1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
|
//---------------------------------------------------------------------------------
//
// Little Color Management System
// Copyright (c) 1998-2012 Marti Maria Saguer
//
// Permission is hereby granted, free of charge, to any person obtaining
// a copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the Software
// is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
//
//---------------------------------------------------------------------------------
//
#include "lcms2_internal.h"
// Allocates an empty multi profile element
cmsStage* CMSEXPORT _cmsStageAllocPlaceholder(cmsContext ContextID,
cmsStageSignature Type,
cmsUInt32Number InputChannels,
cmsUInt32Number OutputChannels,
_cmsStageEvalFn EvalPtr,
_cmsStageDupElemFn DupElemPtr,
_cmsStageFreeElemFn FreePtr,
void* Data)
{
cmsStage* ph = (cmsStage*) _cmsMallocZero(ContextID, sizeof(cmsStage));
if (ph == NULL) return NULL;
ph ->ContextID = ContextID;
ph ->Type = Type;
ph ->Implements = Type; // By default, no clue on what is implementing
ph ->InputChannels = InputChannels;
ph ->OutputChannels = OutputChannels;
ph ->EvalPtr = EvalPtr;
ph ->DupElemPtr = DupElemPtr;
ph ->FreePtr = FreePtr;
ph ->Data = Data;
return ph;
}
static
void EvaluateIdentity(const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsStage *mpe)
{
memmove(Out, In, mpe ->InputChannels * sizeof(cmsFloat32Number));
}
cmsStage* CMSEXPORT cmsStageAllocIdentity(cmsContext ContextID, cmsUInt32Number nChannels)
{
return _cmsStageAllocPlaceholder(ContextID,
cmsSigIdentityElemType,
nChannels, nChannels,
EvaluateIdentity,
NULL,
NULL,
NULL);
}
// Conversion functions. From floating point to 16 bits
static
void FromFloatTo16(const cmsFloat32Number In[], cmsUInt16Number Out[], cmsUInt32Number n)
{
cmsUInt32Number i;
for (i=0; i < n; i++) {
Out[i] = _cmsQuickSaturateWord(In[i] * 65535.0);
}
}
// From 16 bits to floating point
static
void From16ToFloat(const cmsUInt16Number In[], cmsFloat32Number Out[], cmsUInt32Number n)
{
cmsUInt32Number i;
for (i=0; i < n; i++) {
Out[i] = (cmsFloat32Number) In[i] / 65535.0F;
}
}
// This function is quite useful to analyze the structure of a LUT and retrieve the MPE elements
// that conform the LUT. It should be called with the LUT, the number of expected elements and
// then a list of expected types followed with a list of cmsFloat64Number pointers to MPE elements. If
// the function founds a match with current pipeline, it fills the pointers and returns TRUE
// if not, returns FALSE without touching anything. Setting pointers to NULL does bypass
// the storage process.
cmsBool CMSEXPORT cmsPipelineCheckAndRetreiveStages(const cmsPipeline* Lut, cmsUInt32Number n, ...)
{
va_list args;
cmsUInt32Number i;
cmsStage* mpe;
cmsStageSignature Type;
void** ElemPtr;
// Make sure same number of elements
if (cmsPipelineStageCount(Lut) != n) return FALSE;
va_start(args, n);
// Iterate across asked types
mpe = Lut ->Elements;
for (i=0; i < n; i++) {
// Get asked type
Type = (cmsStageSignature)va_arg(args, cmsStageSignature);
if (mpe ->Type != Type) {
va_end(args); // Mismatch. We are done.
return FALSE;
}
mpe = mpe ->Next;
}
// Found a combination, fill pointers if not NULL
mpe = Lut ->Elements;
for (i=0; i < n; i++) {
ElemPtr = va_arg(args, void**);
if (ElemPtr != NULL)
*ElemPtr = mpe;
mpe = mpe ->Next;
}
va_end(args);
return TRUE;
}
// Below there are implementations for several types of elements. Each type may be implemented by a
// evaluation function, a duplication function, a function to free resources and a constructor.
// *************************************************************************************************
// Type cmsSigCurveSetElemType (curves)
// *************************************************************************************************
cmsToneCurve** _cmsStageGetPtrToCurveSet(const cmsStage* mpe)
{
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
return Data ->TheCurves;
}
static
void EvaluateCurves(const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsStage *mpe)
{
_cmsStageToneCurvesData* Data;
cmsUInt32Number i;
_cmsAssert(mpe != NULL);
Data = (_cmsStageToneCurvesData*) mpe ->Data;
if (Data == NULL) return;
if (Data ->TheCurves == NULL) return;
for (i=0; i < Data ->nCurves; i++) {
Out[i] = cmsEvalToneCurveFloat(Data ->TheCurves[i], In[i]);
}
}
static
void CurveSetElemTypeFree(cmsStage* mpe)
{
_cmsStageToneCurvesData* Data;
cmsUInt32Number i;
_cmsAssert(mpe != NULL);
Data = (_cmsStageToneCurvesData*) mpe ->Data;
if (Data == NULL) return;
if (Data ->TheCurves != NULL) {
for (i=0; i < Data ->nCurves; i++) {
if (Data ->TheCurves[i] != NULL)
cmsFreeToneCurve(Data ->TheCurves[i]);
}
}
_cmsFree(mpe ->ContextID, Data ->TheCurves);
_cmsFree(mpe ->ContextID, Data);
}
static
void* CurveSetDup(cmsStage* mpe)
{
_cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*) mpe ->Data;
_cmsStageToneCurvesData* NewElem;
cmsUInt32Number i;
NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageToneCurvesData));
if (NewElem == NULL) return NULL;
NewElem ->nCurves = Data ->nCurves;
NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(mpe ->ContextID, NewElem ->nCurves, sizeof(cmsToneCurve*));
if (NewElem ->TheCurves == NULL) goto Error;
for (i=0; i < NewElem ->nCurves; i++) {
// Duplicate each curve. It may fail.
NewElem ->TheCurves[i] = cmsDupToneCurve(Data ->TheCurves[i]);
if (NewElem ->TheCurves[i] == NULL) goto Error;
}
return (void*) NewElem;
Error:
if (NewElem ->TheCurves != NULL) {
for (i=0; i < NewElem ->nCurves; i++) {
if (NewElem ->TheCurves[i])
cmsFreeToneCurve(NewElem ->TheCurves[i]);
}
}
_cmsFree(mpe ->ContextID, NewElem ->TheCurves);
_cmsFree(mpe ->ContextID, NewElem);
return NULL;
}
// Curves == NULL forces identity curves
cmsStage* CMSEXPORT cmsStageAllocToneCurves(cmsContext ContextID, cmsUInt32Number nChannels, cmsToneCurve* const Curves[])
{
cmsUInt32Number i;
_cmsStageToneCurvesData* NewElem;
cmsStage* NewMPE;
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCurveSetElemType, nChannels, nChannels,
EvaluateCurves, CurveSetDup, CurveSetElemTypeFree, NULL );
if (NewMPE == NULL) return NULL;
NewElem = (_cmsStageToneCurvesData*) _cmsMallocZero(ContextID, sizeof(_cmsStageToneCurvesData));
if (NewElem == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
NewMPE ->Data = (void*) NewElem;
NewElem ->nCurves = nChannels;
NewElem ->TheCurves = (cmsToneCurve**) _cmsCalloc(ContextID, nChannels, sizeof(cmsToneCurve*));
if (NewElem ->TheCurves == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
for (i=0; i < nChannels; i++) {
if (Curves == NULL) {
NewElem ->TheCurves[i] = cmsBuildGamma(ContextID, 1.0);
}
else {
NewElem ->TheCurves[i] = cmsDupToneCurve(Curves[i]);
}
if (NewElem ->TheCurves[i] == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
}
return NewMPE;
}
// Create a bunch of identity curves
cmsStage* _cmsStageAllocIdentityCurves(cmsContext ContextID, int nChannels)
{
cmsStage* mpe = cmsStageAllocToneCurves(ContextID, nChannels, NULL);
if (mpe == NULL) return NULL;
mpe ->Implements = cmsSigIdentityElemType;
return mpe;
}
// *************************************************************************************************
// Type cmsSigMatrixElemType (Matrices)
// *************************************************************************************************
// Special care should be taken here because precision loss. A temporary cmsFloat64Number buffer is being used
static
void EvaluateMatrix(const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsStage *mpe)
{
cmsUInt32Number i, j;
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
cmsFloat64Number Tmp;
// Input is already in 0..1.0 notation
for (i=0; i < mpe ->OutputChannels; i++) {
Tmp = 0;
for (j=0; j < mpe->InputChannels; j++) {
Tmp += In[j] * Data->Double[i*mpe->InputChannels + j];
}
if (Data ->Offset != NULL)
Tmp += Data->Offset[i];
Out[i] = (cmsFloat32Number) Tmp;
}
// Output in 0..1.0 domain
}
// Duplicate a yet-existing matrix element
static
void* MatrixElemDup(cmsStage* mpe)
{
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
_cmsStageMatrixData* NewElem;
cmsUInt32Number sz;
NewElem = (_cmsStageMatrixData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageMatrixData));
if (NewElem == NULL) return NULL;
sz = mpe ->InputChannels * mpe ->OutputChannels;
NewElem ->Double = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID, Data ->Double, sz * sizeof(cmsFloat64Number)) ;
if (Data ->Offset)
NewElem ->Offset = (cmsFloat64Number*) _cmsDupMem(mpe ->ContextID,
Data ->Offset, mpe -> OutputChannels * sizeof(cmsFloat64Number)) ;
return (void*) NewElem;
}
static
void MatrixElemTypeFree(cmsStage* mpe)
{
_cmsStageMatrixData* Data = (_cmsStageMatrixData*) mpe ->Data;
if (Data == NULL)
return;
if (Data ->Double)
_cmsFree(mpe ->ContextID, Data ->Double);
if (Data ->Offset)
_cmsFree(mpe ->ContextID, Data ->Offset);
_cmsFree(mpe ->ContextID, mpe ->Data);
}
cmsStage* CMSEXPORT cmsStageAllocMatrix(cmsContext ContextID, cmsUInt32Number Rows, cmsUInt32Number Cols,
const cmsFloat64Number* Matrix, const cmsFloat64Number* Offset)
{
cmsUInt32Number i, n;
_cmsStageMatrixData* NewElem;
cmsStage* NewMPE;
n = Rows * Cols;
// Check for overflow
if (n == 0) return NULL;
if (n >= UINT_MAX / Cols) return NULL;
if (n >= UINT_MAX / Rows) return NULL;
if (n < Rows || n < Cols) return NULL;
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigMatrixElemType, Cols, Rows,
EvaluateMatrix, MatrixElemDup, MatrixElemTypeFree, NULL );
if (NewMPE == NULL) return NULL;
NewElem = (_cmsStageMatrixData*) _cmsMallocZero(ContextID, sizeof(_cmsStageMatrixData));
if (NewElem == NULL) return NULL;
NewElem ->Double = (cmsFloat64Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat64Number));
if (NewElem->Double == NULL) {
MatrixElemTypeFree(NewMPE);
return NULL;
}
for (i=0; i < n; i++) {
NewElem ->Double[i] = Matrix[i];
}
if (Offset != NULL) {
NewElem ->Offset = (cmsFloat64Number*) _cmsCalloc(ContextID, Cols, sizeof(cmsFloat64Number));
if (NewElem->Offset == NULL) {
MatrixElemTypeFree(NewMPE);
return NULL;
}
for (i=0; i < Cols; i++) {
NewElem ->Offset[i] = Offset[i];
}
}
NewMPE ->Data = (void*) NewElem;
return NewMPE;
}
// *************************************************************************************************
// Type cmsSigCLutElemType
// *************************************************************************************************
// Evaluate in true floating point
static
void EvaluateCLUTfloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
{
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
Data -> Params ->Interpolation.LerpFloat(In, Out, Data->Params);
}
// Convert to 16 bits, evaluate, and back to floating point
static
void EvaluateCLUTfloatIn16(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
{
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
cmsUInt16Number In16[MAX_STAGE_CHANNELS], Out16[MAX_STAGE_CHANNELS];
_cmsAssert(mpe ->InputChannels <= MAX_STAGE_CHANNELS);
_cmsAssert(mpe ->OutputChannels <= MAX_STAGE_CHANNELS);
FromFloatTo16(In, In16, mpe ->InputChannels);
Data -> Params ->Interpolation.Lerp16(In16, Out16, Data->Params);
From16ToFloat(Out16, Out, mpe ->OutputChannels);
}
// Given an hypercube of b dimensions, with Dims[] number of nodes by dimension, calculate the total amount of nodes
static
cmsUInt32Number CubeSize(const cmsUInt32Number Dims[], cmsUInt32Number b)
{
cmsUInt32Number rv, dim;
_cmsAssert(Dims != NULL);
for (rv = 1; b > 0; b--) {
dim = Dims[b-1];
if (dim == 0) return 0; // Error
rv *= dim;
// Check for overflow
if (rv > UINT_MAX / dim) return 0;
}
return rv;
}
static
void* CLUTElemDup(cmsStage* mpe)
{
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
_cmsStageCLutData* NewElem;
NewElem = (_cmsStageCLutData*) _cmsMallocZero(mpe ->ContextID, sizeof(_cmsStageCLutData));
if (NewElem == NULL) return NULL;
NewElem ->nEntries = Data ->nEntries;
NewElem ->HasFloatValues = Data ->HasFloatValues;
if (Data ->Tab.T) {
if (Data ->HasFloatValues) {
NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.TFloat, Data ->nEntries * sizeof (cmsFloat32Number));
if (NewElem ->Tab.TFloat == NULL)
goto Error;
} else {
NewElem ->Tab.T = (cmsUInt16Number*) _cmsDupMem(mpe ->ContextID, Data ->Tab.T, Data ->nEntries * sizeof (cmsUInt16Number));
if (NewElem ->Tab.TFloat == NULL)
goto Error;
}
}
NewElem ->Params = _cmsComputeInterpParamsEx(mpe ->ContextID,
Data ->Params ->nSamples,
Data ->Params ->nInputs,
Data ->Params ->nOutputs,
NewElem ->Tab.T,
Data ->Params ->dwFlags);
if (NewElem->Params != NULL)
return (void*) NewElem;
Error:
if (NewElem->Tab.T)
// This works for both types
_cmsFree(mpe ->ContextID, NewElem -> Tab.T);
_cmsFree(mpe ->ContextID, NewElem);
return NULL;
}
static
void CLutElemTypeFree(cmsStage* mpe)
{
_cmsStageCLutData* Data = (_cmsStageCLutData*) mpe ->Data;
// Already empty
if (Data == NULL) return;
// This works for both types
if (Data -> Tab.T)
_cmsFree(mpe ->ContextID, Data -> Tab.T);
_cmsFreeInterpParams(Data ->Params);
_cmsFree(mpe ->ContextID, mpe ->Data);
}
// Allocates a 16-bit multidimensional CLUT. This is evaluated at 16-bit precision. Table may have different
// granularity on each dimension.
cmsStage* CMSEXPORT cmsStageAllocCLut16bitGranular(cmsContext ContextID,
const cmsUInt32Number clutPoints[],
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsUInt16Number* Table)
{
cmsUInt32Number i, n;
_cmsStageCLutData* NewElem;
cmsStage* NewMPE;
_cmsAssert(clutPoints != NULL);
if (inputChan > MAX_INPUT_DIMENSIONS) {
cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
return NULL;
}
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
EvaluateCLUTfloatIn16, CLUTElemDup, CLutElemTypeFree, NULL );
if (NewMPE == NULL) return NULL;
NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
if (NewElem == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
NewMPE ->Data = (void*) NewElem;
NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
NewElem -> HasFloatValues = FALSE;
if (n == 0) {
cmsStageFree(NewMPE);
return NULL;
}
NewElem ->Tab.T = (cmsUInt16Number*) _cmsCalloc(ContextID, n, sizeof(cmsUInt16Number));
if (NewElem ->Tab.T == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
if (Table != NULL) {
for (i=0; i < n; i++) {
NewElem ->Tab.T[i] = Table[i];
}
}
NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.T, CMS_LERP_FLAGS_16BITS);
if (NewElem ->Params == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
return NewMPE;
}
cmsStage* CMSEXPORT cmsStageAllocCLut16bit(cmsContext ContextID,
cmsUInt32Number nGridPoints,
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsUInt16Number* Table)
{
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
int i;
// Our resulting LUT would be same gridpoints on all dimensions
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
Dimensions[i] = nGridPoints;
return cmsStageAllocCLut16bitGranular(ContextID, Dimensions, inputChan, outputChan, Table);
}
cmsStage* CMSEXPORT cmsStageAllocCLutFloat(cmsContext ContextID,
cmsUInt32Number nGridPoints,
cmsUInt32Number inputChan,
cmsUInt32Number outputChan,
const cmsFloat32Number* Table)
{
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
int i;
// Our resulting LUT would be same gridpoints on all dimensions
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
Dimensions[i] = nGridPoints;
return cmsStageAllocCLutFloatGranular(ContextID, Dimensions, inputChan, outputChan, Table);
}
cmsStage* CMSEXPORT cmsStageAllocCLutFloatGranular(cmsContext ContextID, const cmsUInt32Number clutPoints[], cmsUInt32Number inputChan, cmsUInt32Number outputChan, const cmsFloat32Number* Table)
{
cmsUInt32Number i, n;
_cmsStageCLutData* NewElem;
cmsStage* NewMPE;
_cmsAssert(clutPoints != NULL);
if (inputChan > MAX_INPUT_DIMENSIONS) {
cmsSignalError(ContextID, cmsERROR_RANGE, "Too many input channels (%d channels, max=%d)", inputChan, MAX_INPUT_DIMENSIONS);
return NULL;
}
NewMPE = _cmsStageAllocPlaceholder(ContextID, cmsSigCLutElemType, inputChan, outputChan,
EvaluateCLUTfloat, CLUTElemDup, CLutElemTypeFree, NULL);
if (NewMPE == NULL) return NULL;
NewElem = (_cmsStageCLutData*) _cmsMallocZero(ContextID, sizeof(_cmsStageCLutData));
if (NewElem == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
NewMPE ->Data = (void*) NewElem;
// There is a potential integer overflow on conputing n and nEntries.
NewElem -> nEntries = n = outputChan * CubeSize(clutPoints, inputChan);
NewElem -> HasFloatValues = TRUE;
if (n == 0) {
cmsStageFree(NewMPE);
return NULL;
}
NewElem ->Tab.TFloat = (cmsFloat32Number*) _cmsCalloc(ContextID, n, sizeof(cmsFloat32Number));
if (NewElem ->Tab.TFloat == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
if (Table != NULL) {
for (i=0; i < n; i++) {
NewElem ->Tab.TFloat[i] = Table[i];
}
}
NewElem ->Params = _cmsComputeInterpParamsEx(ContextID, clutPoints, inputChan, outputChan, NewElem ->Tab.TFloat, CMS_LERP_FLAGS_FLOAT);
if (NewElem ->Params == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
return NewMPE;
}
static
int IdentitySampler(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register void * Cargo)
{
int nChan = *(int*) Cargo;
int i;
for (i=0; i < nChan; i++)
Out[i] = In[i];
return 1;
}
// Creates an MPE that just copies input to output
cmsStage* _cmsStageAllocIdentityCLut(cmsContext ContextID, int nChan)
{
cmsUInt32Number Dimensions[MAX_INPUT_DIMENSIONS];
cmsStage* mpe ;
int i;
for (i=0; i < MAX_INPUT_DIMENSIONS; i++)
Dimensions[i] = 2;
mpe = cmsStageAllocCLut16bitGranular(ContextID, Dimensions, nChan, nChan, NULL);
if (mpe == NULL) return NULL;
if (!cmsStageSampleCLut16bit(mpe, IdentitySampler, &nChan, 0)) {
cmsStageFree(mpe);
return NULL;
}
mpe ->Implements = cmsSigIdentityElemType;
return mpe;
}
// Quantize a value 0 <= i < MaxSamples to 0..0xffff
cmsUInt16Number _cmsQuantizeVal(cmsFloat64Number i, int MaxSamples)
{
cmsFloat64Number x;
x = ((cmsFloat64Number) i * 65535.) / (cmsFloat64Number) (MaxSamples - 1);
return _cmsQuickSaturateWord(x);
}
// This routine does a sweep on whole input space, and calls its callback
// function on knots. returns TRUE if all ok, FALSE otherwise.
cmsBool CMSEXPORT cmsStageSampleCLut16bit(cmsStage* mpe, cmsSAMPLER16 Sampler, void * Cargo, cmsUInt32Number dwFlags)
{
int i, t, nTotalPoints, index, rest;
int nInputs, nOutputs;
cmsUInt32Number* nSamples;
cmsUInt16Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
_cmsStageCLutData* clut;
if (mpe == NULL) return FALSE;
clut = (_cmsStageCLutData*) mpe->Data;
if (clut == NULL) return FALSE;
nSamples = clut->Params ->nSamples;
nInputs = clut->Params ->nInputs;
nOutputs = clut->Params ->nOutputs;
if (nInputs <= 0) return FALSE;
if (nOutputs <= 0) return FALSE;
if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
nTotalPoints = CubeSize(nSamples, nInputs);
if (nTotalPoints == 0) return FALSE;
index = 0;
for (i = 0; i < nTotalPoints; i++) {
rest = i;
for (t = nInputs-1; t >=0; --t) {
cmsUInt32Number Colorant = rest % nSamples[t];
rest /= nSamples[t];
In[t] = _cmsQuantizeVal(Colorant, nSamples[t]);
}
if (clut ->Tab.T != NULL) {
for (t=0; t < nOutputs; t++)
Out[t] = clut->Tab.T[index + t];
}
if (!Sampler(In, Out, Cargo))
return FALSE;
if (!(dwFlags & SAMPLER_INSPECT)) {
if (clut ->Tab.T != NULL) {
for (t=0; t < nOutputs; t++)
clut->Tab.T[index + t] = Out[t];
}
}
index += nOutputs;
}
return TRUE;
}
// Same as anterior, but for floting point
cmsBool CMSEXPORT cmsStageSampleCLutFloat(cmsStage* mpe, cmsSAMPLERFLOAT Sampler, void * Cargo, cmsUInt32Number dwFlags)
{
int i, t, nTotalPoints, index, rest;
int nInputs, nOutputs;
cmsUInt32Number* nSamples;
cmsFloat32Number In[MAX_INPUT_DIMENSIONS+1], Out[MAX_STAGE_CHANNELS];
_cmsStageCLutData* clut = (_cmsStageCLutData*) mpe->Data;
nSamples = clut->Params ->nSamples;
nInputs = clut->Params ->nInputs;
nOutputs = clut->Params ->nOutputs;
if (nInputs <= 0) return FALSE;
if (nOutputs <= 0) return FALSE;
if (nInputs > MAX_INPUT_DIMENSIONS) return FALSE;
if (nOutputs >= MAX_STAGE_CHANNELS) return FALSE;
nTotalPoints = CubeSize(nSamples, nInputs);
if (nTotalPoints == 0) return FALSE;
index = 0;
for (i = 0; i < nTotalPoints; i++) {
rest = i;
for (t = nInputs-1; t >=0; --t) {
cmsUInt32Number Colorant = rest % nSamples[t];
rest /= nSamples[t];
In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, nSamples[t]) / 65535.0);
}
if (clut ->Tab.TFloat != NULL) {
for (t=0; t < nOutputs; t++)
Out[t] = clut->Tab.TFloat[index + t];
}
if (!Sampler(In, Out, Cargo))
return FALSE;
if (!(dwFlags & SAMPLER_INSPECT)) {
if (clut ->Tab.TFloat != NULL) {
for (t=0; t < nOutputs; t++)
clut->Tab.TFloat[index + t] = Out[t];
}
}
index += nOutputs;
}
return TRUE;
}
// This routine does a sweep on whole input space, and calls its callback
// function on knots. returns TRUE if all ok, FALSE otherwise.
cmsBool CMSEXPORT cmsSliceSpace16(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
cmsSAMPLER16 Sampler, void * Cargo)
{
int i, t, nTotalPoints, rest;
cmsUInt16Number In[cmsMAXCHANNELS];
if (nInputs >= cmsMAXCHANNELS) return FALSE;
nTotalPoints = CubeSize(clutPoints, nInputs);
if (nTotalPoints == 0) return FALSE;
for (i = 0; i < nTotalPoints; i++) {
rest = i;
for (t = nInputs-1; t >=0; --t) {
cmsUInt32Number Colorant = rest % clutPoints[t];
rest /= clutPoints[t];
In[t] = _cmsQuantizeVal(Colorant, clutPoints[t]);
}
if (!Sampler(In, NULL, Cargo))
return FALSE;
}
return TRUE;
}
cmsInt32Number CMSEXPORT cmsSliceSpaceFloat(cmsUInt32Number nInputs, const cmsUInt32Number clutPoints[],
cmsSAMPLERFLOAT Sampler, void * Cargo)
{
int i, t, nTotalPoints, rest;
cmsFloat32Number In[cmsMAXCHANNELS];
if (nInputs >= cmsMAXCHANNELS) return FALSE;
nTotalPoints = CubeSize(clutPoints, nInputs);
if (nTotalPoints == 0) return FALSE;
for (i = 0; i < nTotalPoints; i++) {
rest = i;
for (t = nInputs-1; t >=0; --t) {
cmsUInt32Number Colorant = rest % clutPoints[t];
rest /= clutPoints[t];
In[t] = (cmsFloat32Number) (_cmsQuantizeVal(Colorant, clutPoints[t]) / 65535.0);
}
if (!Sampler(In, NULL, Cargo))
return FALSE;
}
return TRUE;
}
// ********************************************************************************
// Type cmsSigLab2XYZElemType
// ********************************************************************************
static
void EvaluateLab2XYZ(const cmsFloat32Number In[],
cmsFloat32Number Out[],
const cmsStage *mpe)
{
cmsCIELab Lab;
cmsCIEXYZ XYZ;
const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
// V4 rules
Lab.L = In[0] * 100.0;
Lab.a = In[1] * 255.0 - 128.0;
Lab.b = In[2] * 255.0 - 128.0;
cmsLab2XYZ(NULL, &XYZ, &Lab);
// From XYZ, range 0..19997 to 0..1.0, note that 1.99997 comes from 0xffff
// encoded as 1.15 fixed point, so 1 + (32767.0 / 32768.0)
Out[0] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.X / XYZadj);
Out[1] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Y / XYZadj);
Out[2] = (cmsFloat32Number) ((cmsFloat64Number) XYZ.Z / XYZadj);
return;
cmsUNUSED_PARAMETER(mpe);
}
// No dup or free routines needed, as the structure has no pointers in it.
cmsStage* _cmsStageAllocLab2XYZ(cmsContext ContextID)
{
return _cmsStageAllocPlaceholder(ContextID, cmsSigLab2XYZElemType, 3, 3, EvaluateLab2XYZ, NULL, NULL, NULL);
}
// ********************************************************************************
// v2 L=100 is supposed to be placed on 0xFF00. There is no reasonable
// number of gridpoints that would make exact match. However, a prelinearization
// of 258 entries, would map 0xFF00 exactly on entry 257, and this is good to avoid scum dot.
// Almost all what we need but unfortunately, the rest of entries should be scaled by
// (255*257/256) and this is not exact.
cmsStage* _cmsStageAllocLabV2ToV4curves(cmsContext ContextID)
{
cmsStage* mpe;
cmsToneCurve* LabTable[3];
int i, j;
LabTable[0] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
LabTable[1] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
LabTable[2] = cmsBuildTabulatedToneCurve16(ContextID, 258, NULL);
for (j=0; j < 3; j++) {
if (LabTable[j] == NULL) {
cmsFreeToneCurveTriple(LabTable);
return NULL;
}
// We need to map * (0xffff / 0xff00), thats same as (257 / 256)
// So we can use 258-entry tables to do the trick (i / 257) * (255 * 257) * (257 / 256);
for (i=0; i < 257; i++) {
LabTable[j]->Table16[i] = (cmsUInt16Number) ((i * 0xffff + 0x80) >> 8);
}
LabTable[j] ->Table16[257] = 0xffff;
}
mpe = cmsStageAllocToneCurves(ContextID, 3, LabTable);
cmsFreeToneCurveTriple(LabTable);
if (mpe == NULL) return NULL;
mpe ->Implements = cmsSigLabV2toV4;
return mpe;
}
// ********************************************************************************
// Matrix-based conversion, which is more accurate, but slower and cannot properly be saved in devicelink profiles
cmsStage* _cmsStageAllocLabV2ToV4(cmsContext ContextID)
{
static const cmsFloat64Number V2ToV4[] = { 65535.0/65280.0, 0, 0,
0, 65535.0/65280.0, 0,
0, 0, 65535.0/65280.0
};
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V2ToV4, NULL);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigLabV2toV4;
return mpe;
}
// Reverse direction
cmsStage* _cmsStageAllocLabV4ToV2(cmsContext ContextID)
{
static const cmsFloat64Number V4ToV2[] = { 65280.0/65535.0, 0, 0,
0, 65280.0/65535.0, 0,
0, 0, 65280.0/65535.0
};
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, V4ToV2, NULL);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigLabV4toV2;
return mpe;
}
// To Lab to float. Note that the MPE gives numbers in normal Lab range
// and we need 0..1.0 range for the formatters
// L* : 0...100 => 0...1.0 (L* / 100)
// ab* : -128..+127 to 0..1 ((ab* + 128) / 255)
cmsStage* _cmsStageNormalizeFromLabFloat(cmsContext ContextID)
{
static const cmsFloat64Number a1[] = {
1.0/100.0, 0, 0,
0, 1.0/255.0, 0,
0, 0, 1.0/255.0
};
static const cmsFloat64Number o1[] = {
0,
128.0/255.0,
128.0/255.0
};
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigLab2FloatPCS;
return mpe;
}
// Fom XYZ to floating point PCS
cmsStage* _cmsStageNormalizeFromXyzFloat(cmsContext ContextID)
{
#define n (32768.0/65535.0)
static const cmsFloat64Number a1[] = {
n, 0, 0,
0, n, 0,
0, 0, n
};
#undef n
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigXYZ2FloatPCS;
return mpe;
}
cmsStage* _cmsStageNormalizeToLabFloat(cmsContext ContextID)
{
static const cmsFloat64Number a1[] = {
100.0, 0, 0,
0, 255.0, 0,
0, 0, 255.0
};
static const cmsFloat64Number o1[] = {
0,
-128.0,
-128.0
};
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, o1);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigFloatPCS2Lab;
return mpe;
}
cmsStage* _cmsStageNormalizeToXyzFloat(cmsContext ContextID)
{
#define n (65535.0/32768.0)
static const cmsFloat64Number a1[] = {
n, 0, 0,
0, n, 0,
0, 0, n
};
#undef n
cmsStage *mpe = cmsStageAllocMatrix(ContextID, 3, 3, a1, NULL);
if (mpe == NULL) return mpe;
mpe ->Implements = cmsSigFloatPCS2XYZ;
return mpe;
}
// ********************************************************************************
// Type cmsSigXYZ2LabElemType
// ********************************************************************************
static
void EvaluateXYZ2Lab(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsStage *mpe)
{
cmsCIELab Lab;
cmsCIEXYZ XYZ;
const cmsFloat64Number XYZadj = MAX_ENCODEABLE_XYZ;
// From 0..1.0 to XYZ
XYZ.X = In[0] * XYZadj;
XYZ.Y = In[1] * XYZadj;
XYZ.Z = In[2] * XYZadj;
cmsXYZ2Lab(NULL, &Lab, &XYZ);
// From V4 Lab to 0..1.0
Out[0] = (cmsFloat32Number) (Lab.L / 100.0);
Out[1] = (cmsFloat32Number) ((Lab.a + 128.0) / 255.0);
Out[2] = (cmsFloat32Number) ((Lab.b + 128.0) / 255.0);
return;
cmsUNUSED_PARAMETER(mpe);
}
cmsStage* _cmsStageAllocXYZ2Lab(cmsContext ContextID)
{
return _cmsStageAllocPlaceholder(ContextID, cmsSigXYZ2LabElemType, 3, 3, EvaluateXYZ2Lab, NULL, NULL, NULL);
}
// ********************************************************************************
// For v4, S-Shaped curves are placed in a/b axis to increase resolution near gray
cmsStage* _cmsStageAllocLabPrelin(cmsContext ContextID)
{
cmsToneCurve* LabTable[3];
cmsFloat64Number Params[1] = {2.4} ;
LabTable[0] = cmsBuildGamma(ContextID, 1.0);
LabTable[1] = cmsBuildParametricToneCurve(ContextID, 108, Params);
LabTable[2] = cmsBuildParametricToneCurve(ContextID, 108, Params);
return cmsStageAllocToneCurves(ContextID, 3, LabTable);
}
// Free a single MPE
void CMSEXPORT cmsStageFree(cmsStage* mpe)
{
if (mpe ->FreePtr)
mpe ->FreePtr(mpe);
_cmsFree(mpe ->ContextID, mpe);
}
cmsUInt32Number CMSEXPORT cmsStageInputChannels(const cmsStage* mpe)
{
return mpe ->InputChannels;
}
cmsUInt32Number CMSEXPORT cmsStageOutputChannels(const cmsStage* mpe)
{
return mpe ->OutputChannels;
}
cmsStageSignature CMSEXPORT cmsStageType(const cmsStage* mpe)
{
return mpe -> Type;
}
void* CMSEXPORT cmsStageData(const cmsStage* mpe)
{
return mpe -> Data;
}
cmsStage* CMSEXPORT cmsStageNext(const cmsStage* mpe)
{
return mpe -> Next;
}
// Duplicates an MPE
cmsStage* CMSEXPORT cmsStageDup(cmsStage* mpe)
{
cmsStage* NewMPE;
if (mpe == NULL) return NULL;
NewMPE = _cmsStageAllocPlaceholder(mpe ->ContextID,
mpe ->Type,
mpe ->InputChannels,
mpe ->OutputChannels,
mpe ->EvalPtr,
mpe ->DupElemPtr,
mpe ->FreePtr,
NULL);
if (NewMPE == NULL) return NULL;
NewMPE ->Implements = mpe ->Implements;
if (mpe ->DupElemPtr) {
NewMPE ->Data = mpe ->DupElemPtr(mpe);
if (NewMPE->Data == NULL) {
cmsStageFree(NewMPE);
return NULL;
}
} else {
NewMPE ->Data = NULL;
}
return NewMPE;
}
// ***********************************************************************************************************
// This function sets up the channel count
static
void BlessLUT(cmsPipeline* lut)
{
// We can set the input/ouput channels only if we have elements.
if (lut ->Elements != NULL) {
cmsStage *First, *Last;
First = cmsPipelineGetPtrToFirstStage(lut);
Last = cmsPipelineGetPtrToLastStage(lut);
if (First != NULL)lut ->InputChannels = First ->InputChannels;
if (Last != NULL) lut ->OutputChannels = Last ->OutputChannels;
}
}
// Default to evaluate the LUT on 16 bit-basis. Precision is retained.
static
void _LUTeval16(register const cmsUInt16Number In[], register cmsUInt16Number Out[], register const void* D)
{
cmsPipeline* lut = (cmsPipeline*) D;
cmsStage *mpe;
cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
int Phase = 0, NextPhase;
From16ToFloat(In, &Storage[Phase][0], lut ->InputChannels);
for (mpe = lut ->Elements;
mpe != NULL;
mpe = mpe ->Next) {
NextPhase = Phase ^ 1;
mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
Phase = NextPhase;
}
FromFloatTo16(&Storage[Phase][0], Out, lut ->OutputChannels);
}
// Does evaluate the LUT on cmsFloat32Number-basis.
static
void _LUTevalFloat(register const cmsFloat32Number In[], register cmsFloat32Number Out[], const void* D)
{
cmsPipeline* lut = (cmsPipeline*) D;
cmsStage *mpe;
cmsFloat32Number Storage[2][MAX_STAGE_CHANNELS] = {0.0f};
int Phase = 0, NextPhase;
memmove(&Storage[Phase][0], In, lut ->InputChannels * sizeof(cmsFloat32Number));
for (mpe = lut ->Elements;
mpe != NULL;
mpe = mpe ->Next) {
NextPhase = Phase ^ 1;
mpe ->EvalPtr(&Storage[Phase][0], &Storage[NextPhase][0], mpe);
Phase = NextPhase;
}
memmove(Out, &Storage[Phase][0], lut ->OutputChannels * sizeof(cmsFloat32Number));
}
// LUT Creation & Destruction
cmsPipeline* CMSEXPORT cmsPipelineAlloc(cmsContext ContextID, cmsUInt32Number InputChannels, cmsUInt32Number OutputChannels)
{
cmsPipeline* NewLUT;
if (InputChannels >= cmsMAXCHANNELS ||
OutputChannels >= cmsMAXCHANNELS) return NULL;
NewLUT = (cmsPipeline*) _cmsMallocZero(ContextID, sizeof(cmsPipeline));
if (NewLUT == NULL) return NULL;
NewLUT -> InputChannels = InputChannels;
NewLUT -> OutputChannels = OutputChannels;
NewLUT ->Eval16Fn = _LUTeval16;
NewLUT ->EvalFloatFn = _LUTevalFloat;
NewLUT ->DupDataFn = NULL;
NewLUT ->FreeDataFn = NULL;
NewLUT ->Data = NewLUT;
NewLUT ->ContextID = ContextID;
BlessLUT(NewLUT);
return NewLUT;
}
cmsContext CMSEXPORT cmsGetPipelineContextID(const cmsPipeline* lut)
{
_cmsAssert(lut != NULL);
return lut ->ContextID;
}
cmsUInt32Number CMSEXPORT cmsPipelineInputChannels(const cmsPipeline* lut)
{
_cmsAssert(lut != NULL);
return lut ->InputChannels;
}
cmsUInt32Number CMSEXPORT cmsPipelineOutputChannels(const cmsPipeline* lut)
{
_cmsAssert(lut != NULL);
return lut ->OutputChannels;
}
// Free a profile elements LUT
void CMSEXPORT cmsPipelineFree(cmsPipeline* lut)
{
cmsStage *mpe, *Next;
if (lut == NULL) return;
for (mpe = lut ->Elements;
mpe != NULL;
mpe = Next) {
Next = mpe ->Next;
cmsStageFree(mpe);
}
if (lut ->FreeDataFn) lut ->FreeDataFn(lut ->ContextID, lut ->Data);
_cmsFree(lut ->ContextID, lut);
}
// Default to evaluate the LUT on 16 bit-basis.
void CMSEXPORT cmsPipelineEval16(const cmsUInt16Number In[], cmsUInt16Number Out[], const cmsPipeline* lut)
{
_cmsAssert(lut != NULL);
lut ->Eval16Fn(In, Out, lut->Data);
}
// Does evaluate the LUT on cmsFloat32Number-basis.
void CMSEXPORT cmsPipelineEvalFloat(const cmsFloat32Number In[], cmsFloat32Number Out[], const cmsPipeline* lut)
{
_cmsAssert(lut != NULL);
lut ->EvalFloatFn(In, Out, lut);
}
// Duplicates a LUT
cmsPipeline* CMSEXPORT cmsPipelineDup(const cmsPipeline* lut)
{
cmsPipeline* NewLUT;
cmsStage *NewMPE, *Anterior = NULL, *mpe;
cmsBool First = TRUE;
if (lut == NULL) return NULL;
NewLUT = cmsPipelineAlloc(lut ->ContextID, lut ->InputChannels, lut ->OutputChannels);
if (NewLUT == NULL) return NULL;
for (mpe = lut ->Elements;
mpe != NULL;
mpe = mpe ->Next) {
NewMPE = cmsStageDup(mpe);
if (NewMPE == NULL) {
cmsPipelineFree(NewLUT);
return NULL;
}
if (First) {
NewLUT ->Elements = NewMPE;
First = FALSE;
}
else {
Anterior ->Next = NewMPE;
}
Anterior = NewMPE;
}
NewLUT ->Eval16Fn = lut ->Eval16Fn;
NewLUT ->EvalFloatFn = lut ->EvalFloatFn;
NewLUT ->DupDataFn = lut ->DupDataFn;
NewLUT ->FreeDataFn = lut ->FreeDataFn;
if (NewLUT ->DupDataFn != NULL)
NewLUT ->Data = NewLUT ->DupDataFn(lut ->ContextID, lut->Data);
NewLUT ->SaveAs8Bits = lut ->SaveAs8Bits;
BlessLUT(NewLUT);
return NewLUT;
}
int CMSEXPORT cmsPipelineInsertStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage* mpe)
{
cmsStage* Anterior = NULL, *pt;
if (lut == NULL || mpe == NULL)
return FALSE;
switch (loc) {
case cmsAT_BEGIN:
mpe ->Next = lut ->Elements;
lut ->Elements = mpe;
break;
case cmsAT_END:
if (lut ->Elements == NULL)
lut ->Elements = mpe;
else {
for (pt = lut ->Elements;
pt != NULL;
pt = pt -> Next) Anterior = pt;
Anterior ->Next = mpe;
mpe ->Next = NULL;
}
break;
default:;
return FALSE;
}
BlessLUT(lut);
return TRUE;
}
// Unlink an element and return the pointer to it
void CMSEXPORT cmsPipelineUnlinkStage(cmsPipeline* lut, cmsStageLoc loc, cmsStage** mpe)
{
cmsStage *Anterior, *pt, *Last;
cmsStage *Unlinked = NULL;
// If empty LUT, there is nothing to remove
if (lut ->Elements == NULL) {
if (mpe) *mpe = NULL;
return;
}
// On depending on the strategy...
switch (loc) {
case cmsAT_BEGIN:
{
cmsStage* elem = lut ->Elements;
lut ->Elements = elem -> Next;
elem ->Next = NULL;
Unlinked = elem;
}
break;
case cmsAT_END:
Anterior = Last = NULL;
for (pt = lut ->Elements;
pt != NULL;
pt = pt -> Next) {
Anterior = Last;
Last = pt;
}
Unlinked = Last; // Next already points to NULL
// Truncate the chain
if (Anterior)
Anterior ->Next = NULL;
else
lut ->Elements = NULL;
break;
default:;
}
if (mpe)
*mpe = Unlinked;
else
cmsStageFree(Unlinked);
BlessLUT(lut);
}
// Concatenate two LUT into a new single one
cmsBool CMSEXPORT cmsPipelineCat(cmsPipeline* l1, const cmsPipeline* l2)
{
cmsStage* mpe;
// If both LUTS does not have elements, we need to inherit
// the number of channels
if (l1 ->Elements == NULL && l2 ->Elements == NULL) {
l1 ->InputChannels = l2 ->InputChannels;
l1 ->OutputChannels = l2 ->OutputChannels;
}
// Cat second
for (mpe = l2 ->Elements;
mpe != NULL;
mpe = mpe ->Next) {
// We have to dup each element
if (!cmsPipelineInsertStage(l1, cmsAT_END, cmsStageDup(mpe)))
return FALSE;
}
BlessLUT(l1);
return TRUE;
}
cmsBool CMSEXPORT cmsPipelineSetSaveAs8bitsFlag(cmsPipeline* lut, cmsBool On)
{
cmsBool Anterior = lut ->SaveAs8Bits;
lut ->SaveAs8Bits = On;
return Anterior;
}
cmsStage* CMSEXPORT cmsPipelineGetPtrToFirstStage(const cmsPipeline* lut)
{
return lut ->Elements;
}
cmsStage* CMSEXPORT cmsPipelineGetPtrToLastStage(const cmsPipeline* lut)
{
cmsStage *mpe, *Anterior = NULL;
for (mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
Anterior = mpe;
return Anterior;
}
cmsUInt32Number CMSEXPORT cmsPipelineStageCount(const cmsPipeline* lut)
{
cmsStage *mpe;
cmsUInt32Number n;
for (n=0, mpe = lut ->Elements; mpe != NULL; mpe = mpe ->Next)
n++;
return n;
}
// This function may be used to set the optional evaluator and a block of private data. If private data is being used, an optional
// duplicator and free functions should also be specified in order to duplicate the LUT construct. Use NULL to inhibit such functionality.
void CMSEXPORT _cmsPipelineSetOptimizationParameters(cmsPipeline* Lut,
_cmsOPTeval16Fn Eval16,
void* PrivateData,
_cmsFreeUserDataFn FreePrivateDataFn,
_cmsDupUserDataFn DupPrivateDataFn)
{
Lut ->Eval16Fn = Eval16;
Lut ->DupDataFn = DupPrivateDataFn;
Lut ->FreeDataFn = FreePrivateDataFn;
Lut ->Data = PrivateData;
}
// ----------------------------------------------------------- Reverse interpolation
// Here's how it goes. The derivative Df(x) of the function f is the linear
// transformation that best approximates f near the point x. It can be represented
// by a matrix A whose entries are the partial derivatives of the components of f
// with respect to all the coordinates. This is know as the Jacobian
//
// The best linear approximation to f is given by the matrix equation:
//
// y-y0 = A (x-x0)
//
// So, if x0 is a good "guess" for the zero of f, then solving for the zero of this
// linear approximation will give a "better guess" for the zero of f. Thus let y=0,
// and since y0=f(x0) one can solve the above equation for x. This leads to the
// Newton's method formula:
//
// xn+1 = xn - A-1 f(xn)
//
// where xn+1 denotes the (n+1)-st guess, obtained from the n-th guess xn in the
// fashion described above. Iterating this will give better and better approximations
// if you have a "good enough" initial guess.
#define JACOBIAN_EPSILON 0.001f
#define INVERSION_MAX_ITERATIONS 30
// Increment with reflexion on boundary
static
void IncDelta(cmsFloat32Number *Val)
{
if (*Val < (1.0 - JACOBIAN_EPSILON))
*Val += JACOBIAN_EPSILON;
else
*Val -= JACOBIAN_EPSILON;
}
// Euclidean distance between two vectors of n elements each one
static
cmsFloat32Number EuclideanDistance(cmsFloat32Number a[], cmsFloat32Number b[], int n)
{
cmsFloat32Number sum = 0;
int i;
for (i=0; i < n; i++) {
cmsFloat32Number dif = b[i] - a[i];
sum += dif * dif;
}
return sqrtf(sum);
}
// Evaluate a LUT in reverse direction. It only searches on 3->3 LUT. Uses Newton method
//
// x1 <- x - [J(x)]^-1 * f(x)
//
// lut: The LUT on where to do the search
// Target: LabK, 3 values of Lab plus destination K which is fixed
// Result: The obtained CMYK
// Hint: Location where begin the search
cmsBool CMSEXPORT cmsPipelineEvalReverseFloat(cmsFloat32Number Target[],
cmsFloat32Number Result[],
cmsFloat32Number Hint[],
const cmsPipeline* lut)
{
cmsUInt32Number i, j;
cmsFloat64Number error, LastError = 1E20;
cmsFloat32Number fx[4], x[4], xd[4], fxd[4];
cmsVEC3 tmp, tmp2;
cmsMAT3 Jacobian;
// Only 3->3 and 4->3 are supported
if (lut ->InputChannels != 3 && lut ->InputChannels != 4) return FALSE;
if (lut ->OutputChannels != 3) return FALSE;
// Take the hint as starting point if specified
if (Hint == NULL) {
// Begin at any point, we choose 1/3 of CMY axis
x[0] = x[1] = x[2] = 0.3f;
}
else {
// Only copy 3 channels from hint...
for (j=0; j < 3; j++)
x[j] = Hint[j];
}
// If Lut is 4-dimensions, then grab target[3], which is fixed
if (lut ->InputChannels == 4) {
x[3] = Target[3];
}
else x[3] = 0; // To keep lint happy
// Iterate
for (i = 0; i < INVERSION_MAX_ITERATIONS; i++) {
// Get beginning fx
cmsPipelineEvalFloat(x, fx, lut);
// Compute error
error = EuclideanDistance(fx, Target, 3);
// If not convergent, return last safe value
if (error >= LastError)
break;
// Keep latest values
LastError = error;
for (j=0; j < lut ->InputChannels; j++)
Result[j] = x[j];
// Found an exact match?
if (error <= 0)
break;
// Obtain slope (the Jacobian)
for (j = 0; j < 3; j++) {
xd[0] = x[0];
xd[1] = x[1];
xd[2] = x[2];
xd[3] = x[3]; // Keep fixed channel
IncDelta(&xd[j]);
cmsPipelineEvalFloat(xd, fxd, lut);
Jacobian.v[0].n[j] = ((fxd[0] - fx[0]) / JACOBIAN_EPSILON);
Jacobian.v[1].n[j] = ((fxd[1] - fx[1]) / JACOBIAN_EPSILON);
Jacobian.v[2].n[j] = ((fxd[2] - fx[2]) / JACOBIAN_EPSILON);
}
// Solve system
tmp2.n[0] = fx[0] - Target[0];
tmp2.n[1] = fx[1] - Target[1];
tmp2.n[2] = fx[2] - Target[2];
if (!_cmsMAT3solve(&tmp, &Jacobian, &tmp2))
return FALSE;
// Move our guess
x[0] -= (cmsFloat32Number) tmp.n[0];
x[1] -= (cmsFloat32Number) tmp.n[1];
x[2] -= (cmsFloat32Number) tmp.n[2];
// Some clipping....
for (j=0; j < 3; j++) {
if (x[j] < 0) x[j] = 0;
else
if (x[j] > 1.0) x[j] = 1.0;
}
}
return TRUE;
}
|