summaryrefslogtreecommitdiff
path: root/third_party/skia_shared/SkFloatToDecimal.cpp
blob: ff7d301bf3dd68e473de19f8a4b16b0d2227b56c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
/*
 * Copyright 2017 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkFloatToDecimal.h"

#include <cfloat>
#include <climits>
#include <cmath>

//#include "SkTypes.h"
#include <cassert>
#define SkASSERT assert

namespace pdfium {
namespace skia {
namespace {

// Return pow(10.0, e), optimized for common cases.
double pow10(int e) {
    switch (e) {
        case 0:  return 1.0;  // common cases
        case 1:  return 10.0;
        case 2:  return 100.0;
        case 3:  return 1e+03;
        case 4:  return 1e+04;
        case 5:  return 1e+05;
        case 6:  return 1e+06;
        case 7:  return 1e+07;
        case 8:  return 1e+08;
        case 9:  return 1e+09;
        case 10: return 1e+10;
        case 11: return 1e+11;
        case 12: return 1e+12;
        case 13: return 1e+13;
        case 14: return 1e+14;
        case 15: return 1e+15;
        default:
            if (e > 15) {
                double value = 1e+15;
                while (e-- > 15) { value *= 10.0; }
                return value;
            } else {
                SkASSERT(e < 0);
                double value = 1.0;
                while (e++ < 0) { value /= 10.0; }
                return value;
            }
    }
}

}  // namespace

/** Write a string into result, includeing a terminating '\0' (for
    unit testing).  Return strlen(result) (for SkWStream::write) The
    resulting string will be in the form /[-]?([0-9]*.)?[0-9]+/ and
    sscanf(result, "%f", &x) will return the original value iff the
    value is finite. This function accepts all possible input values.

    Motivation: "PDF does not support [numbers] in exponential format
    (such as 6.02e23)."  Otherwise, this function would rely on a
    sprintf-type function from the standard library. */
unsigned SkFloatToDecimal(float value, char result[kMaximumSkFloatToDecimalLength]) {
    /* The longest result is -FLT_MIN.
       We serialize it as "-.0000000000000000000000000000000000000117549435"
       which has 48 characters plus a terminating '\0'. */

    static_assert(kMaximumSkFloatToDecimalLength == 49, "");
    // 3 = '-', '.', and '\0' characters.
    // 9 = number of significant digits
    // abs(FLT_MIN_10_EXP) = number of zeros in FLT_MIN
    static_assert(kMaximumSkFloatToDecimalLength == 3 + 9 - FLT_MIN_10_EXP, "");

    /* section C.1 of the PDF1.4 spec (http://goo.gl/0SCswJ) says that
       most PDF rasterizers will use fixed-point scalars that lack the
       dynamic range of floats.  Even if this is the case, I want to
       serialize these (uncommon) very small and very large scalar
       values with enough precision to allow a floating-point
       rasterizer to read them in with perfect accuracy.
       Experimentally, rasterizers such as pdfium do seem to benefit
       from this.  Rasterizers that rely on fixed-point scalars should
       gracefully ignore these values that they can not parse. */
    char* output = &result[0];
    const char* const end = &result[kMaximumSkFloatToDecimalLength - 1];
    // subtract one to leave space for '\0'.

    /* This function is written to accept any possible input value,
       including non-finite values such as INF and NAN.  In that case,
       we ignore value-correctness and and output a syntacticly-valid
       number. */
    if (value == INFINITY) {
        value = FLT_MAX;  // nearest finite float.
    }
    if (value == -INFINITY) {
        value = -FLT_MAX;  // nearest finite float.
    }
    if (!std::isfinite(value) || value == 0.0f) {
        // NAN is unsupported in PDF.  Always output a valid number.
        // Also catch zero here, as a special case.
        *output++ = '0';
        *output = '\0';
        return static_cast<unsigned>(output - result);
    }
    if (value < 0.0) {
        *output++ = '-';
        value = -value;
    }
    SkASSERT(value >= 0.0f);

    int binaryExponent;
    (void)std::frexp(value, &binaryExponent);
    static const double kLog2 = 0.3010299956639812;  // log10(2.0);
    int decimalExponent = static_cast<int>(std::floor(kLog2 * binaryExponent));
    int decimalShift = decimalExponent - 8;
    double power = pow10(-decimalShift);
    SkASSERT(value * power <= (double)INT_MAX);
    int d = static_cast<int>(value * power + 0.5);
    // SkASSERT(value == (float)(d * pow(10.0, decimalShift)));
    SkASSERT(d <= 999999999);
    if (d > 167772159) {  // floor(pow(10,1+log10(1<<24)))
       // need one fewer decimal digits for 24-bit precision.
       decimalShift = decimalExponent - 7;
       // SkASSERT(power * 0.1 = pow10(-decimalShift));
       // recalculate to get rounding right.
       d = static_cast<int>(value * (power * 0.1) + 0.5);
       SkASSERT(d <= 99999999);
    }
    while (d % 10 == 0) {
        d /= 10;
        ++decimalShift;
    }
    SkASSERT(d > 0);
    // SkASSERT(value == (float)(d * pow(10.0, decimalShift)));
    unsigned char buffer[9]; // decimal value buffer.
    int bufferIndex = 0;
    do {
        buffer[bufferIndex++] = d % 10;
        d /= 10;
    } while (d != 0);
    SkASSERT(bufferIndex <= (int)sizeof(buffer) && bufferIndex > 0);
    if (decimalShift >= 0) {
        do {
            --bufferIndex;
            *output++ = '0' + buffer[bufferIndex];
        } while (bufferIndex);
        for (int i = 0; i < decimalShift; ++i) {
            *output++ = '0';
        }
    } else {
        int placesBeforeDecimal = bufferIndex + decimalShift;
        if (placesBeforeDecimal > 0) {
            while (placesBeforeDecimal-- > 0) {
                --bufferIndex;
                *output++ = '0' + buffer[bufferIndex];
            }
            *output++ = '.';
        } else {
            *output++ = '.';
            int placesAfterDecimal = -placesBeforeDecimal;
            while (placesAfterDecimal-- > 0) {
                *output++ = '0';
            }
        }
        while (bufferIndex > 0) {
            --bufferIndex;
            *output++ = '0' + buffer[bufferIndex];
            if (output == end) {
                break;  // denormalized: don't need extra precision.
                // Note: denormalized numbers will not have the same number of
                // significantDigits, but do not need them to round-trip.
            }
        }
    }
    SkASSERT(output <= end);
    *output = '\0';
    return static_cast<unsigned>(output - result);
}
}  // namespace skia
}  // namespace pdfium