1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
|
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
#define PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
#include <stddef.h>
#include <stdint.h>
#include <climits>
#include <cmath>
#include <cstdlib>
#include <limits>
#include <type_traits>
#include "third_party/base/numerics/safe_conversions.h"
namespace pdfium {
namespace base {
namespace internal {
// Everything from here up to the floating point operations is portable C++,
// but it may not be fast. This code could be split based on
// platform/architecture and replaced with potentially faster implementations.
// This is used for UnsignedAbs, where we need to support floating-point
// template instantiations even though we don't actually support the operations.
// However, there is no corresponding implementation of e.g. SafeUnsignedAbs,
// so the float versions will not compile.
template <typename Numeric,
bool IsInteger = std::is_integral<Numeric>::value,
bool IsFloat = std::is_floating_point<Numeric>::value>
struct UnsignedOrFloatForSize;
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, true, false> {
using type = typename std::make_unsigned<Numeric>::type;
};
template <typename Numeric>
struct UnsignedOrFloatForSize<Numeric, false, true> {
using type = Numeric;
};
// Probe for builtin math overflow support on Clang and version check on GCC.
#if defined(__has_builtin)
#define USE_OVERFLOW_BUILTINS (__has_builtin(__builtin_add_overflow))
#elif defined(__GNUC__)
#define USE_OVERFLOW_BUILTINS (__GNUC__ >= 5)
#else
#define USE_OVERFLOW_BUILTINS (0)
#endif
template <typename T>
bool CheckedAddImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
auto ux = static_cast<UnsignedDst>(x);
auto uy = static_cast<UnsignedDst>(y);
auto uresult = static_cast<UnsignedDst>(ux + uy);
*result = static_cast<T>(uresult);
// Addition is valid if the sign of (x + y) is equal to either that of x or
// that of y.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (uresult ^ uy)) >= 0
: uresult >= uy; // Unsigned is either valid or underflow.
}
template <typename T, typename U, class Enable = void>
struct CheckedAddOp {};
template <typename T, typename U>
struct CheckedAddOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static bool Do(T x, U y, V* result) {
#if USE_OVERFLOW_BUILTINS
return !__builtin_add_overflow(x, y, result);
#else
using Promotion = typename BigEnoughPromotion<T, U>::type;
Promotion presult;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
IsValueInRangeForNumericType<Promotion>(y);
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) + static_cast<Promotion>(y);
} else {
is_valid &= CheckedAddImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
#endif
}
};
template <typename T>
bool CheckedSubImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x+y is undefined if we have a signed type, we compute
// it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
auto ux = static_cast<UnsignedDst>(x);
auto uy = static_cast<UnsignedDst>(y);
auto uresult = static_cast<UnsignedDst>(ux - uy);
*result = static_cast<T>(uresult);
// Subtraction is valid if either x and y have same sign, or (x-y) and x have
// the same sign.
return (std::is_signed<T>::value)
? static_cast<SignedDst>((uresult ^ ux) & (ux ^ uy)) >= 0
: x >= y;
}
template <typename T, typename U, class Enable = void>
struct CheckedSubOp {};
template <typename T, typename U>
struct CheckedSubOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static bool Do(T x, U y, V* result) {
#if USE_OVERFLOW_BUILTINS
return !__builtin_sub_overflow(x, y, result);
#else
using Promotion = typename BigEnoughPromotion<T, U>::type;
Promotion presult;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
IsValueInRangeForNumericType<Promotion>(y);
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) - static_cast<Promotion>(y);
} else {
is_valid &= CheckedSubImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
#endif
}
};
template <typename T>
bool CheckedMulImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
// Since the value of x*y is potentially undefined if we have a signed type,
// we compute it using the unsigned type of the same size.
using UnsignedDst = typename std::make_unsigned<T>::type;
using SignedDst = typename std::make_signed<T>::type;
const UnsignedDst ux = SafeUnsignedAbs(x);
const UnsignedDst uy = SafeUnsignedAbs(y);
auto uresult = static_cast<UnsignedDst>(ux * uy);
const bool is_negative =
std::is_signed<T>::value && static_cast<SignedDst>(x ^ y) < 0;
*result = is_negative ? 0 - uresult : uresult;
// We have a fast out for unsigned identity or zero on the second operand.
// After that it's an unsigned overflow check on the absolute value, with
// a +1 bound for a negative result.
return uy <= UnsignedDst(!std::is_signed<T>::value || is_negative) ||
ux <= (std::numeric_limits<T>::max() + UnsignedDst(is_negative)) / uy;
}
template <typename T, typename U, class Enable = void>
struct CheckedMulOp {};
template <typename T, typename U>
struct CheckedMulOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static bool Do(T x, U y, V* result) {
#if USE_OVERFLOW_BUILTINS
#if defined(__clang__)
// TODO(jschuh): Get the Clang runtime library issues sorted out so we can
// support full-width, mixed-sign multiply builtins.
// https://crbug.com/613003
static const bool kUseMaxInt =
// Narrower type than uintptr_t is always safe.
std::numeric_limits<__typeof__(x * y)>::digits <
std::numeric_limits<intptr_t>::digits ||
// Safe for intptr_t and uintptr_t if the sign matches.
(IntegerBitsPlusSign<__typeof__(x * y)>::value ==
IntegerBitsPlusSign<intptr_t>::value &&
std::is_signed<T>::value == std::is_signed<U>::value);
#else
static const bool kUseMaxInt = true;
#endif
if (kUseMaxInt)
return !__builtin_mul_overflow(x, y, result);
#endif
using Promotion = typename FastIntegerArithmeticPromotion<T, U>::type;
Promotion presult;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
IsValueInRangeForNumericType<Promotion>(y);
if (IsIntegerArithmeticSafe<Promotion, T, U>::value) {
presult = static_cast<Promotion>(x) * static_cast<Promotion>(y);
} else {
is_valid &= CheckedMulImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
}
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
// Avoid poluting the namespace once we're done with the macro.
#undef USE_OVERFLOW_BUILTINS
// Division just requires a check for a zero denominator or an invalid negation
// on signed min/-1.
template <typename T>
bool CheckedDivImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
if (y && (!std::is_signed<T>::value ||
x != std::numeric_limits<T>::lowest() || y != static_cast<T>(-1))) {
*result = x / y;
return true;
}
return false;
}
template <typename T, typename U, class Enable = void>
struct CheckedDivOp {};
template <typename T, typename U>
struct CheckedDivOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static bool Do(T x, U y, V* result) {
using Promotion = typename BigEnoughPromotion<T, U>::type;
Promotion presult;
// Fail if either operand is out of range for the promoted type.
// TODO(jschuh): This could be made to work for a broader range of values.
bool is_valid = IsValueInRangeForNumericType<Promotion>(x) &&
IsValueInRangeForNumericType<Promotion>(y);
is_valid &= CheckedDivImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T>
bool CheckedModImpl(T x, T y, T* result) {
static_assert(std::is_integral<T>::value, "Type must be integral");
if (y > 0) {
*result = static_cast<T>(x % y);
return true;
}
return false;
}
template <typename T, typename U, class Enable = void>
struct CheckedModOp {};
template <typename T, typename U>
struct CheckedModOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V>
static bool Do(T x, U y, V* result) {
using Promotion = typename BigEnoughPromotion<T, U>::type;
Promotion presult;
bool is_valid = CheckedModImpl(static_cast<Promotion>(x),
static_cast<Promotion>(y), &presult);
*result = static_cast<V>(presult);
return is_valid && IsValueInRangeForNumericType<V>(presult);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedLshOp {};
// Left shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Shifts of negative values
// are undefined. Otherwise it is defined when the result fits.
template <typename T, typename U>
struct CheckedLshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V>
static bool Do(T x, U shift, V* result) {
using ShiftType = typename std::make_unsigned<T>::type;
static const ShiftType kBitWidth = IntegerBitsPlusSign<T>::value;
const auto real_shift = static_cast<ShiftType>(shift);
// Signed shift is not legal on negative values.
if (!IsValueNegative(x) && real_shift < kBitWidth) {
// Just use a multiplication because it's easy.
// TODO(jschuh): This could probably be made more efficient.
if (!std::is_signed<T>::value || real_shift != kBitWidth - 1)
return CheckedMulOp<T, T>::Do(x, static_cast<T>(1) << shift, result);
return !x; // Special case zero for a full width signed shift.
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedRshOp {};
// Right shift. Shifts less than 0 or greater than or equal to the number
// of bits in the promoted type are undefined. Otherwise, it is always defined,
// but a right shift of a negative value is implementation-dependent.
template <typename T, typename U>
struct CheckedRshOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = T;
template <typename V = result_type>
static bool Do(T x, U shift, V* result) {
// Use the type conversion push negative values out of range.
using ShiftType = typename std::make_unsigned<T>::type;
if (static_cast<ShiftType>(shift) < IntegerBitsPlusSign<T>::value) {
T tmp = x >> shift;
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
return false;
}
};
template <typename T, typename U, class Enable = void>
struct CheckedAndOp {};
// For simplicity we support only unsigned integer results.
template <typename T, typename U>
struct CheckedAndOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V = result_type>
static bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) & static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedOrOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedOrOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V = result_type>
static bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) | static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
template <typename T, typename U, class Enable = void>
struct CheckedXorOp {};
// For simplicity we support only unsigned integers.
template <typename T, typename U>
struct CheckedXorOp<T,
U,
typename std::enable_if<std::is_integral<T>::value &&
std::is_integral<U>::value>::type> {
using result_type = typename std::make_unsigned<
typename MaxExponentPromotion<T, U>::type>::type;
template <typename V = result_type>
static bool Do(T x, U y, V* result) {
result_type tmp = static_cast<result_type>(x) ^ static_cast<result_type>(y);
*result = static_cast<V>(tmp);
return IsValueInRangeForNumericType<V>(tmp);
}
};
// Max doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMaxOp {};
template <typename T, typename U>
struct CheckedMaxOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename MaxExponentPromotion<T, U>::type;
template <typename V = result_type>
static bool Do(T x, U y, V* result) {
*result = IsGreater<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
return true;
}
};
// Min doesn't really need to be implemented this way because it can't fail,
// but it makes the code much cleaner to use the MathOp wrappers.
template <typename T, typename U, class Enable = void>
struct CheckedMinOp {};
template <typename T, typename U>
struct CheckedMinOp<
T,
U,
typename std::enable_if<std::is_arithmetic<T>::value &&
std::is_arithmetic<U>::value>::type> {
using result_type = typename LowestValuePromotion<T, U>::type;
template <typename V = result_type>
static bool Do(T x, U y, V* result) {
*result = IsLess<T, U>::Test(x, y) ? static_cast<result_type>(x)
: static_cast<result_type>(y);
return true;
}
};
// This is just boilerplate that wraps the standard floating point arithmetic.
// A macro isn't the nicest solution, but it beats rewriting these repeatedly.
#define BASE_FLOAT_ARITHMETIC_OPS(NAME, OP) \
template <typename T, typename U> \
struct Checked##NAME##Op< \
T, U, typename std::enable_if<std::is_floating_point<T>::value || \
std::is_floating_point<U>::value>::type> { \
using result_type = typename MaxExponentPromotion<T, U>::type; \
template <typename V> \
static bool Do(T x, U y, V* result) { \
using Promotion = typename MaxExponentPromotion<T, U>::type; \
Promotion presult = x OP y; \
*result = static_cast<V>(presult); \
return IsValueInRangeForNumericType<V>(presult); \
} \
};
BASE_FLOAT_ARITHMETIC_OPS(Add, +)
BASE_FLOAT_ARITHMETIC_OPS(Sub, -)
BASE_FLOAT_ARITHMETIC_OPS(Mul, *)
BASE_FLOAT_ARITHMETIC_OPS(Div, /)
#undef BASE_FLOAT_ARITHMETIC_OPS
// Wrap the unary operations to allow SFINAE when instantiating integrals versus
// floating points. These don't perform any overflow checking. Rather, they
// exhibit well-defined overflow semantics and rely on the caller to detect
// if an overflow occured.
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
using UnsignedT = typename std::make_unsigned<T>::type;
// This will compile to a NEG on Intel, and is normal negation on ARM.
return static_cast<T>(UnsignedT(0) - static_cast<UnsignedT>(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T NegateWrapper(T value) {
return -value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr typename std::make_unsigned<T>::type InvertWrapper(T value) {
return ~value;
}
template <typename T,
typename std::enable_if<std::is_integral<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return static_cast<T>(SafeUnsignedAbs(value));
}
template <
typename T,
typename std::enable_if<std::is_floating_point<T>::value>::type* = nullptr>
constexpr T AbsWrapper(T value) {
return value < 0 ? -value : value;
}
// Floats carry around their validity state with them, but integers do not. So,
// we wrap the underlying value in a specialization in order to hide that detail
// and expose an interface via accessors.
enum NumericRepresentation {
NUMERIC_INTEGER,
NUMERIC_FLOATING,
NUMERIC_UNKNOWN
};
template <typename NumericType>
struct GetNumericRepresentation {
static const NumericRepresentation value =
std::is_integral<NumericType>::value
? NUMERIC_INTEGER
: (std::is_floating_point<NumericType>::value ? NUMERIC_FLOATING
: NUMERIC_UNKNOWN);
};
template <typename T, NumericRepresentation type =
GetNumericRepresentation<T>::value>
class CheckedNumericState {};
// Integrals require quite a bit of additional housekeeping to manage state.
template <typename T>
class CheckedNumericState<T, NUMERIC_INTEGER> {
private:
// is_valid_ precedes value_ because member intializers in the constructors
// are evaluated in field order, and is_valid_ must be read when initializing
// value_.
bool is_valid_;
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrZero(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (std::is_integral<SrcType>::value || is_valid)
? static_cast<T>(value)
: static_cast<T>(0);
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : is_valid_(true), value_(0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: is_valid_(is_valid && IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {
static_assert(std::is_arithmetic<Src>::value, "Argument must be numeric.");
}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: is_valid_(rhs.IsValid()),
value_(WellDefinedConversionOrZero(rhs.value(), is_valid_)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: is_valid_(IsValueInRangeForNumericType<T>(value)),
value_(WellDefinedConversionOrZero(value, is_valid_)) {}
constexpr bool is_valid() const { return is_valid_; }
constexpr T value() const { return value_; }
};
// Floating points maintain their own validity, but need translation wrappers.
template <typename T>
class CheckedNumericState<T, NUMERIC_FLOATING> {
private:
T value_;
// Ensures that a type conversion does not trigger undefined behavior.
template <typename Src>
static constexpr T WellDefinedConversionOrNaN(const Src value,
const bool is_valid) {
using SrcType = typename internal::UnderlyingType<Src>::type;
return (StaticDstRangeRelationToSrcRange<T, SrcType>::value ==
NUMERIC_RANGE_CONTAINED ||
is_valid)
? static_cast<T>(value)
: std::numeric_limits<T>::quiet_NaN();
}
public:
template <typename Src, NumericRepresentation type>
friend class CheckedNumericState;
constexpr CheckedNumericState() : value_(0.0) {}
template <typename Src>
constexpr CheckedNumericState(Src value, bool is_valid)
: value_(WellDefinedConversionOrNaN(value, is_valid)) {}
template <typename Src>
constexpr explicit CheckedNumericState(Src value)
: value_(WellDefinedConversionOrNaN(
value,
IsValueInRangeForNumericType<T>(value))) {}
// Copy constructor.
template <typename Src>
constexpr CheckedNumericState(const CheckedNumericState<Src>& rhs)
: value_(WellDefinedConversionOrNaN(
rhs.value(),
rhs.is_valid() && IsValueInRangeForNumericType<T>(rhs.value()))) {}
constexpr bool is_valid() const {
// Written this way because std::isfinite is not reliably constexpr.
// TODO(jschuh): Fix this if the libraries ever get fixed.
return value_ <= std::numeric_limits<T>::max() &&
value_ >= std::numeric_limits<T>::lowest();
}
constexpr T value() const { return value_; }
};
template <template <typename, typename, typename> class M,
typename L,
typename R>
struct MathWrapper {
using math = M<typename UnderlyingType<L>::type,
typename UnderlyingType<R>::type,
void>;
using type = typename math::result_type;
};
} // namespace internal
} // namespace base
} // namespace pdfium
#endif // PDFIUM_THIRD_PARTY_BASE_NUMERICS_SAFE_MATH_IMPL_H_
|