1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
|
#include "BigIntegerAlgorithms.hh"
BigUnsigned gcd(BigUnsigned a, BigUnsigned b) {
BigUnsigned trash;
// Neat in-place alternating technique.
for (;;) {
if (b.isZero())
return a;
a.divideWithRemainder(b, trash);
if (a.isZero())
return b;
b.divideWithRemainder(a, trash);
}
}
void extendedEuclidean(BigInteger m, BigInteger n,
BigInteger &g, BigInteger &r, BigInteger &s) {
if (&g == &r || &g == &s || &r == &s)
throw "BigInteger extendedEuclidean: Outputs are aliased";
BigInteger r1(1), s1(0), r2(0), s2(1), q;
/* Invariants:
* r1*m(orig) + s1*n(orig) == m(current)
* r2*m(orig) + s2*n(orig) == n(current) */
for (;;) {
if (n.isZero()) {
r = r1; s = s1; g = m;
return;
}
// Subtract q times the second invariant from the first invariant.
m.divideWithRemainder(n, q);
r1 -= q*r2; s1 -= q*s2;
if (m.isZero()) {
r = r2; s = s2; g = n;
return;
}
// Subtract q times the first invariant from the second invariant.
n.divideWithRemainder(m, q);
r2 -= q*r1; s2 -= q*s1;
}
}
BigUnsigned modinv(const BigInteger &x, const BigUnsigned &n) {
BigInteger g, r, s;
extendedEuclidean(x, n, g, r, s);
if (g == 1)
// r*x + s*n == 1, so r*x === 1 (mod n), so r is the answer.
return (r % n).getMagnitude(); // (r % n) will be nonnegative
else
throw "BigInteger modinv: x and n have a common factor";
}
BigUnsigned modexp(const BigInteger &base, const BigUnsigned &exponent,
const BigUnsigned &modulus) {
BigUnsigned ans = 1, base2 = (base % modulus).getMagnitude();
BigUnsigned::Index i = exponent.bitLength();
// For each bit of the exponent, most to least significant...
while (i > 0) {
i--;
// Square.
ans *= ans;
ans %= modulus;
// And multiply if the bit is a 1.
if (exponent.getBit(i)) {
ans *= base2;
ans %= modulus;
}
}
return ans;
}
|