1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
#include <stdint.h>
#include <limits>
#include <type_traits>
namespace pdfium {
namespace base {
namespace internal {
// The std library doesn't provide a binary max_exponent for integers, however
// we can compute an analog using std::numeric_limits<>::digits.
template <typename NumericType>
struct MaxExponent {
static const int value = std::is_floating_point<NumericType>::value
? std::numeric_limits<NumericType>::max_exponent
: std::numeric_limits<NumericType>::digits + 1;
};
// The number of bits (including the sign) in an integer. Eliminates sizeof
// hacks.
template <typename NumericType>
struct IntegerBitsPlusSign {
static const int value = std::numeric_limits<NumericType>::digits +
std::is_signed<NumericType>::value;
};
// Helper templates for integer manipulations.
template <typename Integer>
struct PositionOfSignBit {
static const size_t value = IntegerBitsPlusSign<Integer>::value - 1;
};
// Determines if a numeric value is negative without throwing compiler
// warnings on: unsigned(value) < 0.
template <typename T,
typename std::enable_if<std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T value) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return value < 0;
}
template <typename T,
typename std::enable_if<!std::is_signed<T>::value>::type* = nullptr>
constexpr bool IsValueNegative(T) {
static_assert(std::is_arithmetic<T>::value, "Argument must be numeric.");
return false;
}
// This performs a fast negation, returning a signed value. It works on unsigned
// arguments, but probably doesn't do what you want for any unsigned value
// larger than max / 2 + 1 (i.e. signed min cast to unsigned).
template <typename T>
constexpr typename std::make_signed<T>::type ConditionalNegate(
T x,
bool is_negative) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using SignedT = typename std::make_signed<T>::type;
using UnsignedT = typename std::make_unsigned<T>::type;
return static_cast<SignedT>(
(static_cast<UnsignedT>(x) ^ -SignedT(is_negative)) + is_negative);
}
// This performs a safe, absolute value via unsigned overflow.
template <typename T>
constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
static_assert(std::is_integral<T>::value, "Type must be integral");
using UnsignedT = typename std::make_unsigned<T>::type;
return IsValueNegative(value) ? 0 - static_cast<UnsignedT>(value)
: static_cast<UnsignedT>(value);
}
enum IntegerRepresentation {
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED
};
// A range for a given nunmeric Src type is contained for a given numeric Dst
// type if both numeric_limits<Src>::max() <= numeric_limits<Dst>::max() and
// numeric_limits<Src>::lowest() >= numeric_limits<Dst>::lowest() are true.
// We implement this as template specializations rather than simple static
// comparisons to ensure type correctness in our comparisons.
enum NumericRangeRepresentation {
NUMERIC_RANGE_NOT_CONTAINED,
NUMERIC_RANGE_CONTAINED
};
// Helper templates to statically determine if our destination type can contain
// maximum and minimum values represented by the source type.
template <typename Dst,
typename Src,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED>
struct StaticDstRangeRelationToSrcRange;
// Same sign: Dst is guaranteed to contain Src only if its range is equal or
// larger.
template <typename Dst, typename Src, IntegerRepresentation Sign>
struct StaticDstRangeRelationToSrcRange<Dst, Src, Sign, Sign> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value >= MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Unsigned to signed: Dst is guaranteed to contain source only if its range is
// larger.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED> {
static const NumericRangeRepresentation value =
MaxExponent<Dst>::value > MaxExponent<Src>::value
? NUMERIC_RANGE_CONTAINED
: NUMERIC_RANGE_NOT_CONTAINED;
};
// Signed to unsigned: Dst cannot be statically determined to contain Src.
template <typename Dst, typename Src>
struct StaticDstRangeRelationToSrcRange<Dst,
Src,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED> {
static const NumericRangeRepresentation value = NUMERIC_RANGE_NOT_CONTAINED;
};
// This class wraps the range constraints as separate booleans so the compiler
// can identify constants and eliminate unused code paths.
class RangeCheck {
public:
constexpr RangeCheck(bool is_in_lower_bound, bool is_in_upper_bound)
: is_underflow_(!is_in_lower_bound), is_overflow_(!is_in_upper_bound) {}
constexpr RangeCheck() : is_underflow_(false), is_overflow_(false) {}
constexpr bool IsValid() const { return !is_overflow_ && !is_underflow_; }
constexpr bool IsInvalid() const { return is_overflow_ && is_underflow_; }
constexpr bool IsOverflow() const { return is_overflow_ && !is_underflow_; }
constexpr bool IsUnderflow() const { return !is_overflow_ && is_underflow_; }
constexpr bool IsOverflowFlagSet() const { return is_overflow_; }
constexpr bool IsUnderflowFlagSet() const { return is_underflow_; }
constexpr bool operator==(const RangeCheck rhs) const {
return is_underflow_ == rhs.is_underflow_ &&
is_overflow_ == rhs.is_overflow_;
}
constexpr bool operator!=(const RangeCheck rhs) const {
return !(*this == rhs);
}
private:
// Do not change the order of these member variables. The integral conversion
// optimization depends on this exact order.
const bool is_underflow_;
const bool is_overflow_;
};
// The following helper template addresses a corner case in range checks for
// conversion from a floating-point type to an integral type of smaller range
// but larger precision (e.g. float -> unsigned). The problem is as follows:
// 1. Integral maximum is always one less than a power of two, so it must be
// truncated to fit the mantissa of the floating point. The direction of
// rounding is implementation defined, but by default it's always IEEE
// floats, which round to nearest and thus result in a value of larger
// magnitude than the integral value.
// Example: float f = UINT_MAX; // f is 4294967296f but UINT_MAX
// // is 4294967295u.
// 2. If the floating point value is equal to the promoted integral maximum
// value, a range check will erroneously pass.
// Example: (4294967296f <= 4294967295u) // This is true due to a precision
// // loss in rounding up to float.
// 3. When the floating point value is then converted to an integral, the
// resulting value is out of range for the target integral type and
// thus is implementation defined.
// Example: unsigned u = (float)INT_MAX; // u will typically overflow to 0.
// To fix this bug we manually truncate the maximum value when the destination
// type is an integral of larger precision than the source floating-point type,
// such that the resulting maximum is represented exactly as a floating point.
template <typename Dst, typename Src, template <typename> class Bounds>
struct NarrowingRange {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = typename std::numeric_limits<Dst>;
// Computes the mask required to make an accurate comparison between types.
static const int kShift =
(MaxExponent<Src>::value > MaxExponent<Dst>::value &&
SrcLimits::digits < DstLimits::digits)
? (DstLimits::digits - SrcLimits::digits)
: 0;
template <
typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
// Masks out the integer bits that are beyond the precision of the
// intermediate type used for comparison.
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift < DstLimits::digits, "");
return static_cast<T>(
ConditionalNegate(SafeUnsignedAbs(value) & ~((T(1) << kShift) - T(1)),
IsValueNegative(value)));
}
template <typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* =
nullptr>
static constexpr T Adjust(T value) {
static_assert(std::is_same<T, Dst>::value, "");
static_assert(kShift == 0, "");
return value;
}
static constexpr Dst max() { return Adjust(Bounds<Dst>::max()); }
static constexpr Dst lowest() { return Adjust(Bounds<Dst>::lowest()); }
};
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign = std::is_signed<Dst>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
IntegerRepresentation SrcSign = std::is_signed<Src>::value
? INTEGER_REPRESENTATION_SIGNED
: INTEGER_REPRESENTATION_UNSIGNED,
NumericRangeRepresentation DstRange =
StaticDstRangeRelationToSrcRange<Dst, Src>::value>
struct DstRangeRelationToSrcRangeImpl;
// The following templates are for ranges that must be verified at runtime. We
// split it into checks based on signedness to avoid confusing casts and
// compiler warnings on signed an unsigned comparisons.
// Same sign narrowing: The range is contained for normal limits.
template <typename Dst,
typename Src,
template <typename> class Bounds,
IntegerRepresentation DstSign,
IntegerRepresentation SrcSign>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
DstSign,
SrcSign,
NUMERIC_RANGE_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
static_cast<Dst>(SrcLimits::lowest()) >= DstLimits::lowest() ||
static_cast<Dst>(value) >= DstLimits::lowest(),
static_cast<Dst>(SrcLimits::max()) <= DstLimits::max() ||
static_cast<Dst>(value) <= DstLimits::max());
}
};
// Signed to signed narrowing: Both the upper and lower boundaries may be
// exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(value >= DstLimits::lowest(), value <= DstLimits::max());
}
};
// Unsigned to unsigned narrowing: Only the upper bound can be exceeded for
// standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
return RangeCheck(
DstLimits::lowest() == Dst(0) || value >= DstLimits::lowest(),
value <= DstLimits::max());
}
};
// Unsigned to signed: Only the upper bound can be exceeded for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_SIGNED,
INTEGER_REPRESENTATION_UNSIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(DstLimits::lowest() <= Dst(0) ||
static_cast<Promotion>(value) >=
static_cast<Promotion>(DstLimits::lowest()),
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
// Signed to unsigned: The upper boundary may be exceeded for a narrower Dst,
// and any negative value exceeds the lower boundary for standard limits.
template <typename Dst, typename Src, template <typename> class Bounds>
struct DstRangeRelationToSrcRangeImpl<Dst,
Src,
Bounds,
INTEGER_REPRESENTATION_UNSIGNED,
INTEGER_REPRESENTATION_SIGNED,
NUMERIC_RANGE_NOT_CONTAINED> {
static constexpr RangeCheck Check(Src value) {
using SrcLimits = std::numeric_limits<Src>;
using DstLimits = NarrowingRange<Dst, Src, Bounds>;
using Promotion = decltype(Src() + Dst());
return RangeCheck(
value >= Src(0) && (DstLimits::lowest() == 0 ||
static_cast<Dst>(value) >= DstLimits::lowest()),
static_cast<Promotion>(SrcLimits::max()) <=
static_cast<Promotion>(DstLimits::max()) ||
static_cast<Promotion>(value) <=
static_cast<Promotion>(DstLimits::max()));
}
};
template <typename Dst,
template <typename> class Bounds = std::numeric_limits,
typename Src>
constexpr RangeCheck DstRangeRelationToSrcRange(Src value) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
static_assert(std::is_arithmetic<Dst>::value, "Result must be numeric.");
static_assert(Bounds<Dst>::lowest() < Bounds<Dst>::max(), "");
return DstRangeRelationToSrcRangeImpl<Dst, Src, Bounds>::Check(value);
}
// Integer promotion templates used by the portable checked integer arithmetic.
template <size_t Size, bool IsSigned>
struct IntegerForDigitsAndSign;
#define INTEGER_FOR_DIGITS_AND_SIGN(I) \
template <> \
struct IntegerForDigitsAndSign<IntegerBitsPlusSign<I>::value, \
std::is_signed<I>::value> { \
using type = I; \
}
INTEGER_FOR_DIGITS_AND_SIGN(int8_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint8_t);
INTEGER_FOR_DIGITS_AND_SIGN(int16_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint16_t);
INTEGER_FOR_DIGITS_AND_SIGN(int32_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint32_t);
INTEGER_FOR_DIGITS_AND_SIGN(int64_t);
INTEGER_FOR_DIGITS_AND_SIGN(uint64_t);
#undef INTEGER_FOR_DIGITS_AND_SIGN
// WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
// support 128-bit math, then the ArithmeticPromotion template below will need
// to be updated (or more likely replaced with a decltype expression).
static_assert(IntegerBitsPlusSign<intmax_t>::value == 64,
"Max integer size not supported for this toolchain.");
template <typename Integer, bool IsSigned = std::is_signed<Integer>::value>
struct TwiceWiderInteger {
using type =
typename IntegerForDigitsAndSign<IntegerBitsPlusSign<Integer>::value * 2,
IsSigned>::type;
};
enum ArithmeticPromotionCategory {
LEFT_PROMOTION, // Use the type of the left-hand argument.
RIGHT_PROMOTION // Use the type of the right-hand argument.
};
// Determines the type that can represent the largest positive value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
(MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
? LEFT_PROMOTION
: RIGHT_PROMOTION>
struct MaxExponentPromotion;
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct MaxExponentPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that can represent the lowest arithmetic value.
template <typename Lhs,
typename Rhs,
ArithmeticPromotionCategory Promotion =
std::is_signed<Lhs>::value
? (std::is_signed<Rhs>::value
? (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION)
: LEFT_PROMOTION)
: (std::is_signed<Rhs>::value
? RIGHT_PROMOTION
: (MaxExponent<Lhs>::value < MaxExponent<Rhs>::value
? LEFT_PROMOTION
: RIGHT_PROMOTION))>
struct LowestValuePromotion;
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, LEFT_PROMOTION> {
using type = Lhs;
};
template <typename Lhs, typename Rhs>
struct LowestValuePromotion<Lhs, Rhs, RIGHT_PROMOTION> {
using type = Rhs;
};
// Determines the type that is best able to represent an arithmetic result.
template <
typename Lhs,
typename Rhs = Lhs,
bool is_intmax_type =
std::is_integral<typename MaxExponentPromotion<Lhs, Rhs>::type>::value&&
IntegerBitsPlusSign<typename MaxExponentPromotion<Lhs, Rhs>::type>::
value == IntegerBitsPlusSign<intmax_t>::value,
bool is_max_exponent =
StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Lhs>::value ==
NUMERIC_RANGE_CONTAINED&& StaticDstRangeRelationToSrcRange<
typename MaxExponentPromotion<Lhs, Rhs>::type,
Rhs>::value == NUMERIC_RANGE_CONTAINED>
struct BigEnoughPromotion;
// The side with the max exponent is big enough.
template <typename Lhs, typename Rhs, bool is_intmax_type>
struct BigEnoughPromotion<Lhs, Rhs, is_intmax_type, true> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = true;
};
// We can use a twice wider type to fit.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, false, false> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static const bool is_contained = true;
};
// No type is large enough.
template <typename Lhs, typename Rhs>
struct BigEnoughPromotion<Lhs, Rhs, true, false> {
using type = typename MaxExponentPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// We can statically check if operations on the provided types can wrap, so we
// can skip the checked operations if they're not needed. So, for an integer we
// care if the destination type preserves the sign and is twice the width of
// the source.
template <typename T, typename Lhs, typename Rhs = Lhs>
struct IsIntegerArithmeticSafe {
static const bool value =
!std::is_floating_point<T>::value &&
!std::is_floating_point<Lhs>::value &&
!std::is_floating_point<Rhs>::value &&
std::is_signed<T>::value >= std::is_signed<Lhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Lhs>::value) &&
std::is_signed<T>::value >= std::is_signed<Rhs>::value &&
IntegerBitsPlusSign<T>::value >= (2 * IntegerBitsPlusSign<Rhs>::value);
};
// Promotes to a type that can represent any possible result of a binary
// arithmetic operation with the source types.
template <typename Lhs,
typename Rhs,
bool is_promotion_possible = IsIntegerArithmeticSafe<
typename std::conditional<std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value,
intmax_t,
uintmax_t>::type,
typename MaxExponentPromotion<Lhs, Rhs>::type>::value>
struct FastIntegerArithmeticPromotion;
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, true> {
using type =
typename TwiceWiderInteger<typename MaxExponentPromotion<Lhs, Rhs>::type,
std::is_signed<Lhs>::value ||
std::is_signed<Rhs>::value>::type;
static_assert(IsIntegerArithmeticSafe<type, Lhs, Rhs>::value, "");
static const bool is_contained = true;
};
template <typename Lhs, typename Rhs>
struct FastIntegerArithmeticPromotion<Lhs, Rhs, false> {
using type = typename BigEnoughPromotion<Lhs, Rhs>::type;
static const bool is_contained = false;
};
// This hacks around libstdc++ 4.6 missing stuff in type_traits.
#if defined(__GLIBCXX__)
#define PRIV_GLIBCXX_4_7_0 20120322
#define PRIV_GLIBCXX_4_5_4 20120702
#define PRIV_GLIBCXX_4_6_4 20121127
#if (__GLIBCXX__ < PRIV_GLIBCXX_4_7_0 || __GLIBCXX__ == PRIV_GLIBCXX_4_5_4 || \
__GLIBCXX__ == PRIV_GLIBCXX_4_6_4)
#define PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX
#undef PRIV_GLIBCXX_4_7_0
#undef PRIV_GLIBCXX_4_5_4
#undef PRIV_GLIBCXX_4_6_4
#endif
#endif
// Extracts the underlying type from an enum.
template <typename T, bool is_enum = std::is_enum<T>::value>
struct ArithmeticOrUnderlyingEnum;
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, true> {
#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX)
using type = __underlying_type(T);
#else
using type = typename std::underlying_type<T>::type;
#endif
static const bool value = std::is_arithmetic<type>::value;
};
#if defined(PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX)
#undef PRIV_USE_FALLBACKS_FOR_OLD_GLIBCXX
#endif
template <typename T>
struct ArithmeticOrUnderlyingEnum<T, false> {
using type = T;
static const bool value = std::is_arithmetic<type>::value;
};
// The following are helper templates used in the CheckedNumeric class.
template <typename T>
class CheckedNumeric;
template <typename T>
class StrictNumeric;
// Used to treat CheckedNumeric and arithmetic underlying types the same.
template <typename T>
struct UnderlyingType {
using type = typename ArithmeticOrUnderlyingEnum<T>::type;
static const bool is_numeric = std::is_arithmetic<type>::value;
static const bool is_checked = false;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<CheckedNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = true;
static const bool is_strict = false;
};
template <typename T>
struct UnderlyingType<StrictNumeric<T>> {
using type = T;
static const bool is_numeric = true;
static const bool is_checked = false;
static const bool is_strict = true;
};
template <typename L, typename R>
struct IsCheckedOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_checked || UnderlyingType<R>::is_checked);
};
template <typename L, typename R>
struct IsStrictOp {
static const bool value =
UnderlyingType<L>::is_numeric && UnderlyingType<R>::is_numeric &&
(UnderlyingType<L>::is_strict || UnderlyingType<R>::is_strict);
};
template <typename L, typename R>
constexpr bool IsLessImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLess {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsLessOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsUnderflow() || r_range.IsOverflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) <=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsLessOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsLessOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreater {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
constexpr bool IsGreaterOrEqualImpl(const L lhs,
const R rhs,
const RangeCheck l_range,
const RangeCheck r_range) {
return l_range.IsOverflow() || r_range.IsUnderflow() ||
(l_range == r_range &&
static_cast<decltype(lhs + rhs)>(lhs) >=
static_cast<decltype(lhs + rhs)>(rhs));
}
template <typename L, typename R>
struct IsGreaterOrEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return IsGreaterOrEqualImpl(lhs, rhs, DstRangeRelationToSrcRange<R>(lhs),
DstRangeRelationToSrcRange<L>(rhs));
}
};
template <typename L, typename R>
struct IsEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) ==
DstRangeRelationToSrcRange<L>(rhs) &&
static_cast<decltype(lhs + rhs)>(lhs) ==
static_cast<decltype(lhs + rhs)>(rhs);
}
};
template <typename L, typename R>
struct IsNotEqual {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
static constexpr bool Test(const L lhs, const R rhs) {
return DstRangeRelationToSrcRange<R>(lhs) !=
DstRangeRelationToSrcRange<L>(rhs) ||
static_cast<decltype(lhs + rhs)>(lhs) !=
static_cast<decltype(lhs + rhs)>(rhs);
}
};
// These perform the actual math operations on the CheckedNumerics.
// Binary arithmetic operations.
template <template <typename, typename> class C, typename L, typename R>
constexpr bool SafeCompare(const L lhs, const R rhs) {
static_assert(std::is_arithmetic<L>::value && std::is_arithmetic<R>::value,
"Types must be numeric.");
using Promotion = BigEnoughPromotion<L, R>;
using BigType = typename Promotion::type;
return Promotion::is_contained
// Force to a larger type for speed if both are contained.
? C<BigType, BigType>::Test(
static_cast<BigType>(static_cast<L>(lhs)),
static_cast<BigType>(static_cast<R>(rhs)))
// Let the template functions figure it out for mixed types.
: C<L, R>::Test(lhs, rhs);
}
} // namespace internal
} // namespace base
} // namespace pdfium
#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_CONVERSIONS_IMPL_H_
|