summaryrefslogtreecommitdiff
path: root/xfa/src/fxbarcode/common/reedsolomon/BC_ReedSolomonDecoder.cpp
blob: f0e87b8e4098fa8bb3574574e5a60bfd56424202 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com
// Original code is licensed as follows:
/*
 * Copyright 2007 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "../../barcode.h"
#include "BC_ReedSolomonGF256.h"
#include "BC_ReedSolomonGF256Poly.h"
#include "BC_ReedSolomonDecoder.h"
CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field)
{
    m_field = field;
}
CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder()
{
}
void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received, int32_t twoS, int32_t &e)
{
    CBC_ReedSolomonGF256Poly poly;
    poly.Init(m_field, received, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CFX_Int32Array syndromeCoefficients;
    syndromeCoefficients.SetSize(twoS);
    FX_BOOL dataMatrix = FALSE;
    FX_BOOL noError = TRUE;
    for (int32_t i = 0; i < twoS; i++) {
        int32_t eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i));
        syndromeCoefficients[twoS - 1 - i] = eval;
        if (eval != 0) {
            noError = FALSE;
        }
    }
    if(noError) {
        return;
    }
    CBC_ReedSolomonGF256Poly syndrome;
    syndrome.Init(m_field, &syndromeCoefficients, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsg);
    CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_PtrArray > sigmaOmega(pa);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma((CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega((CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]);
    CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_Int32Array > errorLocations(ia1);
    CFX_Int32Array* ia2 = FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_Int32Array > errorMagnitudes(ia2);
    for (int32_t k = 0; k < errorLocations->GetSize(); k++) {
        int32_t position = received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e);
        BC_EXCEPTION_CHECK_ReturnVoid(e);
        if(position < 0) {
            e = BCExceptionBadErrorLocation;
            BC_EXCEPTION_CHECK_ReturnVoid(e);
        }
        (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract((*received)[position], (*errorMagnitudes)[k]);
    }
}
CFX_PtrArray *CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(CBC_ReedSolomonGF256Poly* a, CBC_ReedSolomonGF256Poly* b, int32_t R, int32_t &e)
{
    if (a->GetDegree() < b->GetDegree()) {
        CBC_ReedSolomonGF256Poly* temp = a;
        a = b;
        b = temp;
    }
    CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLast(rsg1);
    CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> r(rsg2);
    CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLast(rsg3);
    CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> s(rsg4);
    CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLast(rsg5);
    CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> t(rsg6);
    while (r->GetDegree() >= R / 2) {
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLastLast = rLast;
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLastLast = sLast;
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLastlast = tLast;
        rLast = r;
        sLast = s;
        tLast = t;
        if (rLast->IsZero()) {
            e = BCExceptionR_I_1IsZero;
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        }
        CBC_ReedSolomonGF256Poly* rsg7 =  rLastLast->Clone(e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rTemp(rsg7);
        r = rTemp;
        CBC_ReedSolomonGF256Poly* rsg8 =  m_field->GetZero()->Clone(e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> q(rsg8);
        int32_t denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree());
        int32_t dltInverse = m_field->Inverse(denominatorLeadingTerm, e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) {
            int32_t degreeDiff = r->GetDegree() - rLast->GetDegree();
            int32_t scale = m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse);
            CBC_ReedSolomonGF256Poly* rsgp1 = m_field->BuildMonomial(degreeDiff, scale, e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> build(rsgp1);
            CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsgp2);
            q = temp;
            CBC_ReedSolomonGF256Poly* rsgp3 = rLast->MultiplyByMonomial(degreeDiff, scale, e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> multiply(rsgp3);
            CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp3(rsgp4);
            r = temp3;
        }
        CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp1(rsg9);
        CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp2(rsg10);
        s = temp2;
        CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp5(rsg11);
        CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp6(rsg12);
        t = temp6;
    }
    int32_t sigmaTildeAtZero = t->GetCoefficients(0);
    if (sigmaTildeAtZero == 0) {
        e = BCExceptionIsZero;
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    }
    int32_t inverse = m_field->Inverse(sigmaTildeAtZero, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(rsg13);
    CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(rsg14);
    CFX_PtrArray *temp = FX_NEW CFX_PtrArray;
    temp->Add(sigma.release());
    temp->Add(omega.release());
    return temp;
}
CFX_Int32Array *CBC_ReedSolomonDecoder::FindErrorLocations(CBC_ReedSolomonGF256Poly* errorLocator, int32_t &e)
{
    int32_t numErrors = errorLocator->GetDegree();
    if (numErrors == 1) {
        CBC_AutoPtr<CFX_Int32Array > temp(FX_NEW CFX_Int32Array);
        temp->Add(errorLocator->GetCoefficients(1));
        return temp.release();
    }
    CFX_Int32Array *tempT = FX_NEW CFX_Int32Array;
    tempT->SetSize(numErrors);
    CBC_AutoPtr<CFX_Int32Array > result(tempT);
    int32_t ie = 0;
    for (int32_t i = 1; i < 256 && ie < numErrors; i++) {
        if(errorLocator->EvaluateAt(i) == 0) {
            (*result)[ie] = m_field->Inverse(i, ie);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            ie++;
        }
    }
    if (ie != numErrors) {
        e = BCExceptionDegreeNotMatchRoots;
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    }
    return result.release();
}
CFX_Int32Array *CBC_ReedSolomonDecoder::FindErrorMagnitudes(CBC_ReedSolomonGF256Poly* errorEvaluator, CFX_Int32Array* errorLocations, FX_BOOL dataMatrix, int32_t &e)
{
    int32_t s = errorLocations->GetSize();
    CFX_Int32Array * temp = FX_NEW CFX_Int32Array;
    temp->SetSize(s);
    CBC_AutoPtr<CFX_Int32Array > result(temp);
    for (int32_t i = 0; i < s; i++) {
        int32_t xiInverse = m_field->Inverse(errorLocations->operator [](i), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        int32_t denominator = 1;
        for(int32_t j = 0; j < s; j++) {
            if(i != j) {
                denominator = m_field->Multiply(denominator,
                                                CBC_ReedSolomonGF256::AddOrSubtract(1, m_field->Multiply(errorLocations->operator [](j), xiInverse)));
            }
        }
        int32_t temp = m_field->Inverse(denominator, temp);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        (*result)[i] = m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse),
                                         temp);
    }
    return result.release();
}