1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
|
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2016 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// D50 - Widely used
const cmsCIEXYZ* CMSEXPORT cmsD50_XYZ(void)
{
static cmsCIEXYZ D50XYZ = {cmsD50X, cmsD50Y, cmsD50Z};
return &D50XYZ;
}
const cmsCIExyY* CMSEXPORT cmsD50_xyY(void)
{
static cmsCIExyY D50xyY;
cmsXYZ2xyY(&D50xyY, cmsD50_XYZ());
return &D50xyY;
}
// Obtains WhitePoint from Temperature
cmsBool CMSEXPORT cmsWhitePointFromTemp(cmsCIExyY* WhitePoint, cmsFloat64Number TempK)
{
cmsFloat64Number x, y;
cmsFloat64Number T, T2, T3;
// cmsFloat64Number M1, M2;
_cmsAssert(WhitePoint != NULL);
T = TempK;
T2 = T*T; // Square
T3 = T2*T; // Cube
// For correlated color temperature (T) between 4000K and 7000K:
if (T >= 4000. && T <= 7000.)
{
x = -4.6070*(1E9/T3) + 2.9678*(1E6/T2) + 0.09911*(1E3/T) + 0.244063;
}
else
// or for correlated color temperature (T) between 7000K and 25000K:
if (T > 7000.0 && T <= 25000.0)
{
x = -2.0064*(1E9/T3) + 1.9018*(1E6/T2) + 0.24748*(1E3/T) + 0.237040;
}
else {
cmsSignalError(0, cmsERROR_RANGE, "cmsWhitePointFromTemp: invalid temp");
return FALSE;
}
// Obtain y(x)
y = -3.000*(x*x) + 2.870*x - 0.275;
// wave factors (not used, but here for futures extensions)
// M1 = (-1.3515 - 1.7703*x + 5.9114 *y)/(0.0241 + 0.2562*x - 0.7341*y);
// M2 = (0.0300 - 31.4424*x + 30.0717*y)/(0.0241 + 0.2562*x - 0.7341*y);
WhitePoint -> x = x;
WhitePoint -> y = y;
WhitePoint -> Y = 1.0;
return TRUE;
}
typedef struct {
cmsFloat64Number mirek; // temp (in microreciprocal kelvin)
cmsFloat64Number ut; // u coord of intersection w/ blackbody locus
cmsFloat64Number vt; // v coord of intersection w/ blackbody locus
cmsFloat64Number tt; // slope of ISOTEMPERATURE. line
} ISOTEMPERATURE;
static ISOTEMPERATURE isotempdata[] = {
// {Mirek, Ut, Vt, Tt }
{0, 0.18006, 0.26352, -0.24341},
{10, 0.18066, 0.26589, -0.25479},
{20, 0.18133, 0.26846, -0.26876},
{30, 0.18208, 0.27119, -0.28539},
{40, 0.18293, 0.27407, -0.30470},
{50, 0.18388, 0.27709, -0.32675},
{60, 0.18494, 0.28021, -0.35156},
{70, 0.18611, 0.28342, -0.37915},
{80, 0.18740, 0.28668, -0.40955},
{90, 0.18880, 0.28997, -0.44278},
{100, 0.19032, 0.29326, -0.47888},
{125, 0.19462, 0.30141, -0.58204},
{150, 0.19962, 0.30921, -0.70471},
{175, 0.20525, 0.31647, -0.84901},
{200, 0.21142, 0.32312, -1.0182 },
{225, 0.21807, 0.32909, -1.2168 },
{250, 0.22511, 0.33439, -1.4512 },
{275, 0.23247, 0.33904, -1.7298 },
{300, 0.24010, 0.34308, -2.0637 },
{325, 0.24702, 0.34655, -2.4681 },
{350, 0.25591, 0.34951, -2.9641 },
{375, 0.26400, 0.35200, -3.5814 },
{400, 0.27218, 0.35407, -4.3633 },
{425, 0.28039, 0.35577, -5.3762 },
{450, 0.28863, 0.35714, -6.7262 },
{475, 0.29685, 0.35823, -8.5955 },
{500, 0.30505, 0.35907, -11.324 },
{525, 0.31320, 0.35968, -15.628 },
{550, 0.32129, 0.36011, -23.325 },
{575, 0.32931, 0.36038, -40.770 },
{600, 0.33724, 0.36051, -116.45 }
};
#define NISO sizeof(isotempdata)/sizeof(ISOTEMPERATURE)
// Robertson's method
cmsBool CMSEXPORT cmsTempFromWhitePoint(cmsFloat64Number* TempK, const cmsCIExyY* WhitePoint)
{
cmsUInt32Number j;
cmsFloat64Number us,vs;
cmsFloat64Number uj,vj,tj,di,dj,mi,mj;
cmsFloat64Number xs, ys;
_cmsAssert(WhitePoint != NULL);
_cmsAssert(TempK != NULL);
di = mi = 0;
xs = WhitePoint -> x;
ys = WhitePoint -> y;
// convert (x,y) to CIE 1960 (u,WhitePoint)
us = (2*xs) / (-xs + 6*ys + 1.5);
vs = (3*ys) / (-xs + 6*ys + 1.5);
for (j=0; j < NISO; j++) {
uj = isotempdata[j].ut;
vj = isotempdata[j].vt;
tj = isotempdata[j].tt;
mj = isotempdata[j].mirek;
dj = ((vs - vj) - tj * (us - uj)) / sqrt(1.0 + tj * tj);
if ((j != 0) && (di/dj < 0.0)) {
// Found a match
*TempK = 1000000.0 / (mi + (di / (di - dj)) * (mj - mi));
return TRUE;
}
di = dj;
mi = mj;
}
// Not found
return FALSE;
}
// Compute chromatic adaptation matrix using Chad as cone matrix
static
cmsBool ComputeChromaticAdaptation(cmsMAT3* Conversion,
const cmsCIEXYZ* SourceWhitePoint,
const cmsCIEXYZ* DestWhitePoint,
const cmsMAT3* Chad)
{
cmsMAT3 Chad_Inv;
cmsVEC3 ConeSourceXYZ, ConeSourceRGB;
cmsVEC3 ConeDestXYZ, ConeDestRGB;
cmsMAT3 Cone, Tmp;
Tmp = *Chad;
if (!_cmsMAT3inverse(&Tmp, &Chad_Inv)) return FALSE;
_cmsVEC3init(&ConeSourceXYZ, SourceWhitePoint -> X,
SourceWhitePoint -> Y,
SourceWhitePoint -> Z);
_cmsVEC3init(&ConeDestXYZ, DestWhitePoint -> X,
DestWhitePoint -> Y,
DestWhitePoint -> Z);
_cmsMAT3eval(&ConeSourceRGB, Chad, &ConeSourceXYZ);
_cmsMAT3eval(&ConeDestRGB, Chad, &ConeDestXYZ);
// Build matrix
_cmsVEC3init(&Cone.v[0], ConeDestRGB.n[0]/ConeSourceRGB.n[0], 0.0, 0.0);
_cmsVEC3init(&Cone.v[1], 0.0, ConeDestRGB.n[1]/ConeSourceRGB.n[1], 0.0);
_cmsVEC3init(&Cone.v[2], 0.0, 0.0, ConeDestRGB.n[2]/ConeSourceRGB.n[2]);
// Normalize
_cmsMAT3per(&Tmp, &Cone, Chad);
_cmsMAT3per(Conversion, &Chad_Inv, &Tmp);
return TRUE;
}
// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll
// The cone matrix can be specified in ConeMatrix. If NULL, Bradford is assumed
cmsBool _cmsAdaptationMatrix(cmsMAT3* r, const cmsMAT3* ConeMatrix, const cmsCIEXYZ* FromIll, const cmsCIEXYZ* ToIll)
{
cmsMAT3 LamRigg = {{ // Bradford matrix
{{ 0.8951, 0.2664, -0.1614 }},
{{ -0.7502, 1.7135, 0.0367 }},
{{ 0.0389, -0.0685, 1.0296 }}
}};
if (ConeMatrix == NULL)
ConeMatrix = &LamRigg;
return ComputeChromaticAdaptation(r, FromIll, ToIll, ConeMatrix);
}
// Same as anterior, but assuming D50 destination. White point is given in xyY
static
cmsBool _cmsAdaptMatrixToD50(cmsMAT3* r, const cmsCIExyY* SourceWhitePt)
{
cmsCIEXYZ Dn;
cmsMAT3 Bradford;
cmsMAT3 Tmp;
cmsxyY2XYZ(&Dn, SourceWhitePt);
if (!_cmsAdaptationMatrix(&Bradford, NULL, &Dn, cmsD50_XYZ())) return FALSE;
Tmp = *r;
_cmsMAT3per(r, &Bradford, &Tmp);
return TRUE;
}
// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ
// This is just an approximation, I am not handling all the non-linear
// aspects of the RGB to XYZ process, and assumming that the gamma correction
// has transitive property in the tranformation chain.
//
// the alghoritm:
//
// - First I build the absolute conversion matrix using
// primaries in XYZ. This matrix is next inverted
// - Then I eval the source white point across this matrix
// obtaining the coeficients of the transformation
// - Then, I apply these coeficients to the original matrix
//
cmsBool _cmsBuildRGB2XYZtransferMatrix(cmsMAT3* r, const cmsCIExyY* WhitePt, const cmsCIExyYTRIPLE* Primrs)
{
cmsVEC3 WhitePoint, Coef;
cmsMAT3 Result, Primaries;
cmsFloat64Number xn, yn;
cmsFloat64Number xr, yr;
cmsFloat64Number xg, yg;
cmsFloat64Number xb, yb;
xn = WhitePt -> x;
yn = WhitePt -> y;
xr = Primrs -> Red.x;
yr = Primrs -> Red.y;
xg = Primrs -> Green.x;
yg = Primrs -> Green.y;
xb = Primrs -> Blue.x;
yb = Primrs -> Blue.y;
// Build Primaries matrix
_cmsVEC3init(&Primaries.v[0], xr, xg, xb);
_cmsVEC3init(&Primaries.v[1], yr, yg, yb);
_cmsVEC3init(&Primaries.v[2], (1-xr-yr), (1-xg-yg), (1-xb-yb));
// Result = Primaries ^ (-1) inverse matrix
if (!_cmsMAT3inverse(&Primaries, &Result))
return FALSE;
_cmsVEC3init(&WhitePoint, xn/yn, 1.0, (1.0-xn-yn)/yn);
// Across inverse primaries ...
_cmsMAT3eval(&Coef, &Result, &WhitePoint);
// Give us the Coefs, then I build transformation matrix
_cmsVEC3init(&r -> v[0], Coef.n[VX]*xr, Coef.n[VY]*xg, Coef.n[VZ]*xb);
_cmsVEC3init(&r -> v[1], Coef.n[VX]*yr, Coef.n[VY]*yg, Coef.n[VZ]*yb);
_cmsVEC3init(&r -> v[2], Coef.n[VX]*(1.0-xr-yr), Coef.n[VY]*(1.0-xg-yg), Coef.n[VZ]*(1.0-xb-yb));
return _cmsAdaptMatrixToD50(r, WhitePt);
}
// Adapts a color to a given illuminant. Original color is expected to have
// a SourceWhitePt white point.
cmsBool CMSEXPORT cmsAdaptToIlluminant(cmsCIEXYZ* Result,
const cmsCIEXYZ* SourceWhitePt,
const cmsCIEXYZ* Illuminant,
const cmsCIEXYZ* Value)
{
cmsMAT3 Bradford;
cmsVEC3 In, Out;
_cmsAssert(Result != NULL);
_cmsAssert(SourceWhitePt != NULL);
_cmsAssert(Illuminant != NULL);
_cmsAssert(Value != NULL);
if (!_cmsAdaptationMatrix(&Bradford, NULL, SourceWhitePt, Illuminant)) return FALSE;
_cmsVEC3init(&In, Value -> X, Value -> Y, Value -> Z);
_cmsMAT3eval(&Out, &Bradford, &In);
Result -> X = Out.n[0];
Result -> Y = Out.n[1];
Result -> Z = Out.n[2];
return TRUE;
}
|