* height of the resolution level computed  */
	OPJ_UINT32 l_data_size;

	opj_tcd_resolution_t * l_cur_res = 0;
	opj_tcd_resolution_t * l_last_res = 0;

	w = tilec->x1-tilec->x0;
	l = (OPJ_INT32)tilec->numresolutions-1;
	a = tilec->data;

	l_cur_res = tilec->resolutions + l;
	l_last_res = l_cur_res - 1;

	l_data_size = opj_dwt_max_resolution( tilec->resolutions,tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32);
	bj = (OPJ_INT32*)opj_malloc((size_t)l_data_size);
	if (! bj) {
		return OPJ_FALSE;
	}
	i = l;

	while (i--) {
		OPJ_INT32 rw1;		/* width of the resolution level once lower than computed one                                       */
		OPJ_INT32 rh1;		/* height of the resolution level once lower than computed one                                      */
		OPJ_INT32 cas_col;	/* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */
		OPJ_INT32 cas_row;	/* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering   */
		OPJ_INT32 dn, sn;

		rw  = l_cur_res->x1 - l_cur_res->x0;
		rh  = l_cur_res->y1 - l_cur_res->y0;
		rw1 = l_last_res->x1 - l_last_res->x0;
		rh1 = l_last_res->y1 - l_last_res->y0;

		cas_row = l_cur_res->x0 & 1;
		cas_col = l_cur_res->y0 & 1;

		sn = rh1;
		dn = rh - rh1;
		for (j = 0; j < rw; ++j) {
			aj = a + j;
			for (k = 0; k < rh; ++k) {
				bj[k] = aj[k*w];
			}

			(*p_function) (bj, dn, sn, cas_col);

			opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col);
		}

		sn = rw1;
		dn = rw - rw1;

		for (j = 0; j < rh; j++) {
			aj = a + j * w;
			for (k = 0; k < rw; k++)  bj[k] = aj[k];
			(*p_function) (bj, dn, sn, cas_row);
			opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row);
		}

		l_cur_res = l_last_res;

		--l_last_res;
	}

	opj_free(bj);
	return OPJ_TRUE;
}

/* Forward 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec)
{
	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1);
}

/* <summary>                            */
/* Inverse 5-3 wavelet transform in 2-D. */
/* </summary>                           */
OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) {
	return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1);
}


/* <summary>                          */
/* Get gain of 5-3 wavelet transform. */
/* </summary>                         */
OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) {
	if (orient == 0)
		return 0;
	if (orient == 1 || orient == 2)
		return 1;
	return 2;
}

/* <summary>                */
/* Get norm of 5-3 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) {
	return opj_dwt_norms[orient][level];
}

/* <summary>                             */
/* Forward 9-7 wavelet transform in 2-D. */
/* </summary>                            */
OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec)
{
	return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real);
}

/* <summary>                          */
/* Get gain of 9-7 wavelet transform. */
/* </summary>                         */
OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) {
	(void)orient;
	return 0;
}

/* <summary>                */
/* Get norm of 9-7 wavelet. */
/* </summary>               */
OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) {
	return opj_dwt_norms_real[orient][level];
}

void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) {
	OPJ_UINT32 numbands, bandno;
	numbands = 3 * tccp->numresolutions - 2;
	for (bandno = 0; bandno < numbands; bandno++) {
		OPJ_FLOAT64 stepsize;
		OPJ_UINT32 resno, level, orient, gain;

		resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1);
		orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1);
		level = tccp->numresolutions - 1 - resno;
		gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2));
		if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) {
			stepsize = 1.0;
		} else {
			OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level];
			stepsize = (1 << (gain)) / norm;
		}
		opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]);
	}
}

/* <summary>                             */
/* Determine maximum computed resolution level for inverse wavelet transform */
/* </summary>                            */
OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) {
	OPJ_UINT32 mr	= 0;
	OPJ_UINT32 w;
	while( --i ) {
		++r;
		if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) )
			mr = w ;
		if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) )
			mr = w ;
	}
	return mr ;
}

/* <summary>                            */
/* Inverse wavelet transform in 2-D.     */
/* </summary>                           */
OPJ_BOOL opj_dwt_decode_tile(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) {
	opj_dwt_t h;
	opj_dwt_t v;

	opj_tcd_resolution_t* tr = tilec->resolutions;

	OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0);	/* width of the resolution level computed */
	OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0);	/* height of the resolution level computed */

	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);

	h.mem = (OPJ_INT32*)
	opj_aligned_malloc(opj_dwt_max_resolution(tr, numres) * sizeof(OPJ_INT32));
	if (! h.mem){
		return OPJ_FALSE;
	}

	v.mem = h.mem;

	while( --numres) {
		OPJ_INT32 * restrict tiledp = tilec->data;
		OPJ_UINT32 j;

		++tr;
		h.sn = (OPJ_INT32)rw;
		v.sn = (OPJ_INT32)rh;

		rw = (OPJ_UINT32)(tr->x1 - tr->x0);
		rh = (OPJ_UINT32)(tr->y1 - tr->y0);

		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
		h.cas = tr->x0 % 2;

		for(j = 0; j < rh; ++j) {
			opj_dwt_interleave_h(&h, &tiledp[j*w]);
			(dwt_1D)(&h);
			memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32));
		}

		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
		v.cas = tr->y0 % 2;

		for(j = 0; j < rw; ++j){
			OPJ_UINT32 k;
			opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w);
			(dwt_1D)(&v);
			for(k = 0; k < rh; ++k) {
				tiledp[k * w + j] = v.mem[k];
			}
		}
	}
	opj_aligned_free(h.mem);
	return OPJ_TRUE;
}

void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){
	OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas);
	OPJ_INT32 count = w->sn;
	OPJ_INT32 i, k;

	for(k = 0; k < 2; ++k){
		if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) {
			/* Fast code path */
			for(i = 0; i < count; ++i){
				OPJ_INT32 j = i;
				bi[i*8    ] = a[j];
				j += x;
				bi[i*8 + 1] = a[j];
				j += x;
				bi[i*8 + 2] = a[j];
				j += x;
				bi[i*8 + 3] = a[j];
			}
		}
		else {
			/* Slow code path */
			for(i = 0; i < count; ++i){
				OPJ_INT32 j = i;
				bi[i*8    ] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 1] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 2] = a[j];
				j += x;
				if(j >= size) continue;
				bi[i*8 + 3] = a[j]; /* This one*/
			}
		}

		bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas);
		a += w->sn;
		size -= w->sn;
		count = w->dn;
	}
}

void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){
	opj_v4_t* restrict bi = v->wavelet + v->cas;
	OPJ_INT32 i;

	for(i = 0; i < v->sn; ++i){
		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
	}

	a += v->sn * x;
	bi = v->wavelet + 1 - v->cas;

	for(i = 0; i < v->dn; ++i){
		memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32));
	}
}

#ifdef __SSE__

void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){
	__m128* restrict vw = (__m128*) w;
	OPJ_INT32 i;
	/* 4x unrolled loop */
	for(i = 0; i < count >> 2; ++i){
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
	}
	count &= 3;
	for(i = 0; i < count; ++i){
		*vw = _mm_mul_ps(*vw, c);
		vw += 2;
	}
}

void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){
	__m128* restrict vl = (__m128*) l;
	__m128* restrict vw = (__m128*) w;
	OPJ_INT32 i;
	__m128 tmp1, tmp2, tmp3;
	tmp1 = vl[0];
	for(i = 0; i < m; ++i){
		tmp2 = vw[-1];
		tmp3 = vw[ 0];
		vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c));
		tmp1 = tmp3;
		vw += 2;
	}
	vl = vw - 2;
	if(m >= k){
		return;
	}
	c = _mm_add_ps(c, c);
	c = _mm_mul_ps(c, vl[0]);
	for(; m < k; ++m){
		__m128 tmp = vw[-1];
		vw[-1] = _mm_add_ps(tmp, c);
		vw += 2;
	}
}

#else

void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c)
{
	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
	OPJ_INT32 i;
	for(i = 0; i < count; ++i){
		OPJ_FLOAT32 tmp1 = fw[i*8    ];
		OPJ_FLOAT32 tmp2 = fw[i*8 + 1];
		OPJ_FLOAT32 tmp3 = fw[i*8 + 2];
		OPJ_FLOAT32 tmp4 = fw[i*8 + 3];
		fw[i*8    ] = tmp1 * c;
		fw[i*8 + 1] = tmp2 * c;
		fw[i*8 + 2] = tmp3 * c;
		fw[i*8 + 3] = tmp4 * c;
	}
}

void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c)
{
	OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l;
	OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w;
	OPJ_INT32 i;
	for(i = 0; i < m; ++i){
		OPJ_FLOAT32 tmp1_1 = fl[0];
		OPJ_FLOAT32 tmp1_2 = fl[1];
		OPJ_FLOAT32 tmp1_3 = fl[2];
		OPJ_FLOAT32 tmp1_4 = fl[3];
		OPJ_FLOAT32 tmp2_1 = fw[-4];
		OPJ_FLOAT32 tmp2_2 = fw[-3];
		OPJ_FLOAT32 tmp2_3 = fw[-2];
		OPJ_FLOAT32 tmp2_4 = fw[-1];
		OPJ_FLOAT32 tmp3_1 = fw[0];
		OPJ_FLOAT32 tmp3_2 = fw[1];
		OPJ_FLOAT32 tmp3_3 = fw[2];
		OPJ_FLOAT32 tmp3_4 = fw[3];
		fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c);
		fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c);
		fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c);
		fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c);
		fl = fw;
		fw += 8;
	}
	if(m < k){
		OPJ_FLOAT32 c1;
		OPJ_FLOAT32 c2;
		OPJ_FLOAT32 c3;
		OPJ_FLOAT32 c4;
		c += c;
		c1 = fl[0] * c;
		c2 = fl[1] * c;
		c3 = fl[2] * c;
		c4 = fl[3] * c;
		for(; m < k; ++m){
			OPJ_FLOAT32 tmp1 = fw[-4];
			OPJ_FLOAT32 tmp2 = fw[-3];
			OPJ_FLOAT32 tmp3 = fw[-2];
			OPJ_FLOAT32 tmp4 = fw[-1];
			fw[-4] = tmp1 + c1;
			fw[-3] = tmp2 + c2;
			fw[-2] = tmp3 + c3;
			fw[-1] = tmp4 + c4;
			fw += 8;
		}
	}
}

#endif

/* <summary>                             */
/* Inverse 9-7 wavelet transform in 1-D. */
/* </summary>                            */
void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt)
{
	OPJ_INT32 a, b;
	if(dwt->cas == 0) {
		if(!((dwt->dn > 0) || (dwt->sn > 1))){
			return;
		}
		a = 0;
		b = 1;
	}else{
		if(!((dwt->sn > 0) || (dwt->dn > 1))) {
			return;
		}
		a = 1;
		b = 0;
	}
#ifdef __SSE__
	opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K));
	opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta));
	opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha));
#else
	opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K);
	opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318);
	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta);
	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma);
	opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta);
	opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha);
#endif
}


/* <summary>                             */
/* Inverse 9-7 wavelet transform in 2-D. */
/* </summary>                            */
OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres)
{
	opj_v4dwt_t h;
	opj_v4dwt_t v;

	opj_tcd_resolution_t* res = tilec->resolutions;

	OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
	OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */

	OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0);

	h.wavelet = (opj_v4_t*) opj_aligned_malloc((opj_dwt_max_resolution(res, numres)+5) * sizeof(opj_v4_t));
	v.wavelet = h.wavelet;

	while( --numres) {
		OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data;
		OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0));
		OPJ_INT32 j;

		h.sn = (OPJ_INT32)rw;
		v.sn = (OPJ_INT32)rh;

		++res;

		rw = (OPJ_UINT32)(res->x1 - res->x0);	/* width of the resolution level computed */
		rh = (OPJ_UINT32)(res->y1 - res->y0);	/* height of the resolution level computed */

		h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn);
		h.cas = res->x0 % 2;

		for(j = (OPJ_INT32)rh; j > 3; j -= 4) {
			OPJ_INT32 k;
			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
			opj_v4dwt_decode(&h);

			for(k = (OPJ_INT32)rw; --k >= 0;){
				aj[k               ] = h.wavelet[k].f[0];
				aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
				aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
				aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3];
			}

			aj += w*4;
			bufsize -= w*4;
		}

		if (rh & 0x03) {
			OPJ_INT32 k;
			j = rh & 0x03;
			opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize);
			opj_v4dwt_decode(&h);
			for(k = (OPJ_INT32)rw; --k >= 0;){
				switch(j) {
					case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2];
					case 2: aj[k+(OPJ_INT32)w  ] = h.wavelet[k].f[1];
					case 1: aj[k               ] = h.wavelet[k].f[0];
				}
			}
		}

		v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn);
		v.cas = res->y0 % 2;

		aj = (OPJ_FLOAT32*) tilec->data;
		for(j = (OPJ_INT32)rw; j > 3; j -= 4){
			OPJ_UINT32 k;

			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4);
			opj_v4dwt_decode(&v);

			for(k = 0; k < rh; ++k){
				memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32));
			}
			aj += 4;
		}

		if (rw & 0x03){
			OPJ_UINT32 k;

			j = rw & 0x03;

			opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j);
			opj_v4dwt_decode(&v);

			for(k = 0; k < rh; ++k){
				memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32));
			}
		}
	}

	opj_aligned_free(h.wavelet);
	return OPJ_TRUE;
}