summaryrefslogtreecommitdiff
path: root/third_party/lcms/src/cmsmtrx.c
blob: d0e5461e9fcaa1e53e79c7399ef4704896dd4af5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
//---------------------------------------------------------------------------------
//
//  Little Color Management System
//  Copyright (c) 1998-2016 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//

#include "lcms2_internal.h"


#define DSWAP(x, y)     {cmsFloat64Number tmp = (x); (x)=(y); (y)=tmp;}


// Initiate a vector
void CMSEXPORT _cmsVEC3init(cmsVEC3* r, cmsFloat64Number x, cmsFloat64Number y, cmsFloat64Number z)
{
    r -> n[VX] = x;
    r -> n[VY] = y;
    r -> n[VZ] = z;
}

// Vector subtraction
void CMSEXPORT _cmsVEC3minus(cmsVEC3* r, const cmsVEC3* a, const cmsVEC3* b)
{
  r -> n[VX] = a -> n[VX] - b -> n[VX];
  r -> n[VY] = a -> n[VY] - b -> n[VY];
  r -> n[VZ] = a -> n[VZ] - b -> n[VZ];
}

// Vector cross product
void CMSEXPORT _cmsVEC3cross(cmsVEC3* r, const cmsVEC3* u, const cmsVEC3* v)
{
    r ->n[VX] = u->n[VY] * v->n[VZ] - v->n[VY] * u->n[VZ];
    r ->n[VY] = u->n[VZ] * v->n[VX] - v->n[VZ] * u->n[VX];
    r ->n[VZ] = u->n[VX] * v->n[VY] - v->n[VX] * u->n[VY];
}

// Vector dot product
cmsFloat64Number CMSEXPORT _cmsVEC3dot(const cmsVEC3* u, const cmsVEC3* v)
{
    return u->n[VX] * v->n[VX] + u->n[VY] * v->n[VY] + u->n[VZ] * v->n[VZ];
}

// Euclidean length
cmsFloat64Number CMSEXPORT _cmsVEC3length(const cmsVEC3* a)
{
    return sqrt(a ->n[VX] * a ->n[VX] +
                a ->n[VY] * a ->n[VY] +
                a ->n[VZ] * a ->n[VZ]);
}

// Euclidean distance
cmsFloat64Number CMSEXPORT _cmsVEC3distance(const cmsVEC3* a, const cmsVEC3* b)
{
    cmsFloat64Number d1 = a ->n[VX] - b ->n[VX];
    cmsFloat64Number d2 = a ->n[VY] - b ->n[VY];
    cmsFloat64Number d3 = a ->n[VZ] - b ->n[VZ];

    return sqrt(d1*d1 + d2*d2 + d3*d3);
}



// 3x3 Identity
void CMSEXPORT _cmsMAT3identity(cmsMAT3* a)
{
    _cmsVEC3init(&a-> v[0], 1.0, 0.0, 0.0);
    _cmsVEC3init(&a-> v[1], 0.0, 1.0, 0.0);
    _cmsVEC3init(&a-> v[2], 0.0, 0.0, 1.0);
}

static
cmsBool CloseEnough(cmsFloat64Number a, cmsFloat64Number b)
{
    return fabs(b - a) < (1.0 / 65535.0);
}


cmsBool CMSEXPORT _cmsMAT3isIdentity(const cmsMAT3* a)
{
    cmsMAT3 Identity;
    int i, j;

    _cmsMAT3identity(&Identity);

    for (i=0; i < 3; i++)
        for (j=0; j < 3; j++)
            if (!CloseEnough(a ->v[i].n[j], Identity.v[i].n[j])) return FALSE;

    return TRUE;
}


// Multiply two matrices
void CMSEXPORT _cmsMAT3per(cmsMAT3* r, const cmsMAT3* a, const cmsMAT3* b)
{
#define ROWCOL(i, j) \
    a->v[i].n[0]*b->v[0].n[j] + a->v[i].n[1]*b->v[1].n[j] + a->v[i].n[2]*b->v[2].n[j]

    _cmsVEC3init(&r-> v[0], ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2));
    _cmsVEC3init(&r-> v[1], ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2));
    _cmsVEC3init(&r-> v[2], ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2));

#undef ROWCOL //(i, j)
}



// Inverse of a matrix b = a^(-1)
cmsBool  CMSEXPORT _cmsMAT3inverse(const cmsMAT3* a, cmsMAT3* b)
{
   cmsFloat64Number det, c0, c1, c2;

   c0 =  a -> v[1].n[1]*a -> v[2].n[2] - a -> v[1].n[2]*a -> v[2].n[1];
   c1 = -a -> v[1].n[0]*a -> v[2].n[2] + a -> v[1].n[2]*a -> v[2].n[0];
   c2 =  a -> v[1].n[0]*a -> v[2].n[1] - a -> v[1].n[1]*a -> v[2].n[0];

   det = a -> v[0].n[0]*c0 + a -> v[0].n[1]*c1 + a -> v[0].n[2]*c2;

   if (fabs(det) < MATRIX_DET_TOLERANCE) return FALSE;  // singular matrix; can't invert

   b -> v[0].n[0] = c0/det;
   b -> v[0].n[1] = (a -> v[0].n[2]*a -> v[2].n[1] - a -> v[0].n[1]*a -> v[2].n[2])/det;
   b -> v[0].n[2] = (a -> v[0].n[1]*a -> v[1].n[2] - a -> v[0].n[2]*a -> v[1].n[1])/det;
   b -> v[1].n[0] = c1/det;
   b -> v[1].n[1] = (a -> v[0].n[0]*a -> v[2].n[2] - a -> v[0].n[2]*a -> v[2].n[0])/det;
   b -> v[1].n[2] = (a -> v[0].n[2]*a -> v[1].n[0] - a -> v[0].n[0]*a -> v[1].n[2])/det;
   b -> v[2].n[0] = c2/det;
   b -> v[2].n[1] = (a -> v[0].n[1]*a -> v[2].n[0] - a -> v[0].n[0]*a -> v[2].n[1])/det;
   b -> v[2].n[2] = (a -> v[0].n[0]*a -> v[1].n[1] - a -> v[0].n[1]*a -> v[1].n[0])/det;

   return TRUE;
}


// Solve a system in the form Ax = b
cmsBool  CMSEXPORT _cmsMAT3solve(cmsVEC3* x, cmsMAT3* a, cmsVEC3* b)
{
    cmsMAT3 m, a_1;

    memmove(&m, a, sizeof(cmsMAT3));

    if (!_cmsMAT3inverse(&m, &a_1)) return FALSE;  // Singular matrix

    _cmsMAT3eval(x, &a_1, b);
    return TRUE;
}

// Evaluate a vector across a matrix
void CMSEXPORT _cmsMAT3eval(cmsVEC3* r, const cmsMAT3* a, const cmsVEC3* v)
{
    r->n[VX] = a->v[0].n[VX]*v->n[VX] + a->v[0].n[VY]*v->n[VY] + a->v[0].n[VZ]*v->n[VZ];
    r->n[VY] = a->v[1].n[VX]*v->n[VX] + a->v[1].n[VY]*v->n[VY] + a->v[1].n[VZ]*v->n[VZ];
    r->n[VZ] = a->v[2].n[VX]*v->n[VX] + a->v[2].n[VY]*v->n[VY] + a->v[2].n[VZ]*v->n[VZ];
}