1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
|
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// This is a copy of breakpad's standalone scoped_ptr, which has been
// renamed to nonstd::unique_ptr, and from which more complicated classes
// have been removed. The reset() method has also been tweaked to more
// closely match c++11, and an implicit conversion to bool has been added.
// Scopers help you manage ownership of a pointer, helping you easily manage the
// a pointer within a scope, and automatically destroying the pointer at the
// end of a scope.
//
// A unique_ptr<T> is like a T*, except that the destructor of unique_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, unique_ptr<T> owns the T object that it points to.
// Like a T*, a unique_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, unique_ptr<T> is thread-compatible, and once you
// dereference it, you get the thread safety guarantees of T.
//
// Example usage (unique_ptr):
// {
// unique_ptr<Foo> foo(new Foo("wee"));
// } // foo goes out of scope, releasing the pointer with it.
//
// {
// unique_ptr<Foo> foo; // No pointer managed.
// foo.reset(new Foo("wee")); // Now a pointer is managed.
// foo.reset(new Foo("wee2")); // Foo("wee") was destroyed.
// foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed.
// foo->Method(); // Foo::Method() called.
// foo.get()->Method(); // Foo::Method() called.
// SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer
// // manages a pointer.
// foo.reset(new Foo("wee4")); // foo manages a pointer again.
// foo.reset(); // Foo("wee4") destroyed, foo no longer
// // manages a pointer.
// } // foo wasn't managing a pointer, so nothing was destroyed.
//
// The size of a unique_ptr is small: sizeof(unique_ptr<C>) == sizeof(C*)
#ifndef NONSTD_UNIQUE_PTR_H_
#define NONSTD_UNIQUE_PTR_H_
// This is an implementation designed to match the anticipated future C++11
// implementation of the unique_ptr class.
#include <assert.h>
#include <stddef.h>
#include <stdlib.h>
namespace nonstd {
// Replacement for move, but doesn't allow things that are already
// rvalue references.
template <class T>
T&& move(T& t) {
return static_cast<T&&>(t);
}
// Common implementation for both pointers to elements and pointers to
// arrays. These are differentiated below based on the need to invoke
// delete vs. delete[] as appropriate.
template <class C>
class unique_ptr_base {
public:
// The element type
typedef C element_type;
explicit unique_ptr_base(C* p) : ptr_(p) { }
// Move constructor.
unique_ptr_base(unique_ptr_base<C>&& that) {
ptr_ = that.ptr_;
that.ptr_ = nullptr;
}
// Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object.
C& operator*() const {
assert(ptr_ != NULL);
return *ptr_;
}
C* operator->() const {
assert(ptr_ != NULL);
return ptr_;
}
C* get() const { return ptr_; }
// Comparison operators.
// These return whether two unique_ptr refer to the same object, not just to
// two different but equal objects.
bool operator==(C* p) const { return ptr_ == p; }
bool operator!=(C* p) const { return ptr_ != p; }
// Swap two scoped pointers.
void swap(unique_ptr_base& p2) {
C* tmp = ptr_;
ptr_ = p2.ptr_;
p2.ptr_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* retVal = ptr_;
ptr_ = NULL;
return retVal;
}
// Allow promotion to bool for conditional statements.
explicit operator bool() const { return ptr_ != NULL; }
protected:
C* ptr_;
};
// Implementation for ordinary pointers using delete.
template <class C>
class unique_ptr : public unique_ptr_base<C> {
public:
using unique_ptr_base<C>::ptr_;
// Constructor. Defaults to initializing with NULL. There is no way
// to create an uninitialized unique_ptr. The input parameter must be
// allocated with new (not new[] - see below).
explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
// Move constructor.
unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {}
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~unique_ptr() {
enum { type_must_be_complete = sizeof(C) };
delete ptr_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != ptr_) {
enum { type_must_be_complete = sizeof(C) };
C* old_ptr = ptr_;
ptr_ = p;
delete old_ptr;
}
}
private:
// Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
// make sense, and if C2 == C, it still doesn't make sense because you should
// never have the same object owned by two different unique_ptrs.
template <class C2> bool operator==(unique_ptr<C2> const& p2) const;
template <class C2> bool operator!=(unique_ptr<C2> const& p2) const;
// Disallow evil constructors. It doesn't make sense to make a copy of
// something that's allegedly unique.
unique_ptr(const unique_ptr&) = delete;
void operator=(const unique_ptr&) = delete;
};
// Specialization for arrays using delete[].
template <class C>
class unique_ptr<C[]> : public unique_ptr_base<C> {
public:
using unique_ptr_base<C>::ptr_;
// Constructor. Defaults to initializing with NULL. There is no way
// to create an uninitialized unique_ptr. The input parameter must be
// allocated with new[] (not new - see above).
explicit unique_ptr(C* p = NULL) : unique_ptr_base<C>(p) { }
// Move constructor.
unique_ptr(unique_ptr<C>&& that) : unique_ptr_base<C>(nonstd::move(that)) {}
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~unique_ptr() {
enum { type_must_be_complete = sizeof(C) };
delete[] ptr_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != ptr_) {
enum { type_must_be_complete = sizeof(C) };
C* old_ptr = ptr_;
ptr_ = p;
delete[] old_ptr;
}
}
// Support indexing since it is holding array.
C& operator[] (size_t i) { return ptr_[i]; }
private:
// Forbid comparison of unique_ptr types. If C2 != C, it totally doesn't
// make sense, and if C2 == C, it still doesn't make sense because you should
// never have the same object owned by two different unique_ptrs.
template <class C2> bool operator==(unique_ptr<C2> const& p2) const;
template <class C2> bool operator!=(unique_ptr<C2> const& p2) const;
// Disallow evil constructors. It doesn't make sense to make a copy of
// something that's allegedly unique.
unique_ptr(const unique_ptr&) = delete;
void operator=(const unique_ptr&) = delete;
};
// Free functions
template <class C>
void swap(unique_ptr<C>& p1, unique_ptr<C>& p2) {
p1.swap(p2);
}
template <class C>
bool operator==(C* p1, const unique_ptr<C>& p2) {
return p1 == p2.get();
}
template <class C>
bool operator!=(C* p1, const unique_ptr<C>& p2) {
return p1 != p2.get();
}
} // namespace nonstd
#endif // NONSTD_UNIQUE_PTR_H_
|