1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
|
//----------------------------------------------------------------------------
// XYQ: 2006-01-22 Copied from AGG project.
// TODO: This file uses intensive floating point operations, so it's NOT suitable
// for platforms like Symbian OS. We need to change to FIX format.
//----------------------------------------------------------------------------
//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.3
// Copyright (C) 2002-2005 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#include "agg_curves.h"
#include "agg_math.h"
#include "core/include/fxcrt/fx_basic.h"
namespace agg
{
const FX_FLOAT curve_collinearity_epsilon = 1e-30f;
enum curve_recursion_limit_e { curve_recursion_limit = 16 };
void curve4_div::init(FX_FLOAT x1, FX_FLOAT y1,
FX_FLOAT x2, FX_FLOAT y2,
FX_FLOAT x3, FX_FLOAT y3,
FX_FLOAT x4, FX_FLOAT y4)
{
m_points.remove_all();
m_distance_tolerance_square = 1.0f / 4;
m_distance_tolerance_manhattan = 1.0f * 4;
bezier(x1, y1, x2, y2, x3, y3, x4, y4);
m_count = 0;
}
void curve4_div::recursive_bezier(FX_FLOAT x1, FX_FLOAT y1,
FX_FLOAT x2, FX_FLOAT y2,
FX_FLOAT x3, FX_FLOAT y3,
FX_FLOAT x4, FX_FLOAT y4,
unsigned level)
{
if(level > curve_recursion_limit) {
return;
}
FX_FLOAT x12 = (x1 + x2) / 2;
FX_FLOAT y12 = (y1 + y2) / 2;
FX_FLOAT x23 = (x2 + x3) / 2;
FX_FLOAT y23 = (y2 + y3) / 2;
FX_FLOAT x34 = (x3 + x4) / 2;
FX_FLOAT y34 = (y3 + y4) / 2;
FX_FLOAT x123 = (x12 + x23) / 2;
FX_FLOAT y123 = (y12 + y23) / 2;
FX_FLOAT x234 = (x23 + x34) / 2;
FX_FLOAT y234 = (y23 + y34) / 2;
FX_FLOAT x1234 = (x123 + x234) / 2;
FX_FLOAT y1234 = (y123 + y234) / 2;
FX_FLOAT dx = x4 - x1;
FX_FLOAT dy = y4 - y1;
FX_FLOAT d2 = FXSYS_fabs(FXSYS_Mul(x2 - x4, dy) - FXSYS_Mul(y2 - y4, dx));
FX_FLOAT d3 = FXSYS_fabs(FXSYS_Mul(x3 - x4, dy) - FXSYS_Mul(y3 - y4, dx));
switch((int(d2 > curve_collinearity_epsilon) << 1) +
int(d3 > curve_collinearity_epsilon)) {
case 0:
if(FXSYS_fabs(x1 + x3 - x2 - x2) +
FXSYS_fabs(y1 + y3 - y2 - y2) +
FXSYS_fabs(x2 + x4 - x3 - x3) +
FXSYS_fabs(y2 + y4 - y3 - y3) <= m_distance_tolerance_manhattan) {
m_points.add(point_type(x1234, y1234, path_flags_jr));
return;
}
break;
case 1:
if(FXSYS_Mul(d3, d3) <= FXSYS_Mul(m_distance_tolerance_square,
FXSYS_Mul(dx, dx) + FXSYS_Mul(dy, dy))) {
m_points.add(point_type(x23, y23, path_flags_jr));
return;
}
break;
case 2:
if(FXSYS_Mul(d2, d2) <= FXSYS_Mul(m_distance_tolerance_square,
FXSYS_Mul(dx, dx) + FXSYS_Mul(dy, dy))) {
m_points.add(point_type(x23, y23, path_flags_jr));
return;
}
break;
case 3:
if(FXSYS_Mul(d2 + d3, d2 + d3) <= FXSYS_Mul(m_distance_tolerance_square,
FXSYS_Mul(dx, dx) + FXSYS_Mul(dy, dy))) {
m_points.add(point_type(x23, y23, path_flags_jr));
return;
}
break;
}
recursive_bezier(x1, y1, x12, y12, x123, y123, x1234, y1234, level + 1);
recursive_bezier(x1234, y1234, x234, y234, x34, y34, x4, y4, level + 1);
}
void curve4_div::bezier(FX_FLOAT x1, FX_FLOAT y1,
FX_FLOAT x2, FX_FLOAT y2,
FX_FLOAT x3, FX_FLOAT y3,
FX_FLOAT x4, FX_FLOAT y4)
{
m_points.add(point_type(x1, y1));
recursive_bezier(x1, y1, x2, y2, x3, y3, x4, y4, 0);
m_points.add(point_type(x4, y4));
}
}
|