summaryrefslogtreecommitdiff
path: root/xfa/src/fxbarcode/src/BC_ReedSolomonDecoder.cpp
blob: 36013053a0429f663aaeabe3d48656d5b5a5f4a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
// Copyright 2014 PDFium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Original code copyright 2014 Foxit Software Inc. http://www.foxitsoftware.com

#include "barcode.h"
#include "include/BC_ReedSolomonGF256.h"
#include "include/BC_ReedSolomonGF256Poly.h"
#include "include/BC_ReedSolomonDecoder.h"
CBC_ReedSolomonDecoder::CBC_ReedSolomonDecoder(CBC_ReedSolomonGF256* field)
{
    m_field = field;
}
CBC_ReedSolomonDecoder::~CBC_ReedSolomonDecoder()
{
}
void CBC_ReedSolomonDecoder::Decode(CFX_Int32Array* received, FX_INT32 twoS, FX_INT32 &e)
{
    CBC_ReedSolomonGF256Poly poly;
    poly.Init(m_field, received, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CFX_Int32Array syndromeCoefficients;
    syndromeCoefficients.SetSize(twoS);
    FX_BOOL dataMatrix = FALSE;
    FX_BOOL noError = TRUE;
    for (FX_INT32 i = 0; i < twoS; i++) {
        FX_INT32 eval = poly.EvaluateAt(m_field->Exp(dataMatrix ? i + 1 : i));
        syndromeCoefficients[twoS - 1 - i] = eval;
        if (eval != 0) {
            noError = FALSE;
        }
    }
    if(noError) {
        return;
    }
    CBC_ReedSolomonGF256Poly syndrome;
    syndrome.Init(m_field, &syndromeCoefficients, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_ReedSolomonGF256Poly* rsg = m_field->BuildMonomial(twoS, 1, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsg);
    CFX_PtrArray* pa = RunEuclideanAlgorithm(temp.get(), &syndrome, twoS, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_PtrArray > sigmaOmega(pa);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma((CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[0]);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega((CBC_ReedSolomonGF256Poly*)(*sigmaOmega)[1]);
    CFX_Int32Array* ia1 = FindErrorLocations(sigma.get(), e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_Int32Array > errorLocations(ia1);
    CFX_Int32Array* ia2 = FindErrorMagnitudes(omega.get(), errorLocations.get(), dataMatrix, e);
    BC_EXCEPTION_CHECK_ReturnVoid(e);
    CBC_AutoPtr<CFX_Int32Array > errorMagnitudes(ia2);
    for (FX_INT32 k = 0; k < errorLocations->GetSize(); k++) {
        FX_INT32 position = received->GetSize() - 1 - m_field->Log((*errorLocations)[k], e);
        BC_EXCEPTION_CHECK_ReturnVoid(e);
        if(position < 0) {
            e = BCExceptionBadErrorLocation;
            BC_EXCEPTION_CHECK_ReturnVoid(e);
        }
        (*received)[position] = CBC_ReedSolomonGF256::AddOrSubtract((*received)[position], (*errorMagnitudes)[k]);
    }
}
CFX_PtrArray *CBC_ReedSolomonDecoder::RunEuclideanAlgorithm(CBC_ReedSolomonGF256Poly* a, CBC_ReedSolomonGF256Poly* b, FX_INT32 R, FX_INT32 &e)
{
    if (a->GetDegree() < b->GetDegree()) {
        CBC_ReedSolomonGF256Poly* temp = a;
        a = b;
        b = temp;
    }
    CBC_ReedSolomonGF256Poly* rsg1 = a->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLast(rsg1);
    CBC_ReedSolomonGF256Poly* rsg2 = b->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> r(rsg2);
    CBC_ReedSolomonGF256Poly* rsg3 = m_field->GetOne()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLast(rsg3);
    CBC_ReedSolomonGF256Poly* rsg4 = m_field->GetZero()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> s(rsg4);
    CBC_ReedSolomonGF256Poly* rsg5 = m_field->GetZero()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLast(rsg5);
    CBC_ReedSolomonGF256Poly* rsg6 = m_field->GetOne()->Clone(e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> t(rsg6);
    while (r->GetDegree() >= R / 2) {
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rLastLast = rLast;
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sLastLast = sLast;
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> tLastlast = tLast;
        rLast = r;
        sLast = s;
        tLast = t;
        if (rLast->IsZero()) {
            e = BCExceptionR_I_1IsZero;
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        }
        CBC_ReedSolomonGF256Poly* rsg7 =  rLastLast->Clone(e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> rTemp(rsg7);
        r = rTemp;
        CBC_ReedSolomonGF256Poly* rsg8 =  m_field->GetZero()->Clone(e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> q(rsg8);
        FX_INT32 denominatorLeadingTerm = rLast->GetCoefficients(rLast->GetDegree());
        FX_INT32 dltInverse = m_field->Inverse(denominatorLeadingTerm, e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        while (r->GetDegree() >= rLast->GetDegree() && !(r->IsZero())) {
            FX_INT32 degreeDiff = r->GetDegree() - rLast->GetDegree();
            FX_INT32 scale = m_field->Multiply(r->GetCoefficients(r->GetDegree()), dltInverse);
            CBC_ReedSolomonGF256Poly* rsgp1 = m_field->BuildMonomial(degreeDiff, scale, e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> build(rsgp1);
            CBC_ReedSolomonGF256Poly* rsgp2 = q->AddOrSubtract(build.get(), e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp(rsgp2);
            q = temp;
            CBC_ReedSolomonGF256Poly* rsgp3 = rLast->MultiplyByMonomial(degreeDiff, scale, e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> multiply(rsgp3);
            CBC_ReedSolomonGF256Poly* rsgp4 = r->AddOrSubtract(multiply.get(), e);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp3(rsgp4);
            r = temp3;
        }
        CBC_ReedSolomonGF256Poly* rsg9 = q->Multiply(sLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp1(rsg9);
        CBC_ReedSolomonGF256Poly* rsg10 = temp1->AddOrSubtract(sLastLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp2(rsg10);
        s = temp2;
        CBC_ReedSolomonGF256Poly* rsg11 = q->Multiply(tLast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp5(rsg11);
        CBC_ReedSolomonGF256Poly* rsg12 = temp5->AddOrSubtract(tLastlast.get(), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        CBC_AutoPtr<CBC_ReedSolomonGF256Poly> temp6(rsg12);
        t = temp6;
    }
    FX_INT32 sigmaTildeAtZero = t->GetCoefficients(0);
    if (sigmaTildeAtZero == 0) {
        e = BCExceptionIsZero;
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    }
    FX_INT32 inverse = m_field->Inverse(sigmaTildeAtZero, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_ReedSolomonGF256Poly* rsg13 = t->Multiply(inverse, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> sigma(rsg13);
    CBC_ReedSolomonGF256Poly* rsg14 = r->Multiply(inverse, e);
    BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    CBC_AutoPtr<CBC_ReedSolomonGF256Poly> omega(rsg14);
    CFX_PtrArray *temp = FX_NEW CFX_PtrArray;
    temp->Add(sigma.release());
    temp->Add(omega.release());
    return temp;
}
CFX_Int32Array *CBC_ReedSolomonDecoder::FindErrorLocations(CBC_ReedSolomonGF256Poly* errorLocator, FX_INT32 &e)
{
    FX_INT32 numErrors = errorLocator->GetDegree();
    if (numErrors == 1) {
        CBC_AutoPtr<CFX_Int32Array > temp(FX_NEW CFX_Int32Array);
        temp->Add(errorLocator->GetCoefficients(1));
        return temp.release();
    }
    CFX_Int32Array *tempT = FX_NEW CFX_Int32Array;
    tempT->SetSize(numErrors);
    CBC_AutoPtr<CFX_Int32Array > result(tempT);
    FX_INT32 ie = 0;
    for (FX_INT32 i = 1; i < 256 && ie < numErrors; i++) {
        if(errorLocator->EvaluateAt(i) == 0) {
            (*result)[ie] = m_field->Inverse(i, ie);
            BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
            ie++;
        }
    }
    if (ie != numErrors) {
        e = BCExceptionDegreeNotMatchRoots;
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
    }
    return result.release();
}
CFX_Int32Array *CBC_ReedSolomonDecoder::FindErrorMagnitudes(CBC_ReedSolomonGF256Poly* errorEvaluator, CFX_Int32Array* errorLocations, FX_BOOL dataMatrix, FX_INT32 &e)
{
    FX_INT32 s = errorLocations->GetSize();
    CFX_Int32Array * temp = FX_NEW CFX_Int32Array;
    temp->SetSize(s);
    CBC_AutoPtr<CFX_Int32Array > result(temp);
    for (FX_INT32 i = 0; i < s; i++) {
        FX_INT32 xiInverse = m_field->Inverse(errorLocations->operator [](i), e);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        FX_INT32 denominator = 1;
        for(FX_INT32 j = 0; j < s; j++) {
            if(i != j) {
                denominator = m_field->Multiply(denominator,
                                                CBC_ReedSolomonGF256::AddOrSubtract(1, m_field->Multiply(errorLocations->operator [](j), xiInverse)));
            }
        }
        FX_INT32 temp = m_field->Inverse(denominator, temp);
        BC_EXCEPTION_CHECK_ReturnValue(e, NULL);
        (*result)[i] = m_field->Multiply(errorEvaluator->EvaluateAt(xiInverse),
                                         temp);
    }
    return result.release();
}