/*++ Copyright (c) 2004 - 2007, Intel Corporation All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. Module Name: FwVol.c Abstract: Firmware File System driver that produce Firmware Volume protocol. Layers on top of Firmware Block protocol to produce a file abstraction of FV based files. --*/ #include "FwVolDriver.h" #include "DxeCore.h" #define KEYSIZE sizeof (UINTN) // // Protocol notify related globals // VOID *gEfiFwVolBlockNotifyReg; EFI_EVENT gEfiFwVolBlockEvent; FV_DEVICE mFvDevice = { FV_DEVICE_SIGNATURE, NULL, NULL, { FvGetVolumeAttributes, FvSetVolumeAttributes, FvReadFile, FvReadFileSection, FvWriteFile, FvGetNextFile, KEYSIZE, NULL #if (PI_SPECIFICATION_VERSION >= 0x00010000) , FvGetVolumeInfo, FvSetVolumeInfo #endif }, NULL, NULL, NULL, NULL, { NULL, NULL }, 0 }; // // FFS helper functions // EFI_STATUS GetFwVolHeader ( IN EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb, OUT EFI_FIRMWARE_VOLUME_HEADER **FwVolHeader ) /*++ Routine Description: given the supplied FW_VOL_BLOCK_PROTOCOL, allocate a buffer for output and copy the volume header into it. Arguments: Fvb - The FW_VOL_BLOCK_PROTOCOL instance from which to read the volume header FwVolHeader - Pointer to pointer to allocated buffer in which the volume header is returned. Returns: EFI_OUT_OF_RESOURCES - No enough buffer could be allocated. EFI_SUCCESS - Successfully read volume header to the allocated buffer. --*/ { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_HEADER TempFvh; UINTN FvhLength; UINT8 *Buffer; // //Determine the real length of FV header // FvhLength = sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = Fvb->Read (Fvb, 0, 0, &FvhLength, (UINT8 *)&TempFvh); // // Allocate a buffer for the caller // *FwVolHeader = CoreAllocateBootServicesPool (TempFvh.HeaderLength); if (*FwVolHeader == NULL) { return EFI_OUT_OF_RESOURCES; } // // Copy the standard header into the buffer // EfiCommonLibCopyMem (*FwVolHeader, &TempFvh, sizeof (EFI_FIRMWARE_VOLUME_HEADER)); // // Read the rest of the header // FvhLength = TempFvh.HeaderLength - sizeof (EFI_FIRMWARE_VOLUME_HEADER); Buffer = (UINT8 *)*FwVolHeader + sizeof (EFI_FIRMWARE_VOLUME_HEADER); Status = Fvb->Read (Fvb, 0, sizeof (EFI_FIRMWARE_VOLUME_HEADER), &FvhLength, Buffer); if (EFI_ERROR (Status)) { // // Read failed so free buffer // CoreFreePool (*FwVolHeader); } return Status; } STATIC VOID FreeFvDeviceResource ( IN FV_DEVICE *FvDevice ) /*++ Routine Description: Free FvDevice resource when error happens Arguments: FvDevice - pointer to the FvDevice to be freed. Returns: None. --*/ { FFS_FILE_LIST_ENTRY *FfsFileEntry; EFI_LIST_ENTRY *NextEntry; // // Free File List Entry // FfsFileEntry = (FFS_FILE_LIST_ENTRY *)FvDevice->FfsFileListHeader.ForwardLink; while (&FfsFileEntry->Link != &FvDevice->FfsFileListHeader) { NextEntry = (&FfsFileEntry->Link)->ForwardLink; if (FfsFileEntry->StreamHandle != 0) { // // Close stream and free resources from SEP // FfsFileEntry->Sep->CloseSectionStream (FfsFileEntry->Sep, FfsFileEntry->StreamHandle); } CoreFreePool (FfsFileEntry); FfsFileEntry = (FFS_FILE_LIST_ENTRY *)NextEntry; } // // Free the cache // CoreFreePool (FvDevice->CachedFv); // // Free Volume Header // CoreFreePool (FvDevice->FwVolHeader); return; } EFI_STATUS FvCheck ( IN OUT FV_DEVICE *FvDevice ) /*++ Routine Description: Check if a FV is consistent and allocate cache Arguments: FvDevice - pointer to the FvDevice to be checked. Returns: EFI_OUT_OF_RESOURCES - No enough buffer could be allocated. EFI_SUCCESS - FV is consistent and cache is allocated. EFI_VOLUME_CORRUPTED - File system is corrupted. --*/ { EFI_STATUS Status; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; EFI_FVB_ATTRIBUTES FvbAttributes; EFI_FV_BLOCK_MAP_ENTRY *BlockMap; FFS_FILE_LIST_ENTRY *FfsFileEntry; EFI_FFS_FILE_HEADER *FfsHeader; UINT8 *CacheLocation; UINTN LbaOffset; UINTN Index; EFI_LBA LbaIndex; UINTN Size; UINTN FileLength; EFI_FFS_FILE_STATE FileState; UINT8 *TopFvAddress; UINTN TestLength; Fvb = FvDevice->Fvb; FwVolHeader = FvDevice->FwVolHeader; //*** AMI PORTING BEGIN ***// //Update function name to match the spec // Status = Fvb->GetVolumeAttributes (Fvb, &FvbAttributes); Status = Fvb->GetAttributes (Fvb, &FvbAttributes); //*** AMI PORTING END *****// if (EFI_ERROR (Status)) { return Status; } // // Size is the size of the FV minus the head. We have already allocated // the header to check to make sure the volume is valid // Size = (UINTN)(FwVolHeader->FvLength - FwVolHeader->HeaderLength); FvDevice->CachedFv = CoreAllocateZeroBootServicesPool (Size); if (FvDevice->CachedFv == NULL) { return EFI_OUT_OF_RESOURCES; } // // Remember a pointer to the end fo the CachedFv // FvDevice->EndOfCachedFv = FvDevice->CachedFv + Size; // // Copy FV minus header into memory using the block map we have all ready // read into memory. // BlockMap = FwVolHeader->FvBlockMap; CacheLocation = FvDevice->CachedFv; LbaIndex = 0; LbaOffset = FwVolHeader->HeaderLength; while ((BlockMap->NumBlocks != 0) || (BlockMap->BlockLength != 0)) { for (Index = 0; Index < BlockMap->NumBlocks; Index ++) { Size = BlockMap->BlockLength; if (Index == 0) { // // Cache does not include FV Header // Size -= LbaOffset; } Status = Fvb->Read (Fvb, LbaIndex, LbaOffset, &Size, CacheLocation ); // // Not check EFI_BAD_BUFFER_SIZE, for Size = BlockMap->BlockLength // if (EFI_ERROR (Status)) { goto Done; } // // After we skip Fv Header always read from start of block // LbaOffset = 0; LbaIndex++; CacheLocation += Size; } BlockMap++; } // // Scan to check the free space & File list // if (FvbAttributes & EFI_FVB_ERASE_POLARITY) { FvDevice->ErasePolarity = 1; } else { FvDevice->ErasePolarity = 0; } // // go through the whole FV cache, check the consistence of the FV. // Make a linked list off all the Ffs file headers // Status = EFI_SUCCESS; InitializeListHead (&FvDevice->FfsFileListHeader); // // Build FFS list // FfsHeader = (EFI_FFS_FILE_HEADER *)FvDevice->CachedFv; TopFvAddress = FvDevice->EndOfCachedFv; while ((UINT8 *)FfsHeader < TopFvAddress) { TestLength = TopFvAddress - ((UINT8 *)FfsHeader); if (TestLength > sizeof (EFI_FFS_FILE_HEADER)) { TestLength = sizeof (EFI_FFS_FILE_HEADER); } if (IsBufferErased (FvDevice->ErasePolarity, FfsHeader, TestLength)) { // // We have found the free space so we are done! // goto Done; } if (!IsValidFfsHeader (FvDevice->ErasePolarity, FfsHeader, &FileState)) { if ((FileState == EFI_FILE_HEADER_INVALID) || (FileState == EFI_FILE_HEADER_CONSTRUCTION)) { FfsHeader++; continue; } else { // // File system is corrputed // Status = EFI_VOLUME_CORRUPTED; goto Done; } } if (!IsValidFfsFile (FvDevice->ErasePolarity, FfsHeader)) { // // File system is corrupted // Status = EFI_VOLUME_CORRUPTED; goto Done; } // // Size[3] is a three byte array, read 4 bytes and throw one away // FileLength = *(UINT32 *)&FfsHeader->Size[0] & 0x00FFFFFF; FileState = GetFileState (FvDevice->ErasePolarity, FfsHeader); // // check for non-deleted file // if (FileState != EFI_FILE_DELETED) { // // Create a FFS list entry for each non-deleted file // FfsFileEntry = CoreAllocateZeroBootServicesPool (sizeof (FFS_FILE_LIST_ENTRY)); if (FfsFileEntry == NULL) { Status = EFI_OUT_OF_RESOURCES; goto Done; } FfsFileEntry->FfsHeader = FfsHeader; InsertTailList (&FvDevice->FfsFileListHeader, &FfsFileEntry->Link); } FfsHeader = (EFI_FFS_FILE_HEADER *)(((UINT8 *)FfsHeader) + FileLength); // // Adjust pointer to the next 8-byte aligned boundry. // FfsHeader = (EFI_FFS_FILE_HEADER *)(((UINTN)FfsHeader + 7) & ~0x07); } Done: if (EFI_ERROR (Status)) { FreeFvDeviceResource (FvDevice); } return Status; } STATIC VOID EFIAPI NotifyFwVolBlock ( IN EFI_EVENT Event, IN VOID *Context ) /*++ Routine Description: This notification function is invoked when an instance of the EFI_FW_VOLUME_BLOCK_PROTOCOL is produced. It layers an instance of the EFI_FIRMWARE_VOLUME_PROTOCOL on the same handle. This is the function where the actual initialization of the EFI_FIRMWARE_VOLUME_PROTOCOL is done. Arguments: Event - The event that occured Context - For EFI compatiblity. Not used. Returns: None. --*/ { EFI_HANDLE Handle; EFI_STATUS Status; UINTN BufferSize; EFI_FIRMWARE_VOLUME_BLOCK_PROTOCOL *Fvb; FV_DEVICE *FvDevice; EFI_FIRMWARE_VOLUME_HEADER *FwVolHeader; #if (PI_SPECIFICATION_VERSION < 0x00010000) EFI_FIRMWARE_VOLUME_PROTOCOL *Fv; #else EFI_FIRMWARE_VOLUME2_PROTOCOL *Fv; #endif // // Examine all new handles // for (;;) { // // Get the next handle // BufferSize = sizeof (Handle); Status = CoreLocateHandle ( ByRegisterNotify, NULL, gEfiFwVolBlockNotifyReg, &BufferSize, &Handle ); // // If not found, we're done // if (EFI_NOT_FOUND == Status) { break; } if (EFI_ERROR (Status)) { continue; } // // Get the FirmwareVolumeBlock protocol on that handle // Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolumeBlockProtocolGuid, &Fvb); ASSERT_EFI_ERROR (Status); // // Make sure the Fv Header is O.K. // Status = GetFwVolHeader (Fvb, &FwVolHeader); if (EFI_ERROR (Status)) { return; } if (!VerifyFvHeaderChecksum (FwVolHeader)) { CoreFreePool (FwVolHeader); continue; } // // Check to see that the file system is indeed formatted in a way we can // understand it... // #if (PI_SPECIFICATION_VERSION < 0x00010000) if (!EfiCompareGuid (&FwVolHeader->FileSystemGuid, &gEfiFirmwareFileSystemGuid)) { #else if (!EfiCompareGuid (&FwVolHeader->FileSystemGuid, &gEfiFirmwareFileSystem2Guid)) { #endif continue; } // // Check if there is an FV protocol already installed in that handle // #if (PI_SPECIFICATION_VERSION < 0x00010000) Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolumeProtocolGuid, &Fv); #else Status = CoreHandleProtocol (Handle, &gEfiFirmwareVolume2ProtocolGuid, &Fv); #endif if (!EFI_ERROR (Status)) { // // Update Fv to use a new Fvb // FvDevice = _CR (Fv, FV_DEVICE, Fv); if (FvDevice->Signature == FV_DEVICE_SIGNATURE) { // // Only write into our device structure if it's our device structure // FvDevice->Fvb = Fvb; } } else { // // No FwVol protocol on the handle so create a new one // FvDevice = CoreAllocateCopyPool (sizeof (FV_DEVICE), &mFvDevice); if (FvDevice == NULL) { return; } FvDevice->Fvb = Fvb; FvDevice->Handle = Handle; FvDevice->FwVolHeader = FwVolHeader; FvDevice->Fv.ParentHandle = Fvb->ParentHandle; // // Install an New FV protocol on the existing handle // #if (PI_SPECIFICATION_VERSION < 0x00010000) Status = CoreInstallProtocolInterface ( &Handle, &gEfiFirmwareVolumeProtocolGuid, EFI_NATIVE_INTERFACE, &FvDevice->Fv ); #else Status = CoreInstallProtocolInterface ( &Handle, &gEfiFirmwareVolume2ProtocolGuid, EFI_NATIVE_INTERFACE, &FvDevice->Fv ); #endif ASSERT_EFI_ERROR (Status); } } return; } EFI_STATUS EFIAPI FwVolDriverInit ( IN EFI_HANDLE ImageHandle, IN EFI_SYSTEM_TABLE *SystemTable ) /*++ Routine Description: This routine is the driver initialization entry point. It initializes the libraries, and registers two notification functions. These notification functions are responsible for building the FV stack dynamically. Arguments: ImageHandle - The image handle. SystemTable - The system table. Returns: EFI_SUCCESS - Function successfully returned. --*/ { gEfiFwVolBlockEvent = CoreCreateProtocolNotifyEvent ( &gEfiFirmwareVolumeBlockProtocolGuid, EFI_TPL_CALLBACK, NotifyFwVolBlock, NULL, &gEfiFwVolBlockNotifyReg, TRUE ); return EFI_SUCCESS; }