

Framework Intel® Processor

Reference Code for Haswell
Reference Code Specification

Nov 2014

Version 1.9.0

Intel Confidential

2 Intel Confidential Reference Code Specification

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT

AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY

WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL

PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY,

OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY

APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR

DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the

absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for future

definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The

information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

45-nm products are manufactured on a lead-free process. Lead-free per EU RoHS directive July, 2006. Some E.U. RoHS

exemptions may apply to other components used in the product package. Residual amounts of halogens are below November,

2007 proposed IPC/JEDEC J-STD-709 standards.

Intel, Itanium and the Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United

States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright 2008 – 2013, Intel Corporation.

Reference Code Specification Intel Confidential 3

Revision History

Revision
Number

Description Revision
Date

0.4.0 Initial version Nov, 2011

0.5.0 PFAT & PPM Module updated based on HSW BWG 0.50

TXT one touch support changed.

Jan, 2012

0.5.5 Updated to HSW BWG 0.5.5, for Alpha 1 release Mar, 2012

0.5.6 Updated to HSW BWG 0.5.6, for Post Alpha 1 release May, 2012

0.6.0 Updated to HSW BWG 0.6.0, for Post Alpha 2 release June, 2012

0.6.1 Updated to HSW BWG 0.6.1, for ULT Pre Alpha release Aug, 2012

0.7.0 Updated to HSW BWG 0.7.0 release Sep, 2012

0.7.1 Updated to HSW BWG 0.7.1 release Oct, 2012

0.7.2 Updated to HSW BWG 0.7.2 release Oct, 2012

0.8.0 Updated to HSW BWG 0.8.0 release for HSW 2 Chip Pre-QS Nov, 2012

0.8.1 Updated to HSW BWG 0.8.1 release for HSW ULT Beta Dec, 2012

0.9.0 Updated to HSW BWG 0.9.0 release for HSW PC Jan, 2013

1.0.0 Updated to HSW BWG 1.0.0 release for HSW PV Jan, 2013

1.1.0 Updated to HSW BWG 1.1.0 release for HSW ULT QS

*Note : CPU RC’s Anchor Cove name change to Boot Guard

Feb, 2013

1.2.0 Updated to HSW BWG 1.2.0 release for HSW ULT PC Feb, 2013

1.3.0 Updated to HSW BWG 1.3.0 release for HSW ULT PV Mar, 2013

1.4.0 Updated to HSW BWG 1.4.0 release for CRW PV Apr, 2013

1.5.0 Updated to HSW BWG 1.5.0 release May, 2013

1.6.0 Updated to HSW BWG 1.6.0 release June, 2013

1.6.1 Updated to HSW BWG 1.6.1 release WinBlue 2chip+ULT PV July, 2013

1.6.2 Updated to HSW BWG 1.6.2 release Aug, 2013

1.7.0 Updated to HSW BWG 1.7.0 release Nov, 2013

1.8.0 Updated to HSW BWG 1.8.0 release Mar, 2014

1.9.0 Updated to HSW BWG 1.9.0 release Nov, 2014

4 Intel Confidential Reference Code Specification

Contents

1 Introduction ...7

1.1 Purpose and Scope of this Document ..7

1.2 Related Information ...8

1.3 Acronyms and Definitionss ..9

1.4 Processor Terms .. 11

1.5 Conventions Used in This Document ... 13

1.5.1 Data Structure Descriptions ... 13

1.5.2 Protocol Descriptions ... 14

1.5.3 Procedure Descriptions .. 14

1.5.4 Instruction Descriptions ... 14

1.5.5 PPI Descriptions ... 15

1.5.6 Pseudo-Code Conventions ... 15

1.5.7 Typographic Conventions ... 16

2 Overview ... 18

2.1 Architectural Overview ... 18

2.2 Rationale .. 19

2.3 Requirements .. 19

3 Intel® Processor .. 20

3.1 Processor Initialization .. 20

3.1.1 Processor Initialization Flow ... 20

3.1.2 Modules... 31

3.2 Power Management .. 34

3.2.1 Power Management Execution Flow ... 35

3.2.2 _CST Flow ... 38

3.2.3 Modules... 40

3.3 Thermal Reporting ... 44

3.3.1 Thermal Reporting (DTS) Module Execution Flow 44

Reference Code Specification Intel Confidential 5

3.3.2 Interfaces and Functions ... 45

3.4 TXT .. 54

3.4.1 Overview ... 54

3.4.2 Code Definitions ... 56

3.4.3 STAFIXUP Tool ... 66

3.4.4 TxT One Touch Function .. 69

3.5 Boot Guard ... 70

3.5.1 Overview ... 70

3.5.2 FIT Table ... 70

3.5.3 Boot Policy Manifest and Key Manifest ... 70

3.5.4 NEM Initialization Change .. 71

3.5.5 Stop PBE Timer .. 72

3.5.6 TPM Initialization .. 72

3.5.7 TPM Event Log ... 74

3.6 PFAT .. 75

3.6.1 PFAT Overview ... 75

3.6.2 PFAT Initialization Boot Flow .. 76

3.6.3 Platform BIOS Requirements .. 78

3.6.4 Variable Writes with PFAT .. 79

3.6.5 BIOS/EC FW Update Flow .. 81

3.6.6 PFAT ACPI Methods ... 81

3.6.7 Code Definitions ... 82

3.7 Overclocking ... 87

3.7.1 Overclocking Overview .. 87

3.7.2 Software Architecture.. 88

3.7.3 Overclocking Mailbox .. 89

3.7.4 Interfaces and Functions ... 89

3.7.5 Overclocking Library ... 92

3.8 HowTo .. 93

3.8.1 How processor code perform Microcode Update in POST and S3? 93

3.8.2 How Remap is done in S3(PEIM) and POST(DXE)? 94

3.8.3 How to provide cache layout when memory is ready? 95

6 Intel Confidential Reference Code Specification

3.8.4 Responsiveness .. 98

4 Integration Guide ... 99

4.1 Integration Overview .. 99

4.2 Reference Code Package Contents ... 99

4.3 Integration Checklist .. 101

4.4 Building with EDK1117 Instructions .. 102

4.5 MASM ... 104

4.6 Visual Studio 2008 SP1 Support... 105

4.7 Platform Configuration Requirements ... 107

4.7.1 Overview ... 107

4.7.2 CPU Platform Policy PPI Initialization ... 107

4.7.3 CPU Platform Policy Protocol Initialization 108

4.7.4 Build Flags ... 108

4.7.5 Definition changes highlight ... 108

Introduction

Reference Code Specification Intel Confidential 7

1 Introduction

1.1 Purpose and Scope of this Document

The Intel® Processor Reference Code is a set of source code modules that are

compliant with the Intel® Platform Innovation Framework for EFI (hereafter referred

to as the "Framework") specifications and is used to initialize and control the Intel

processor in the system pre-boot process.

This specification describes the high-level design of the Intel® Processor Reference

Code and does the following:

 Describes architecture of the Intel Processor Reference Code

 Describes the coding requirements for use of Intel Processor Reference Code

 Describes the system block diagram and basic components of the Intel Processor

Reference Code

 Specifies the API -- services, protocols, PPI, functions, and type definitions that

are architecturally implemented in the Intel Processor Reference Code

 Describes the guidelines for integrating the reference code to a code base.

This specification is useful for any software developer that utilizes the Intel Processor

Reference Code in a Framework compliant BIOS code base.

This document describes the components and their software interfaces in sufficient

detail for system BIOS developers to use the Intel Processor Reference Code.

A full understanding of the UEFI and Framework specifications is assumed throughout

this document.

The specification is not intended to provide implementation details.

Introduction

8 Intel Confidential Reference Code Specification

1.2 Related Information

The following publications and sources of information may be useful to you or are

referred to by this specification:

Item Location

Extensible Firmware Interface Specification, Version

1.10, Intel, 2001,

http://www.intel.com/content/www/us/

en/architecture-and-

technology/unified-extensible-

firmware-interface/efi-homepage-

general-technology.html

Unified Extensible Firmware Interface Specification,

Version 2.0, Unified EFI, Inc, 2006

http://www.uefi.org.

Unified Extensible Firmware Interface Specification,

Version 2.1, Unified EFI, Inc, 2007

http://www.uefi.org.

Unified Extensible Firmware Interface Specification,

Version 2.2, Unified EFI, Inc, 2008

http://www.uefi.org

Intel® Platform Innovation Framework for EFI

Specifications, Intel, 2006

http://www.intel.com/technology/f
ramework/download.htm

EDK II Glue Library Programming Guide, Intel, 2007 http://sourceforge.net/projects/efidevk

it/files/Documents/Glue_Library.pdf/do

wnload

Haswell Processor Family - BIOS Writer’s Guide (BWG)

System Management BIOS (SMBIOS) Specification
http://www.dmtf.org/standards/smbios

RS – Intel Trusted Execution Technology BIOS

Specification, Revision 2.1

Intel® Trusted Execution Technology Preliminary

Architecture Specification (or replacement) http://www.intel.com/

technology/security/

Intel Initiatives TPM NV Storage Interface Usage,

revision 0.7 or later.

TPM Main. Specification Version 1.2, Revision 1.09 or

later https://www.trustedcomputinggrou
p.com

Intel® 64 and IA-32 Architectures. Software

Developer’s Manual. Volume 3A: System Programming

Guide, Part1.

http://www.intel.com/products/pro
cessor/manuals/index.htm

RS - Haswell System Agent BIOS Specification

Intel® Trusted Execution

Technology (TXT) – One-Touch

Enabling 0.5

Document no - 481137

http://www.uefi.org/
http://www.uefi.org/
http://www.uefi.org/
http://sourceforge.net/projects/efidevkit/files/Documents/Glue_Library.pdf/download
http://sourceforge.net/projects/efidevkit/files/Documents/Glue_Library.pdf/download
http://sourceforge.net/projects/efidevkit/files/Documents/Glue_Library.pdf/download
http://www.dmtf.org/standards/smbios
http://www.intel.com/technology/framework/spec.htm
http://www.intel.com/technology/framework/spec.htm
https://www.trustedcomputinggroup.com/
https://www.trustedcomputinggroup.com/
http://www.intel.com/products/processor/manuals/index.htm
http://www.intel.com/products/processor/manuals/index.htm

Introduction

Reference Code Specification Intel Confidential 9

1.3 Acronyms and Definitionss

The following terms are used throughout this document to describe varying aspects of

input localization:

Item Description

ACPI Advanced Configuration and Power Interface.

BDS Framework Boot Device Selection phase.

Component An executable image. Components defined in this specification support

one of the defined module types.

DPPM Dynamic Power Performance Module

DXE Framework Driver Execution Environment phase.

DXE SAL A special class of DXE module that produces SAL Runtime Services.

DXE SAL modules differ from DXE Runtime modules in that the DXE

Runtime modules support Virtual mode OS calls at OS runtime and DXE

SAL modules support intermixing Virtual or Physical mode OS calls.

DXE SMM A special class of DXE module that is loaded into the System

Management Mode memory.

DXE Runtime Special class of DXE module that provides Runtime Services

EFI or UEFI Generic terms that refer to one of the versions of the EFI specification:

EFI 1.02, EFI 1.10, UEFI 2.0, or UEFI 2.1.

EFI 1.10 Specification Intel Corporation published the Extensible Firmware Interface

Specification. Intel donated the EFI specification to the Unified EFI

Forum, and the UEFI now owns future updates of the EFI specification.

See UEFI Specifications.

Foundation The set of code and interfaces that glue implementations of UEFI

together.

Framework Intel® Platform Innovation Framework for EFI consists of the

Foundation, plus other modular components that characterize the

portability surface for modular components designed to work on any

implementation of the Tiano architecture.

GUID Globally Unique Identifier. A 128-bit value used to name entities

uniquely. An individual without the help of a centralized authority can

generate a unique GUID. This allows the generation of names that will

never conflict, even among multiple, unrelated parties.

HII Human Interface Infrastructure. This generally refers to the database

that contains string, font, and IFR information along with other pieces

that use one of the database components

IFR Internal Forms Representation. This is the binary encoding that is used

for the representation of user interface pages.

iVR Integrated Voltage Regulator

Library Class A library class defines the API or interface set for a library. The

consumer of the library is coded to the library class definition. Library

classes are defined via a library class.h file that is published by a

package. See the EDK 2.0 Module Development Environment Library

Specification for a list of libraries defined in this package.

Introduction

10 Intel Confidential Reference Code Specification

Item Description

Library Instance An implementation of one or more library classes. See the EDK 2.0

Module Development Environment Library Specification for a list of

library defined in this package.

Module A module is either an executable image or a library instance. For a list

of module types supported by this package, see module type.

Module Type All libraries and components belong to one of the following module

types: BASE, SEC, PEI_CORE, PEIM, DXE_CORE, DXE_DRIVER,

DXE_RUNTIME_DRIVER, DXE_SMM_DRIVER, DXE_SAL_DRIVER,

UEFI_DRIVER, or UEFI_APPLICATION. These definitions provide a

framework that is consistent with a similar set of requirements. A

module that is of module type BASE, depends only on headers and

libraries provided in the MDE, while a module that is of module type

DXE_DRIVER depends on common DXE components. For a definition of

the various module types, see module type.

OC Over Clocking

Package A package is a container. It can hold a collection of files for any given

set of modules. Packages may be described as one of the following

types of modules:

 source modules, containing all source files and descriptions of a
module

 binary modules, containing UEFI Sections or a Framework File
System and a description file specific to linking and binary editing of
features and attributes specified in a Platform Configuration
Database (PCD,)

 mixed modules, with both binary and source modules

Multiple modules can be combined into a package, and multiple

packages can be combined into a single package.

Protocol An API named by a GUID as defined by the UEFI specification.

PCD Platform Configuration Database.

PEI Pre-EFI Initialization Phase.

PPI A PEIM-to-PEIM Interface that is named by a GUID as defined by the

PEI CIS.

SAL System Abstraction Layer. A firmware interface specification used on

Intel® Itanium® Processor- based systems.

Runtime Services Interfaces that provide access to underlying platform-specific hardware

that might be useful during OS runtime, such as time and date

services. These services become active during the boot process but also

persist after the OS loader terminates boot services.

SCI System Control Interrupt

SEC Security Phase is the code in the Framework that contains the

processor reset vector and launches PEI. This phase is separate from

PEI because some security schemes require ownership of the reset

vector.

SSDT Secondary System Definition Table

Introduction

Reference Code Specification Intel Confidential 11

Item Description

UEFI Application An application that follows the UEFI specification. The only difference

between a UEFI application and a UEFI driver is that an application is

unloaded from memory when it exits regardless of return status, while

a driver that returns a successful return status is not unloaded when its

entry point exits.

UEFI Driver A driver that follows the UEFI specification.

UEFI Specification

Version 2.1

Current version of the UEFI specification released by the Unified EFI

Forum. This specification builds on the EFI 1.10 specification and

transfers ownership of the EFI specification from Intel to a non-profit,

industry trade organization.

Unified EFI Forum A non-profit collaborative trade organization formed to promote and

manage the UEFI standard. For more information, see www.uefi.org.

1.4 Processor Terms

Item Description

AP Application Processor. All the processor threads other than SBSP

Cache Line Is defined as being 64-bytes in size, with each line having a unique set

of MESI bits.

CSI Intel® QuickPath Interconnect (Intel® QPI) - formerly known as
Common System Interface (CSI). A cache-coherent, link-based
interconnect specification for Intel processor, chipset, and I/O bridge
components.

CSR Configuration Space Register or Control and Status register. PCI/PCIe
family style registers used to define configurable resources and
features.

CMP Core Multi-Processing (CMP) refers to a single physical package that
utilizes multiple cores for multi-processing capabilities.

Core The silicon which contains 1 or more logical processors (with or without

Intel® Hyper-Threading Technology).

CPU-only RESET Any assertion of the processor RESET# input signal that does not also
assert
the PCI RESET signal. The PWRGOOD# signal is not toggled. This
capability is not supported by all chipsets.

Enhanced Thermal

Control Circuit

Similar to the TCC, the Enhanced Thermal Control Circuit (Enhanced
TCC) is a feature of the processor that is used to cool the processor
should the processor temperature exceed a predetermined activation
temperature. The Enhanced TCC reduces the processor core to bus
ratio, and VID when active.

HARD RESET Assertion of the RESET# input signal of the processor and also asserts
the
PCI RESET signal. The PWRGOOD# signal is not toggled.

Integrated Memory

Controller (IMC)

A memory controller that is integrated in the processor silicon.

http://www.uefi.org/

Introduction

12 Intel Confidential Reference Code Specification

Item Description

Intel® TM Intel® Thermal Monitor (Intel® TM) is a feature of the processor. The
thermal monitor contains TCC. When Intel TM is enabled and active due
to the die temperature reaching the pre-determined thermal monitor
activation temperature, the TCC attempts to cool the processor by
alternating stopping the processor clocks for a period of time, then
allows them to run full speed for a period of time (duty cycle ~30% –
50%) until the processor temperature drops below the activation
temperature.

Intel® TM2 Intel® Thermal Monitor 2 (Intel® TM2) is a feature of the processor.
The Intel Thermal Monitor 2 contains the Enhanced TCC. When Intel
TM2 is enabled and active due to the die temperature reaching the
predetermined
Intel Thermal Monitor activation temperature, the Enhanced
TCC attempts to cool the processor by first reducing the core to a
specific bus ratio, then steps down the VID.

IPI An “Inter-Processor Interrupt” is a message from one processor to
another processor. The IPI is sent by the local XAPIC when software
writes to the command register in the local XAPIC. The IPI is sent using
the system bus.

Logical Processor The basic unit of processor hardware that allows the software executive
in the operating system to dispatch a task or execute a thread context.
Each logical processor can execute only one thread context at a time. A
processor that may share execution resources with other processors in
the same core.

Multi-Core Processor A physical package that contains more than one processor core.

MSR Model Specific Register (MSR) as the name implies is model specific and
may change from processor model number (n) to processor model
number (n+1). An MSR is accessed by setting ECX to the register
number and executing either the RDMSR or WRMSR instruction. The
RDMSR instruction will place the 64 bits of the MSR in the EDX:EAX
register pair. The WRMSR writes the contents of the EDX:EAX register

pair into the MSR.

NBSP or Node BSP Hardware within each processor package selects one logical processor
to be the Bootstrap Processor. This is called Node BSP. There is no
guarantee that the HW selected NBSP will have an intra-processor APIC
ID == 00h. It is also possible that the package does not contain an
enabled core with an intra-processor APIC ID == 00h.

Physical Processor A package which contains 1 or more cores that share a common
connection to the system bus.

System BSP or SBSP The single Node BSP selected by BIOS from all processor packages
installed in the platform, to perform most of the BIOS initialization steps
and to hand off control to the OS. In a DP system, one processor
package contains the SBSP and the other processor package contains a
NBSP. In a UP system, the one processor package contains the SBSP
and no NBSP exists. There is no guarantee that the SBSP will have an
intra-processor APIC ID == 00h. It is also possible that the package(s)
does not contain an enabled core with an intra-processor APIC ID ==
00h.

Sector Is defined as 2 cache-lines. An even and odd cache line pair comprises a
sector. Not all caches are sectored.

System Bus “System Bus” refers to the interface between the processor, system
core logic (the chipset components), and other bus agents. On previous
processor generations this was implemented as FSB.

System RESET Same as “HARD RESET”.

TCC The Thermal Control Circuit (TCC) is a feature of the processor that is
used to cool the processor should the processor temperature exceed a
predetermined temperature.

Thread A Logical Processor

Introduction

Reference Code Specification Intel Confidential 13

Item Description

System Agent Refers to the functionality in processor package other than processor
cores. The System Agent encompasses the System Bus interface and
support logic, integrated memory controller, shared cache, etc.

VID Voltage Identification (VID) is a binary pattern output from the
processor that tells the voltage regulator the voltage required to
operate the processor.

WARM RESET Assertion of the INIT# input signal of the processor. Cache coherency is
maintained. Does not include “CPU-only RESET”, or “HARD RESET”.

PFAT Platform Firmware Armoring Technology

PUPC PFAT Update Package Certificate

PUP PFAT Update Package

PPDT PFAT Platform Data Table

TxT Trusted Execute Technology

Boot Guard Boot Guard (formerly known as Anchor Cove)

ACM Authenticated Code Module

1.5 Conventions Used in This Document

This document uses the typographic and illustrative conventions described below.

1.5.1 Data Structure Descriptions

Intel® processors based on 32 bit Intel® architecture (IA 32) are “little endian”

machines. This distinction means that the low-order byte of a multi-byte data item in

memory is at the lowest address, while the high-order byte is at the highest address.

Processors of the Intel® Itanium® processor family may be configured for both “little

endian” and “big endian” operation. All implementations designed to conform to this

specification will use “little endian” operation.

In some memory layout descriptions, certain fields are marked reserved. Software

must initialize such fields to zero and ignore them when read. On an update operation,

software must preserve any reserved field.

The data structures described in this document generally have the following format:

STRUCTURE

NAME

The formal name of the data structure.

Summary A brief description of the data structure.

Prototype A “C-style” type declaration for the data structure.

Parameters A brief description of each field in the data structure prototype.

Description A description of the functionality provided by the data structure, including any

limitations and caveats of which the caller should be aware.

Introduction

14 Intel Confidential Reference Code Specification

Related

Definitions

The type declarations and constants that are used only by this data structure

1.5.2 Protocol Descriptions

The protocols described in this document generally have the following format:

Protocol Name The formal name of the protocol interface.

Summary A brief description of the protocol interface.

GUID The 128-bit Globally Unique Identifier (GUID) for the protocol interface.

Protocol Interface

Structure

A “C-style” data structure definition containing the procedures and data

fields produced by this protocol interface.

Parameters A brief description of each field in the protocol interface structure.

Description A description of the functionality provided by the interface, including any

limitations and caveats of which the caller should be aware.

Related Definitions The type declarations and constants that are used in the protocol

interface structure or any of its procedures.

1.5.3 Procedure Descriptions

The procedures described in this document generally have the following format:

ProcedureName() The formal name of the procedure.

Summary A brief description of the procedure.

Prototype A “C-style” procedure header defining the calling sequence.

Parameters A brief description of each field in the procedure prototype.

Description A description of the functionality provided by the interface, including any

limitations and caveats of which the caller should be aware.

Related

Definitions

The type declarations and constants that are used only by this procedure.

Status Codes

Returned:

A description of any codes returned by the interface. The procedure is

required to implement any status codes listed in this table. Additional

error codes may be returned, but they will not be tested by standard

compliance tests, and any software that uses the procedure cannot depend

on any of the extended error codes that an implementation may provide.

1.5.4 Instruction Descriptions

The procedures described in this document generally have the following format:

InstructionName The formal name of the instruction.

SYNTAX A brief description of the instruction.

DESCRIPTION A description of the functionality provided by the instruction accompanied

by a table that details the instruction encoding.

Introduction

Reference Code Specification Intel Confidential 15

OPERATION Details the operations performed on operands.

BEHAVIORS AND

RESTRICTIONS

An item-by-item description of the behavior of each operand involved in the

instruction and any restrictions that apply to the operands or the

instruction.

1.5.5 PPI Descriptions

A PEIM-to-PEIM Interface (PPI) description generally has the following format:

PPI Name The formal name of the PPI.

Summary A brief description of the PPI.

GUID The 128-bit Globally Unique Identifier (GUID) for the PPI.

Protocol

Interface

Structure

A “C-style” procedure template defining the PPI calling structure.

Parameters A brief description of each field in the PPI structure.

Description A description of the functionality provided by the interface, including any

limitations and caveats of which the caller should be aware.

Related

Definitions

The type declarations and constants that are used only by this interface.

Status Codes

Returned

A description of any codes returned by the interface. The PPI is required to

implement any status codes listed in this table. Additional error codes may be

returned, but they will not be tested by standard compliance tests, and any

software that uses the procedure cannot depend on any of the extended error

codes that an implementation may provide.

1.5.6 Pseudo-Code Conventions

Pseudo code is presented to describe algorithms in a more concise form. None of the

algorithms in this document are intended to be compiled directly. The code is

presented at a level corresponding to the surrounding text.

In describing variables, a list is an unordered collection of homogeneous objects. A

queue is an ordered list of homogeneous objects. Unless otherwise noted, the

ordering is assumed to be First In First Out (FIFO).

Pseudo code is presented in a C-like format, using C conventions where appropriate.

The coding style, particularly the indentation style, is used for readability and does not

necessarily comply with an implementation of the Extensible Firmware Interface

Specification.

Introduction

16 Intel Confidential Reference Code Specification

1.5.7 Typographic Conventions

This document uses the typographic and illustrative conventions described below:

Plain text
(Body)

The normal text typeface is used for the vast majority of the

descriptive text in a specification.

Plain text [blue]

(Cross-Reference)

Any plain text that is underlined and in blue indicates an active link to

the cross-reference. Click on the word to follow the hyperlink. USE

ONLY IF YOU MAKE AN ACTUAL CROSS-REFERENCE LINK.

Bold
(Bold or

GlossTerm)

In text, a Bold typeface identifies a processor register name. In other

instances, a Bold typeface can be used as a running head within a

paragraph. or as a definition heading (GlossTerm)

Italic
In text, an Italic typeface can be used as emphasis to introduce a new

term or to indicate a manual or specification name.

BOLD Monospace

(CodeCharacter

and

CodePargraph)

Computer code, example code segments, and all prototype code

segments use a BOLD Monospace typeface with a dark red color.

These code listings normally appear in one or more separate

paragraphs, though words or segments can also be embedded in a

normal text paragraph.

Bold Monospace
Words in a Bold Monospace typeface that is underlined and in blue

indicate an active hyperlink to the code definition for that function or

type definition. Click on the word to follow the hyperlink. USE ONLY IF

YOU MAKE AN ACTUAL HYPERLINK.

Italic

Monospace

(ArgCharacter

and

ArgParagraph)

In code or in text, words in Italic Monospace indicate placeholder

names for variable information that must be supplied (i.e.,

arguments).

Plain Monospace

(CodeCharacter

+ Not Bold)

In code, words in a Plain Monospace typeface that is a dark red

color but is not bold or italicized indicate pseudo code or example

code. These code segments typically occur in one or more separate

paragraphs.

text text text
In the PDF of this specification, text that is highlighted in yellow

indicates that a change was made to that text since the previous

revision of the PDF. The highlighting indicates only that a change was

made since the previous version; it does not specify what changed. If

text was deleted and thus cannot be highlighted, a note in red and

highlighted in yellow (that looks like (Note: text text text.)) appears

where the deletion occurred.

See the glossary sections in the EFI 1.10 Specification and in the EFI Documentation

help system for definitions of terms and abbreviations that are used in this document

or that might be useful in understanding the descriptions presented in this document.

See the references sections in the EFI 1.10 Specification and in the in the EFI

Documentation help system for a complete list of the additional documents and

Introduction

Reference Code Specification Intel Confidential 17

specifications that are required or suggested for interpreting the information

presented in this document:

The EFI 1.10 Specification is available from the EFI web site

http://developer.intel.com/technology/efi/. The EFI Documentation help system is

available from the EFI web site

http://developer.intel.com/technology/efi/help/efidocs.htm.

See the master Framework glossary in the Framework Interoperability and Component

Specifications help system for definitions of terms and abbreviations that are used in

this document or that might be useful in understanding the descriptions presented in

this document.

See the master Framework references in the Interoperability and Component

Specifications help system for a complete list of the additional documents and

specifications that are required or suggested for interpreting the information

presented in this document.

The Framework Interoperability and Component Specifications help system is available

at the following URL:

http://www.intel.com/technology/framework/spec.htm

§

http://www.intel.com/technology/framework/spec.htm

Overview

18 Intel Confidential Reference Code Specification

2 Overview

2.1 Architectural Overview

This reference code provides the Intel processor support for the Haswell Client

processors. It is organized into separate modules and generally categorized as

follows:

Intel Processor Support

 DXE Driver – Features Init, Microcode Update and MP Services init.

 PEIM – Provide Cache PPI and build BistHob from SecPlatformInformationPpi from

SEC, and CPU Strap support.

 S3 PEIM – Provide MP initialization on the S3 resume path.

 PowerManagement – Provide DXE driver to initialize the Processor Power

Management, and SMM driver to saves and restores the Power Management

related MSRs during S3. It also provides ACPI tables for C-state, P-state, T-state.

 DTS – Provide SMM driver for on-die CPU thermal reporting.

 TXT – Provide PEI and DXE for TXT environment initialization and module

initialization for TPM and ACM.

 PFAT - Provide flash protection and BIOS update authorization using a

combination of CPU and PCH features.

Recommendations and requirements for code modifications in SEC driver and platform

specific modules are also described in these below sections:

 Publish protocol

 SEC Sample Code - Processor Init Sample Code for different SEC build design

 Platform Consideration – The most important part for platform code is to provide

the MTRR layout in PEIM when memory is ready

Overview

Reference Code Specification Intel Confidential 19

2.2 Rationale

This section describes the basic rationale behind providing Framework compliant Intel

Processor Reference Code:

 Provide Intel processor support sufficient for the Intel processor BWG requirement

 Provide code easily portable to multiple platforms

 Provide code to easily support multiple platforms without modifying the Intel

processor modules

2.3 Requirements

This section captures the requirements of Intel Processor Reference Code:

 Framework compliant

o Build in EDK version 20061117, AKA EDK Release 1.01 with Patch #8

o Compliant to the UEFI 2.1 specification

o Compliant to the Framework 0.9x specifications

o Except for the HII specification which is superseded by the UEFI 2.1

HII

 Use the interfaces on EDKII Glue Library

 No use of platform or other silicon specific code or definitions

 Easily portable to different Framework compliant code bases utilizing the EDK

 Easily portable to EDKII with minimal source code modifications

 Easily portable to different platforms

 Implement Intel Haswell BIOS Writer’s Guide requirements and recommendations

§

Intel® Processor

20 Intel Confidential Reference Code Specification

3 Intel® Processor

Processor initialization requirements are generally documented in the Intel® 64 and

IA-32 Architectures Software Developer’s Manuals and the BIOS Writer’s Guide(s)

corresponding to the processor(s) supported.

3.1 Processor Initialization

3.1.1 Processor Initialization Flow

There high-level flow for processor initialization is:

 Early initialization near reset vector to set protected mode, load microcode

updates, initialize NEM mode.

 CPU PEI performs early initialization related to configuration prior to

MemoryInit.

 Initialize memory. This is covered in greater detail in the System Agent

reference code and Memory Reference Code documentation

 Transfer early cache data contents into memory, transition to a standard

caching configuration

 Platform code to provide the cache layout to configure cache.

 Fully configure processor, including MP initialization, final cache configuration

 Fully configure processor power management. This is covered in greater

detail in the Power Management section 3.2

 Configure Intel® TXT. This is covered in greater detail in the TXT section 3.4

 Put processors in OS handoff state

Intel® Processor

Reference Code Specification Intel Confidential 21

OS will typically reinitialize some processor configuration, most specifically, OS will

typically reconfigure cache and reinitialize MP configuration.

On S3:

 Some MSR state will be saved

 System enters S3

 System receives a wake event

 BIOS follows a similar early initialization flow

 Cache configuration is restored

 MP configuration is restored

 SMM configuration is restored

3.1.1.1 OS handoff state is restored SEC Initialization

 Only Sample Code is provided in processor reference code package for SEC

 SEC enters flat 32 bit protected mode

 SEC loads BSP MCU and enables CSR access if microcode is fail to load by FIT

pointer.

 SEC BSP MCU must be loaded before CSR access

 SEC initializes No Eviction Mode

 SEC establishes the stack for PEI use

 BIST data is stored in EFI_SEC_PLATFORM_INFORMATION_PPI to be used by

processor PEIM for creating EFI_HT_BIST_HOB_GUID for processor Init DXE driver

to report the health status via MP Services

Please refer to Haswell BIOS Writer’s Guide for details related to the SEC sample code.

Intel® Processor

22 Intel Confidential Reference Code Specification

3.1.1.2 PEI Initialization

 Performs early initialization related to configuration

 Install PEI_CACHE_PPI for platform MTRR configuration services

 Install notification for PCH_INIT_PPI

o Upon notification, configure strap options

 Initializes Performance and Power management features

 Enable XMM

 PFAT Initialization

3.1.1.3 DXE Initialization

 Perform MP initialization per the Software Developer’s Manual

 Install Exception Handler - CPU Exception Handler is provided by Intel®

Processor Reference Code. Usually people can see the hang at Processor code

because of exception. With the debug build, you can see more exception detail

information from debug serial out.

 Install EFI_CPU_ARCH_PROTOCOL – CPU Architectural Protocol to provide the

interface to abstract processor-specific functions from the DXE Foundation. The

interfaces include flushing caches, enabling, disabling interrupts, hooking interrupt

vectors and exception vectors, reading internal processor timers, resetting the

processor, and determining the processor frequency. Please refer Driver Execution

Environment Core Interface Specification (DXE CIS)** v0.91 for detail information.

 Sync GCD with MTRRs configuration – This sync is to update GCD Memory

Space Attributes upon MTRRs settings.

 Locate CPU Platform Policy Protocol – All setup configurations are provided by

CPU Platform Policy Protocol which is installed by platform code after checking

CPU Setup options. .

http://download.intel.com/technology/framework/docs/DxeCis_0-91.pdf
http://download.intel.com/technology/framework/docs/DxeCis_0-91.pdf

Intel® Processor

Reference Code Specification Intel Confidential 23

 Get Software SMI number from Platform Policy for SMMBASE Init – CPU

Init DXE driver has to use SMI to copy data to SMRAM due to SMRR. We need

platform code to provide a software SMI number to do some basic init in SMI from

DXE drivers.

 Locate EFI_DATA_HUB_PROTOCOL – CPU DXE Init driver will use this protocol

to log CPU Information into DataHub. So that SMBIOS driver can convert

information in DataHub to SMBIOS type 4 and 7 for Processor and Cache info

reporting. Please refer Data Hub Specification for more detail information.

 Load Microcode to memory for POST and copy Microcode to SMM Memory

for S3 to perform Microcode update – During S3 resume, BIOS will get

Microcode code from SMM Memory which is prepared by

SMM_FROM_CPU_DRIVER_SAVE_INFO service of SMMBASE Software SMI.

 Prepare HII data for basic string to be logged in DataHub – There are some

basic HII data, such as Intel® Genuine name Processor, Intel® corporation, and

unknown.

 Init Multi-Processors

o InitializeMpSupport is the entry of MP init.

o MP_CPU_RESERVED_DATA will keep all MP information.

o InitializeMpSystemData tasks detail:

 Allocate temporary memory for AP to run during POST.

 Perform INIT-SIPI-SIPI to startup APs

 Program basic processor functions – Program all functions in

EFI_MSR_IA32_MISC_ENABLE . Init Thermal Monitor, program

MISC functions, and init Machine Check Registers

 Collect and program Processor Features – Features such as

XD, VMX, DCA, AES, and XAPIC which need to check CPUID or

MSR to continue the enabling.

http://download.intel.com/technology/framework/docs/DataHub.pdf

Intel® Processor

24 Intel Confidential Reference Code Specification

 Update Platform CPU Data – Install CpuInfoProtocolGuid

Protocol to report the features enabling result. Platform code,

such as Setup, can use this protocol to check the enabling result

and show it on Setup Page. This protocol also indicates that

CpuDxeInit driver has done the CPU Features programming.

 Init Processor and Cache DataHub – log all processor and

cache data to DataHub for SMBIOS creation, for example.

o EfiCreateProtocolNotifyEvent to EXIT_PM_AUTH_PROTOCOL –

Notify code to do some final init, such as reload Microcode relocate

memory for APs running before booting to OS.

 With CSM case, we will use the allocated memory in EBDA for APs

running.

 Without CSM, we will allocate a reserved memory below 640KB for

APs running.

o EfiCreateProtocolNotifyEvent to EFI_LEGACY_BIOS_PROTOCOL –

Notify code to allocate memory in EBDA for APs running when CSM is

supposed. The purpose we pull-in the relocation is to allocate memory in

EBDA as early as possible without impact different CSM implementation

about EBDA memory maintain method.

o CreateEvent to EVENT_SIGNAL_EXIT_BOOT_SERVICES – call

ResetAps to reset buffer for S3 usage.

o Publish MP Services Protocol – provide MP Services to run function for

all APs.

3.1.1.4 S3 Initialization

 CpuS3Peim will perform basic CPU restore for CPUs.

o Retrieve data from SMM memory to reserved memory.

 Open SMM region

Intel® Processor

Reference Code Specification Intel Confidential 25

 Locate gSmramCpuDataHeaderGuid in SMM Memory – Assume the

last range of SMM memory reported by SmmAccessPpi-

>GetCapabilities is TSEG. Search gSmramCpuDataHeaderGuid

and return the location.

 Copy data structure from SMM memory to reserved memory –

Such as AcpiCpuData, S3BootScriptTable, S3BspMtrrTable, and

Microcode.

 Close SMM region

o Program BSP virtual wire mode, and Microcode.

o Restore BSP feature setting.

o Restore APs configuration.

o Restore BSP MTRRs configuration.

o Restore APs MTRRs configuration.

3.1.1.5 Microcode Update

3.1.1.5.1 Requirements

Before utilize processor, we need to perform Microcode Update first. For detail

information, please refer to Haswell BWG.

3.1.1.5.2 Design

Current implement is to load BSP Microcode in BSP and other APs in DXE phase. For

performance considerations, the code reads Microcode from flash one time only to

memory and make a copy to TSEG by SMM drivers. During S3 resume, the code will

open SMM region and copy the Microcode to reserved memory to perform the

Microcode update.

Intel® Processor

26 Intel Confidential Reference Code Specification

3.1.1.6 Other Considerations

Initializing AP in PEI – Intel® Processor Reference Code doesn’t provide MpServices in

PEI phase. The exception is TXT. TXT needs to ask APs to run some init code, so TXT

will load Microcode Code for APs before running the init.

Flexibility for early silicon – it is fairly common for pre-production silicon to have

special requirements on when and where to load microcode updates. So far Intel®

Processor Reference Code doesn’t provide the example yet.

3.1.1.7 MTRR Configuration

3.1.1.7.1 Requirements

BIOS needs to configure cache for system memory, PCI, etc. BIOS no longer needs

to reserve 2 MTRR for OS use. Platform code needs to provide the layout and Intel®

Processor Reference Code only provides CachePpi to setup specific range to be specific

cache type.

3.1.1.7.2 Design

MTRRs are a limited resource. Below is an example to provide a basic layout in

platform code. Please refer to Chapter 3.6.3 for the detail sample code.

1. ResetCache

2. Look into the HOB and check all EFI_HOB_TYPE_RESOURCE_DESCRIPTOR and

calculate how much memory is below and above 4G.

3. For below 4G memory

a、 Set WB flow first

b、 Set WB/UC flow for reminding memory.

4. For above 4G

a、 Set WB flow first

b、 Set WB/UC flow for reminding memory

Intel® Processor

Reference Code Specification Intel Confidential 27

5. If only reminding one MTRR, there are two options,

a、 Option 1: enlarge the last WB region. This last MTRR setting will include

some non-memory region.

b、 Option 2: Set the last WB region directly, and leave. The last memory

region is in un-cached state. System might slow down when using that

region.

6. For 0-640KB -- SetCache to WB

7. For Flash area -- SetCache to WB

3.1.1.8 Other Considerations

Before MRC, Cache will be programmed as memory so BIOS can load PEIM. Once

memory is ready after MRC running, platform code needs to provide cache layout for

detail MTRR configuration to improve the performance as soon as possible. Besides,

MTRR won’t cover TSEG. Only SMRR maps to TSEG to improve the performance of

SMM code.

Key places to review cache configuration.

 End of SEC – Cache configuration for Execute in Place (XIP) performance

 After Memory Initialization – Cache config for late PEI/DXE

 PEI->DXE handoff – Should be the same as previous

 OS handoff – verify memory map and cache configuration alignment

 SMM SMRR and malicious meddling with MTRR.

3.1.1.9 CPU PEI to DXE handoff information

3.1.1.9.1 Requirements

Platform code need to create CPU hand-off information. GCD uses this information to

initialize the GCD services.

Intel® Processor

28 Intel Confidential Reference Code Specification

3.1.1.9.2 Design

When memory is ready for use, platform code checks the

EFI_CPUID_EXTENDED_FUNCTION to identify the physical address size. For Haswell

Processor, platform code can use following code to build the handoff information,

BuildCpuHob (36, 16);

3.1.1.10 MP Services

3.1.1.10.1 Requirements

AP waiting state should be biased towards low latency, but power aware.

3.1.1.10.2 Design

In current implementation, AP waiting state is Monitor/MWAIT loop.

3.1.1.10.3 Other consideration

Polling is functional, but power inefficient.

Wait-For-SIPI is good for power, but high latency and can’t response to SMI.

HALT/loop ok, but high latency and high power consumption.

Monitor/MWAIT Cx (depending on how deep current processor supports) is the best.

3.1.1.11 OS Handoff State

3.1.1.11.1 Requirements

 Make sure Page Table is in reserved memory before handing off to OS.

o If page table is not in reserved memory, OS might destroy page table

unconditionally during the boot or S4 resume and APs will not be able

to stay in MWAIT state correctly, and result in unexpected behavior,

such as reset or hang.

 AP OS handoff state should be lowest power state

Intel® Processor

Reference Code Specification Intel Confidential 29

o Wait-For-SIPI is ok, but it APs can’t response to SMI.

o C1/Halt is ok, but it might consume more power.

o Deepest Cx is best. We have MWAIT support right now.

 AP resume vector should be in memory isolated from OS

o EBDA – this is current implementation. After booting to OS, OS will

allocate different memory for APs to run. This location is also for S3

resume right before BIOS handoff to OS resume vector.

o 0xE000-0xF000 – The impact to use this method is we will need to

add chipset code to unlock EF segment in CpuS3Peim driver.

3.1.1.11.2 Design

In current implementation, during POST, all APs are in MWAIT C1 state, and CPU will

be in Halt/Loop State before handing-off to OS in S3 resume path.

 Ready To Boot Event state – MWAIT deepest Cx state

 ExitBootServices state –MWAIT deepest Cx State

 INT19 state –MWAIT deepest Cx State

 S3 Resume OS handoff state – Halt/Loop State

3.1.1.12 S3 SMM Memory Map for Multi-Processors

3.1.1.12.1 Requirements

Security considerations – all data should be from SMM Memory. Only SMM Memory is

trustable and secured.

3.1.1.12.2 Design

Below is SMRAM Memory Map for TSEG:

 +--------------+ <- Top of TSEG

 | MSEG (Opt)2MB|

 +--------------+

 | IED (Opt) 2MB|

Intel® Processor

30 Intel Confidential Reference Code Specification

 +--------------+---+--+ |

 | STATE(0) | | | |

 | | 0x800| |

 +--------------+---+ | |

 | STATE(1) | | |

 | | | |

 +--------------+ 0x8000 32K |

 | ... | | |

 | | | |

 +--------------+ | |

 | STATE(15) | | V

 | SMMINIT(0) | |

 +--------------+------+ <---- 0x8000 for the first core

 | STATE(16) | |

 | SMMINIT(1) | 0x800

 +--------------+------+ <---- 0x800 for next additional core

 | ... |

 | ... |

 +--------------+

 | STATE(N-1) |

 | SMMINIT(N-16)|

 +--------------+

 | |

 | SMMINIT(N-15)|

 +--------------+

 | |

 | ... |

 +--------------+

 | |

 | SMMINIT(N-1) |

 +--------------+ <---- 0x800 * (N-1) for the additional N-1 cores

 | Usable SMRAM |

 +--------------+ <---- CpuStart

Some key points:
1. Each Processor Save State uses 2K.
2. Processor SMM Entry will be at SMM Base + 0x8000.
3. First processor SMM entry is at SMMINIT(0), at end of SMM Memory – 0x8000.
4. First Processor SMM Save State is at STATE(0) which is at end of SMM memory –

2K.

5. The next SMM Entry will be SMMINIT(0) – 0x800(2k).
6. The next SMM Save State is at STATE(0) – 0x800(2k).
7. Eventually, SMMINIT(0) and STATE(15) will be in 0x800(2k) region.
8. So SMMINIT code size + CPU Save State has to be less or equal to

0x800(2k) size.

3.1.1.12.3 Other Consideration

After CPU Remap is done and SMRR is enabled, it is not allowed to update SMM region

in normal mode, otherwise when SMI happen, SMRR will be out of sync and caught

unexpected result. If you want to copy data into SMM region, you can use software

SMI for this purpose.

Intel® Processor

Reference Code Specification Intel Confidential 31

3.1.2 Modules

3.1.2.1 CPU Init DXE Module

3.1.2.1.1 Introduction

All processor init such as microcode update, MSR init, MP Service, will be done in

processor DXE module.

3.1.2.1.2 Prerequisites

 EFI_METRONOME_ARCH_PROTOCOL_GUID

 EFI_CPU_IO_PROTOCOL_GUID

 EFI_HII_PROTOCOL_GUID for UEFI2.0

 EFI_HII_DATABASE_PROTOCOL_GUID for UEFI2.1 or above

 EFI_DATA_HUB_PROTOCOL_GUID

 EFI_VARIABLE_ARCH_PROTOCOL_GUID

 EFI_VARIABLE_WRITE_ARCH_PROTOCOL_GUID

 DXE_CPU_PLATFORM_POLICY_PROTOCOL_GUID

3.1.2.1.3 Prerequisite

processor DXE will produce EFI_MP_SERVICES_PROTOCOL.

3.1.2.1.4 Integration Check List

None

3.1.2.1.5 Porting Recommendation

None

3.1.2.2 CPU Init PEIM

3.1.2.2.1 Introduction

CPU PEIM provides PEI_CACHE_PPI and builds EFI_HT_BIST_HOB_GUID.

Intel® Processor

32 Intel Confidential Reference Code Specification

3.1.2.2.2 Prerequisites

 PEI_CPU_PLATFORM_POLICY_PPI_GUID

3.1.2.2.3 Integration Check List

 Make sure EFI_HT_BIST_HOB_GUID is built.

 CPU Init PEIM needs gPchInitPpiGuid to set processor strap and perform reset

when needed.

3.1.2.2.4 Porting Recommendation

None

3.1.2.3 CPU S3 PEIM

3.1.2.3.1 Introduction

The PEI module to initialize the Processor during S3 resume.

3.1.2.3.2 Prerequisites

 PEI_MASTER_BOOT_MODE_PEIM_PPI

 PEI_ PERMANENT_MEMORY_INSTALLED_PPI_GUID

 PEI_SMM_ACCESS_PPI_GUID

3.1.2.3.3 Integration Check List

None

3.1.2.3.4 Porting Recommendation

None

3.1.2.4 SMBIOS Table Integration

3.1.2.4.1 Introduction

SMBIOS code is included in CPU DXE Driver. The code will build Processor/Cache

Datahub for SMBIOS Type 4/7 creation.

Intel® Processor

Reference Code Specification Intel Confidential 33

3.1.2.4.2 Prerequisite

 EFI_DATA_HUB_PROTOCOL – Documented in Data Hub Specification, available at

the URL: http://www.intel.com/technology/framework/spec.htm

 EFI_HII_PROTOCOL – Documented in Human Interface Infrastructure

Specification, available at the URL:

http://www.intel.com/technology/framework/spec.htm

3.1.2.4.3 Result

Publishes SMBIOS data structures related to the System Agent. Refer to the Data Hub

Memory Subclass Specification, available at the URL:

http://www.intel.com/technology/framework/spec.htm

3.1.2.4.4 Validation Check List

Check the boot result and check if SMBIOS type 4/7 is there.

http://www.intel.com/technology/framework/spec.htm
http://www.intel.com/technology/framework/spec.htm
http://www.intel.com/technology/framework/spec.htm

Intel® Processor

34 Intel Confidential Reference Code Specification

3.2 Power Management

Power Management Module is a Framework compliant Dxe and SMM driver with ACPI

5.0 support. Power Management Module Provide full support for Haswell processor

family power management features as specified in the Haswell Processor family BIOS

Writer’s Guide.

Centralize all Processor power management code in a single Dxe driver

 Support single and dual and quad core processor configurations

 Support Core P-States

 Support Core C-States

 Support Hardware/Software coordinated P-States

 Support Monitor/MWAIT style C state entry

 Support I/O MWAIT redirection style C state entry

 Support custom P-states

 Support C-state pre-wake

 Configure Turbo Ratio limits

 Configure EnergyEfficient P state

 Configure PAIR (IRM) configuration

 Support Intel® Thermal features

 Configure ConfigTDP

 Support IA Package and DDR Turbo power limits (RAPL)

 Dynamically load the C-state and P-state ACPI tables based on

configuration and OS driver capabilities

Power Management Initialization is done after BIOS_RESET_CPL

configuration is done. System Agent Reference Code sets BIOS_RESET_CPL

in System Agent PEIM.

Intel® Processor

Reference Code Specification Intel Confidential 35

3.2.1 Power Management Execution Flow

Intel® Processor

36 Intel Confidential Reference Code Specification

Reserve ACPINvs Area for
Ppm and Install

PpmGlobalNvsArea Protocol

Power MgmtInit
Entry

Number of
Custom P-
States > 1

Create the FVID
table using

Custom P State
values from User

YES

Set the PpmFlags by
reading the Processor

Capabilities

Mask the PpmFlags
based on the user

policy settings

Initialize the Turbo
Ratio Limits

Initalize Config Tdp

InitIalize
EnergyEfficientPState

Initialize P-States

Enable/Disable C-
states

C-States Enabled
Configure FADT

for C States
YES

Initialize C-state
PreWake

Initialize Thermal
Features

Intel® Processor

Reference Code Specification Intel Confidential 37

Initialize and update
the Power

Management ACPI
Tables for P-state, C-

state, T-state etc…

Initialize the PAIR
Configuration (IRM)

Configure ConfigTDP

Configure Package
Turbo Power Limits

Configure DDR
PowerLimits (DDR

RAPL)

Set Boot P-state
based on Policy

Save SW SMI Number
in resume boot script
to trigger SMI during
S3 to restore MSRs

Lock down the MSRs
based on the policy

settings

Patch the
PpmGloablNvsArea to

PPMT opregion to
refer in ASL code

Install
PowerMgmtInitDon

e Protocol

Power MgmtInit
driver Exit

Save MSRs for S3
resume (Done in

PowerMgmtS3 entry)

Intel® Processor

38 Intel Confidential Reference Code Specification

3.2.2 _CST Flow

Intel® Processor

Reference Code Specification Intel Confidential 39

Intel® Processor

40 Intel Confidential Reference Code Specification

3.2.3 Modules

3.2.3.1 PowerMgmtInit Dxe Driver

3.2.3.1.1 Introduction

The Power Management Init Dxe driver is the main entry point of the PPM Reference

Code. The driver performs tasks such as setting the PpmNvsArea, acquiring

configuration policies, initializing PPM features based on processor capabilities and

configuration policies, registering SMM handler for restoring MSR values during S3,

generating ACPI tables and Initializing the IA package and DDR RAPL settings.

The driver is configured via a CPU Dxe Platform Policy protocol -> PowerMgmtConfig.

It provides platform configuration preferences for the PowermgmtInit driver to use in

enabling and performing Power Management functions.

The policy protocol must be produced by a platform component prior to PPM code

execution.

The Power Management Init DXE driver assumes BIOS_RESET_CPL bit is set. (SA RC

set BIOS_RESET_CPL in SA PEIM)

3.2.3.1.2 Prerequisites

 Basic processor initialization must be complete

 SMP/CMP processor initialization must be complete

 PPM and thermal MSR must not have been locked by prior code execution

 EFI_DEVICE_PATH_PROTOCOL – Documented in EFI Specification 2.3

 EFI_LOADED_IMAGE_PROTOCOL – Documented in EFI Specification 2.3

 EFI_ACPI_SUPPORT_PROTOCOL – Documented in the Intel® Platform

Innovation Framework for EFI ACPI Specification

 EFI_ACPI_TABLE_PROTOCOL – Documented in PI Specification 1.2

Intel® Processor

Reference Code Specification Intel Confidential 41

3.2.3.1.3 Result

The system Power management settings are determined and set up and the PPM

related ACPI tables are ready for OS to consume.

3.2.3.2 PowerMgmtS3 Driver

3.2.3.2.1 Introduction

The Platform Power ManagementS3 driver is an SMM driver whose main purpose is to

save MSR values during boot and restore them during S3. We set the Restore Flag to

TRUE or FALSE so that we will not try to restore the MSR entries that flagged the

Restore flag as FALSE.

The driver is a Framework DXE driver designed to function primarily in SMM mode.

The only normal DXE functionality is to register the driver for SMM use.

The PowerMgmtInitDone protocol must be produced by the PowerMgmtInit Driver

prior to PPM code execution.

3.2.3.2.2 Prerequisites

 Basic processor initialization must be complete

 SMP/CMP processor initialization must be complete

 SMM initialization must be complete

 SMM MP services must be available

 EFI_SMM_BASE_PROTOCOL – Documented in System Management Mode Core

Interface Specification (SmmCis.pdf)

 EFI_SMM_SYSTEM_TABLE – Documented in System Management Mode Core

Interface Specification (SmmCis.pdf)

 EFI_SMM_SW_DISPATCH_PROTOCOL – Documented in Framework Lynx Point

Reference Code Design Specification

Intel® Processor

42 Intel Confidential Reference Code Specification

3.2.3.2.3 Result

The system PPM settings are determined and set up, the PPM related SMM handlers

are functional, and the PPM related ACPI tables are ready for OS to consume.

3.2.3.3 ACPI Tables Data File

3.2.3.3.1 Introduction

The PPM specific ACPI Tables are provided as ACPI SSDT tables that are converted

into a Framework compliant data file that is located and loaded by the PowerMgmtInit

driver. The tables are published using Framework services to generate appropriate

ACPI objects for consumption by OS. The Power management Code publishes

Processor power Management related ACPI objects that

1. Report C-States

2. Report P-States

3. Report T-States

4. Dynamically load C-State and P-State support depending on configuration and

OS driver capabilities.

3.2.3.3.2 Prerequisites

 CFGD: It is mirror value of PPM flags

 _PDC: Collect OS driver capabilities and dynamically loads C-State/P-State

tables

 PpmGlobalNvs: Ppm Global ACPI NVS buffer used as a communications buffer

between Dxe code and ASL code

3.2.3.3.3 Result

Following ACPI methods are by the ACPI Tables ASL

 _OSY: The value of OS type

 _PPC, _PCT, _PSS: Publish P-State capabilities

 _CST: Publish C-State capabilities

 _TPC, _PTC, _TSS, _TSD: Publish T-State capabilities

Intel® Processor

Reference Code Specification Intel Confidential 43

Table 1. Intel _PDC Definitions

Bit [0] OS capable of access to IA32_PERF_CTL via FFH in _PCT

Bit [1] OS capable of supporting “I/O; HALT” sequence for C1 handler

Bit [2] OS capable of access to IA32_THERM_CTL via FFH in _PTC

Bit [3] OS capable of supporting _CST with only C1 in MP

OS capable of supporting _PSS, _TSS for P-States and T-State in MP

Bit [4] OS capable of supporting _CST with C2/C3 in MP

Bit [5] OS capable of P State Software Coordination via _PSD

Bit [6] OS capable of C State Software Coordination via _CSD

Bit [7] OS capable of T State Software Coordination via _TSD

Bit [8] OS capable of using Monitor/MWAIT for C1

Bit [9] OS capable of using Monitor/MWAIT for C2/C3

3.2.3.4 PPM GLOBAL NVS AREA PROTOCOL

Summary

This protocol provides definition of global NVS area protocol.

GUID

#define EFI_PPM_GLOBAL_NVS_AREA_PROTOCOL_GUID \

 {0x6c50cdcb, 0x7f46, 0x4dcc, 0x8d, 0xdd, 0xd9, 0xf0, 0xa3, 0xc6, 0x11,

0x28 \

 }

Protocol Interface Structure

typedef struct _ PPM_GLOBAL_NVS_AREA_PROTOCOL {

EFI_GLOBAL_NVS_AREA *Area;

} EFI_GLOBAL_NVS_AREA_PROTOCOL;

Parameters

Area

Pointer to a PPM global NVS area.

Intel® Processor

44 Intel Confidential Reference Code Specification

Description

This protocol provides PPM specific global NVS area definitions. The memory pointed

to must be of type ACPI NVS (see ACPI and UEFI specification for details on allocating

NVS memory).

Related Definitions

None

PPM_GLOBAL_NVS_AREA Fields

Summary

This section describes the PPM specific Global NVS Area fields that are referenced by the

Power Management Module. The PPM Global NVS Area is the communication buffer between

PPM code and ASL code. Above PPM Global NVS Area fields are part of Power management

code

3.3 Thermal Reporting

Thermal Reporting Module, a.k.a. DTS (Digital Thermal Sensor), is a Framework

compliant DXE driver and support libraries. This driver is configured via the DTS item

in CPU Platform Policy protocol. The item must be produced by a platform component

prior to this module’s initialization. Through policy protocol DTS driver can be

configured for temperature reporting via threshold interrupts or just enabling the

critical temperature interrupt for graceful shutdown of the system in the event of Out

of Spec temperature condition. The whole implementation is based on Haswell

Processor family BIOS Writer’s Guide.

3.3.1 Thermal Reporting (DTS) Module Execution

Flow

1. Locate CPU Policy Protocol and Initialize SMM Driver

2. Copy DTS driver to SMM RAM

3. Generate SMI for SMM dispatching initialization

Intel® Processor

Reference Code Specification Intel Confidential 45

4. Initialize the global variables

5. Initialize the support libraries

6. Register the callback function based on the DTS item in CPU

platform policy

7. Enable DTS by setting appropriate MSR bits

8. Initialize DTS Code Definitions

3.3.2 Interfaces and Functions

This section describes code definitions for the DTS functions in this module.

3.3.2.1 Dependencies

 EFI_LOADED_IMAGE_PROTOCOL - Documented in EFI Specification 1.10

(EFI_1-10.pdf)

 EFI_ACPI_SUPPORT_PROTOCOL - Documented in the Intel® Platform

Innovation Framework for EFI ACPI Specification.

 EFI_SMM_BASE_PROTOCOL - Documented in System Management Mode Core

Interface Specification (SmmCis.pdf)

 EFI_GLOBAL_NVS_AREA_PROTOCOL - Documented in the Framework

Platform Power Management Client Reference Code Architecture Specification

 EFI_SMM_IO_TRAP_DISPATCH_PROTOCOL - Documented in Cougar Point

Framework BIOS Reference Code Specification

 EFI_SMM_SX_DISPATCH_PROTOCOL - Documented in Cougar Point

Framework BIOS Reference Code Specification

 CPU_PLATFORM_POLICY_PROTOCOL – This Document

3.3.2.2 InstallDigitalThermalSensor ()

Summary

This procedure is the driver entry point for the DXE driver.

Intel® Processor

46 Intel Confidential Reference Code Specification

Prototype

EFI_STATUS

InstallDigitalThermalSensor (

 IN EFI_HANDLE ImageHandle,

 IN EFI_SYSTEM_TABLE *SystemTable

);

Parameters

ImageHandle

The firmware allocated handle to the Driver Image

SystemTable

Pointer to the EFI System table

Description

This procedure checks platform policy item (“EnableDts”) setting and initializes/installs

corresponding SMI events and event handlers.

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.3 InitializeDtsHookLib ()

Summary

Place to call OEM hooks.

Prototype

EFI_STATUS

InitializeDtsHookLib (

 VOID

);

Intel® Processor

Reference Code Specification Intel Confidential 47

Parameters

None

Description

Put OEM code here.

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.4 DigitalThermalSensorEnable ()

Summary

Initializes the Thermal Sensor Control MSR. This function must be AP safe.

Prototype

EFI_STATUS

DigitalThermalSensorEnable (

 VOID *Buffer,

);

Parameters

Buffer

Unused in this function.

Description

This procedure enables DTS.

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.5 DigitalThermalSensorInit ()

Summary

Intel® Processor

48 Intel Confidential Reference Code Specification

Performs first time initialization of the Digital Thermal Sensor, based on platform DTS

policy to enable threshold table interrupts or critical temperature interrupt for out of

spec condition

Prototype

EFI_STATUS

DigitalThermalSensorInit (

 VOID

);

Parameters

None

Description

This procedure does all the DTS initialization.

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.6 DtsSmiCallback ()

Summary

SMI handler to handle DTS CPU Local APIC SMI for thermal threshold interrupts.

Prototype

EFI_STATUS

DtsSmiCallback (

 EFI_HANDLE SmmImageHandle,

 VOID *CommunicationBuffer,

 UINTN *SourceSize,

);

Parameters

Intel® Processor

Reference Code Specification Intel Confidential 49

SmmImageHandle

The firmware allocated handle to the Driver Image

CommunicationBuffer

Pointer to the buffer that contains the communication Message

SourceSize

Size of the memory image to be used for handler

Description

This procedure handles DTS SMI events and depending on processor capability, it will

either handle per-core DTS SMI or per-package DTS SMI events. Per-package DTS

SMI will be chosen and initialized by default if the processor supports it.

Status Codes Returned

EFI_SUCCESS Init Digital Thermal Sensor successfully

3.3.2.7 DtsIoTrapCallback ()

Summary

This catches IO trap SMI generated by the ASL code to enable the DTS AP function

Prototype

EFI_STATUS

DtsIoTrapCallback (

 EFI_HANDLE DispatchHandle,

 EFI_SMM_IO_TRAP_DISPATCH_CALLBACK_CONTEXT

 *CallBackContext

);

Parameters

DispatchHandle

Not used in this function.

Intel® Processor

50 Intel Confidential Reference Code Specification

CallbackContext

Not used in this function.

Description

This procedure does necessary DTS initialization for system Standby entry and exit,

and this callback function is required to be called in ACPI _PTS() and _WAK()

methods.

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.8 DtsS3EntryCallback ()

Summary

Callback function for S3 Entry to clear DTS status flags

Prototype

EFI_STATUS

DtsS3EntryCallback (

 EFI_HANDLE Handle,

 EFI_SMM_SX_DISPATCH_CONTEXT *Context,

);

Parameters

Handle

Handle of the callback.

Context

The dispatch context.

Description

This procedure does all the DTS initialization required for Standby entry.

Status Codes Returned

Intel® Processor

Reference Code Specification Intel Confidential 51

EFI_SUCCESS Command succeeded.

3.3.2.9 DtsOutOfSpecSmiCallback ()

Summary

SMI Handler to handle DTS CPU Local APIC SMI for Critical Temperature Interrupts

Prototype

EFI_STATUS

DtsOutOfSpecSmiCallback (

 EFI_HANDLE SmmImageHandle,

 VOID *CommunicationBuffer,

 UINTN *SourceSize

);

Parameters

SmmImageHandle

The firmware allocated handle to the Driver Image

CommunicationBuffer

Pointer to the buffer that contains the communication Message

SourceSize

Size of the memory image to be used for handler

Description

This procedure handles the DTS Out-of-spec SMI event. This SMI event and handler

will be initialized when the “EnableDts” field in platform policy is set to 2 (Out of Spec

Only). From reference code 0.8.0 this “Out of Spec Only” DTS operation mode has

been separated from DTS Enable mode. When the temperature has reached a critical

temperature threshold, the SMI handler will set the DTS operation mode to

DTS_OUT_OF_SPEC_OCCURRED (3), to indicate a critical temperature condition has

been reached and it is required to do a graceful system shutdown immediately.

Intel® Processor

52 Intel Confidential Reference Code Specification

Status Codes Returned

EFI_SUCCESS Command succeeded.

3.3.2.10 DTS Item of CPU Platform Policy Protocol

Summary

This item in CPU policy protocol is for DTS to pass in user selectable DTS options to

DTS driver.

Definition

EnableDts

The field describes the selected DTS policy –

 “Disable” (set to 0 - default)

 “Enable” (set to 1)

 “Critical Temp Reporting (Out of spec)” (set to 2)

Description

The data elements should be initialized by a Platform Module. The data structure is

located through its GUID to retrieve CPU platform policy.

ACPI GlobalNvs -> EnableDigitalThermalSensor will be initialized by DTS module

to indicate current DTS operation mode and ACPI thermal zone scope should check

this field and use proper thermal reporting mechanism depending upon different DTS

operation mode.

ACPI GlobalNvs -> EnableDigitalThermalSensor field will have following value

set:

DTS_SMM_DISABLE (0) – This value will be set when the platform policy

“EnableDts” is set to “Disable” (0). No DTS SMI events will be enabled and no DTS

SMI event handler will be installed. In this case, an alternate thermal reporting

mechanism should be applied in ACPI thermal zone instead of

DTS.DTS_SMM_ENABLE (1) – This value will be set when the platform policy

“EnableDts” is set to “Enable” (1). DTS threshold interrupt SMI events will be enabled

Intel® Processor

Reference Code Specification Intel Confidential 53

and corresponding event handler will be installed. ACPI thermal zone may use DTS as

thermal reporting mechanism.

DTS_OUT_OF_SPEC_ONLY (2) – This value will be set when the platform policy

“EnableDts” is set to “Critical Temp Reporting (Out of spec)” (2) and the critical

temperature has not been reached. Unlike the “Enable” mode, the DTS threshold

interrupt SMI events will not be enabled thus DTS temperature data will not be

updated during runtime. Only the “critical temperature interrupt” SMI event will be

enabled and this SMI event will be generated when the temperature has reached a

factory configured critical temperature. From reference code 0.8.0 the “Critical Temp

Reporting (Out of spec)” mode has been separated from “Enable” mode and ACPI

thermal zone should implement alternate thermal reporting mechanism when ACPI

GlobalNvs -> EnableDigitalThermalSensor is not 1 (DTS “Enable” mode).

DTS_OUT_OF_SPEC_OCCURRED (3) – This is an indicator to ACPI thermal zone to

request a graceful shutdown because processor has reached critical temperature

condition. When DTS operation mode is “Critical Temp Reporting (Out of spec)” (set

platform policy “EnableDts” to 2) and processor temperature has reached Out-of-spec

condition, this value will be set to ACPI GlobalNVS “EnableDigitalThermalSensor”.

ACPI thermal zone should report critical trip point temperature to OS and have OS do

graceful shutdown immediately when this value set to ACPI GlobalNvs ->

EnableDigitalThermalSensor.

Intel® Processor

54 Intel Confidential Reference Code Specification

3.4 TXT

This specification is useful for any software developer using an Intel® Trusted

Execution Technology (Intel® TXT) component and a Framework compliant system

BIOS that utilizes the reference code for Haswell platform.

This document describes the component and its software interfaces in sufficient detail

for system BIOS developers to use and modify the Intel TXT reference code.

3.4.1 Overview

3.4.1.1 Architectural Overview

TxtInit PEIM

The main task of this module is to determine the status of the memory. If the

memory is locked, TXT PEIM prepares the environment to execute BIOS ACM and

then calls its SCLEAN function. The SCLEAN function unlocks the memory so that

upon reset a normal boot will occur. Changes in section 6.2.5 of RS – Intel Trusted

Execution Technology BIOS Specification, SCLEAN on Haswell platform which indicate

SCLEAN will only unlock memory and clear secrets flag, it’s BIOS’s responsibility to

scrub memory and make sure contents of memory are over-written.

TxtInit DXE Driver

The main task of this driver is to run SCHECK of BIOS ACM and to program Intel TXT

heap memory and registers in Intel TXT public space as required by RS – Intel Trusted

Execution Technology BIOS Specification. The SCHECK function verifies the

correctness of the memory configuration and locks it. The information in the heap

memory and public space registers is used by the system software to establish the

MLE.

Intel® Processor

Reference Code Specification Intel Confidential 55

AP Initialization Module

AP Initialization Module conceptually is part of TXT PEIM since it works together

with it for preparation of the SCLEAN launch environment but architecturally is

separated because it must reside in flash part on 4KB boundary. This requirement is

imposed by the SIPI vector creation rule.

The main tasks of the AP Initialization Module consist of the following — All APs’

CR0.CD and CR.NW must be ensured clear with cache enabled; CPU micro code patch

must be loaded; MCA registers must be cleaned. Full details can be found in RS – Intel

Trusted Execution Technology BIOS Specification.

BIOS ACM

The BIOS AC Module is a chipset specific signed binary provided by Intel and is called

to perform functions required to enable the Intel TXT environment. The AC module is

loaded into and executed from the CPU cache. This area of the CPU cache is known as

the Authenticated Code RAM (AC RAM).

The BIOS AC Module is launched by the BIOS to perform the following specific

functions.

 Unlock Memory (SCLEAN) — Unlocks the memory by writing through TXT private

space registers.

 Reset TPM Establishment Flag — Resets the TPM establishment flag to factory

default.

 Check and Register (SCHECK) — Checks the current version of the BIOS AC

module that is registered in the TPM NV RAM.

3.4.1.2 Dispatch Flow

According to aforesaid architectural description, Intel TXT sub-components and

support modules must be dispatched in the following order.

Platform PEIM | TCG/TPM PEIM –>

TXT PEIM –>

Memory Initialization PEIM | CPU PEIM –>

Intel® Processor

56 Intel Confidential Reference Code Specification

Platform DXE -> TXT Driver

Platform PEIM and TCG/TPM PEIM can be mutually executed in any order but both

must be dispatched before TXT PEIM in order to properly create TXT Info Hob and

initialize TPM.

TXT PEIM must be dispatched before Memory Initialization PEIM in order to unlock

memory interface if necessary.

Memory Initialization PEIM and CPU PEIM can be mutually executed in any order,

but CPU PEIM must be dispatched at least after Platform PEIM since it consumes TXT

Info Hob information.

Platform DXE driver initiates TxtPolicyProtocol which is executed by TxT

DXE driver.

TXT Driver is executed in DXE phase and is dispatched last.

3.4.2 Code Definitions

3.4.2.1 TxtInit PEIM

Description

Bit 0 of TPM Command Register located at address 0xFED40000 has special meaning

for Intel TXT enabled chipset. This bit is called “Establishment” bit and initially has

value logic “1”. When MVMM is started on the platform the first time, Establishment

bit is asserted to the value logic “0”.

During a platform boot, read access to Establishment bit is snooped by chipset. If bit

is deasserted (logic “1”) the fact of the read itself will unconditionally unlock the

memory interface. This is why memory initialization code is required to perform a read

of the byte containing this bit.

If Establishment bit is asserted (logic “0”), chipset performs further checking. If it

“thinks” that there are no secrets present in memory – chipset unlocks the memory

interface and boot proceeds normally. Otherwise, if secrets are present in memory,

Intel® Processor

Reference Code Specification Intel Confidential 57

the memory interface remains locked and the only way to unlock it for BIOS is to

execute the SCLEAN function of BIOS ACM.

Software can determine the locked memory status by checking the “Wake Error

Status” bit – bit 6 of Status Register located at address 0xFED40008. If Wake Error

Status bit equals 1 – memory is locked.

The above description stipulates the main task of the TxtInit PEIM – it must detect

whether memory is locked. To do so, it is necessary to call the SCLEAN function of

BIOS ACM.

If SCLEAN has to be run, TxtInit PEIM prepares the environment as specified in

section 6.2.5 of RS – Intel Trusted Execution Technology BIOS Specification – it

starts-up and initializes APs, puts APs in WFS state, prepares BSP to launch ACM, and

finally executes the GETSEC[ENTERACCS] instruction with input parameters directing

ACM to execute the SCLEAN function.

Dependencies

PEI_STALL_PPI_GUID — this PPI is necessary because TXT PEIM uses PEI_STALL_PPI

services

PEI_TPM_INITIALIZED_PPI_GUID — this PPI is installed by TCG PEIM and signals that

TPM PEIM has been loaded.

PEI_CPU_PLATFORM_POLICY_PPI_GUID — Policy PPI which is installed by Platform

code.

Interface

PEI_TXT_MEMORY_UNLOCKED_PPI

Summary

This PPI is installed in the beginning of TXT PEIM Entry Code in order to signal to

Memory Initialization PEIM that the memory interface is unlocked.

Intel® Processor

58 Intel Confidential Reference Code Specification

PPI is installed always, regardless of TXT enabling status. This guarantees that

Memory Initialization PEIM will run.

GUID

#define PEI_TXT_MEMORY_UNLOCKED_PPI_GUID \

{0x38cdd10b,0x767d,0x4f6e,0xa7,0x44,0x67,0xee,0x1d,0xfe,0x2f,0xa5}

PPI Interface Structure

EFI_GUID gPeiTxtMemoryUnlockedPpiGuid =

 PEI_TXT_MEMORY_UNLOCKED_PPI_GUID;

static EFI_PEI_PPI_DESCRIPTOR mPpiList = {

 (EFI_PEI_PPI_DESCRIPTOR_PPI | EFI_PEI_PPI_DESCRIPTOR_TERMINATE_LIST),

 &gPeiTxtMemoryUnlockedPpiGuid,

 NULL

};

Parameters

PPI Interface structure is empty and doesn’t have any control methods.

Description

PPI is used only to signal subsequent modules that TXT PEIM has been run.

Related Definitions

None

3.4.2.2 TxtInit DXE Driver

Description

The TxtInit DXE driver is a major sub-component of Intel TXT component. It

collects all information passed to it through TXT Info Hob and performs the following:

 It determines whether Intel TXT is enabled by reading CPU

IA32_FEATURE_CONTROL_MSR.

Intel® Processor

Reference Code Specification Intel Confidential 59

 If Intel TXT is enabled, TxtInit DXE Driver first programs TXT Heap Memory

and Intel TXT registers in Intel TXT public space, as required by RS – Intel Trusted

Execution Technology BIOS Specification. Along with this programming TXT

Driver adds respective register values to Boot Script. This will ensure the

restoring of register values upon resume from S3.

 It then creates a “ReadyToBoot” event and in the context of the callback function

it executes the SCHECK function of BIOS ACM. The main purpose of SCHECK is to

validate the correctness of the platform configuration, lock this configuration, and

check and update BIOS ACM registration in TPM NV RAM. In order to launch BIOS

ACM TXT Driver code programs BSP and APs in the way analogous to the TXT

PEIM.

 If Intel TXT is disabled but Establishment bit is asserted (logic “0”), in order to

avoid possible “brick” situation when BIOS and / or BIOS ACM is updated, TXT

Driver runs BIOS ACM RESET_ESTABLISHMENT_BIT function. The procedure is

skipped if TPM doesn’t get initiated first.

 TxT DXE driver reads policy settings from CpuPlatformPolicyProtocol. For now,

ResetAux is the only function. Once Platform DXE driver sets ResetAux of the

policy protocol, TxtInit DXE driver will lunch ResetAux function to clear Auxiliary

content.

Dependencies

EFI_BOOT_SCRIPT_SAVE_PROTOCOL_GUID — TxT DXE driver saves registers through

this protocol for S3 resume.

EFI_MP_SERVICES_PROTOCOL_GUID — The protocol provides the services for initiate

CPUs.

EFI_SMM_BASE_PROTOCOL_GUID — TxT DXE driver requires to be loaded after SMM

Base driver is loaded.

EFI_CPU_IO_PROTOCOL_GUID — Access MMIO/IO registers.

DXE_CPU_PLATFORM_POLICY_PROTOCOL_GUID — Policy protocol which is installed

by Platform code.

Intel® Processor

60 Intel Confidential Reference Code Specification

Interface

None

Related Definitions

None

3.4.2.3 AP Initialization Module

Description

 AP Initialization Module requires special placement in flash part – specifically the

code section of TxtPeiAp.FFS file must be located on 4KB boundary. This is

because AP initialization code is invoked as a result of the SIPI message generated

by TxtInit PEIM.

The SIPI message contains an 8 bit vector field describing message destination.

Physical address where destination startup code must be located is calculated by

CPU as Vector << 12 and all low order bits are assumed to be 0.

The formula above stipulates that the highest address where the destination code

can be placed equals to 0xFF << 12 = 0xFF000 – address that is below 1 MB.

From another standpoint only two topmost blocks of flash part are reflected to

addresses below 1 MB. This limits the range where the TXTPEIAP.FFS file must be

placed – between addresses 0xE0000 and 0xFF000.

 AP Initialization Module must be compiled as a standalone file. This

requirement is imposed by the aforementioned 4-KB alignment. If AP

Initialization Module were compiled with PE or TE header then when

TXTPEIAP.FFS is placed into flash part, FV creation tools would force header to be

located on 4-KB boundary and since header size is not equal to 4 KB, code section

of TXTPEIAP.FFS file would be shifted off 4-KB boundary.

 AP Initialization Module needs a special fix-up procedure. Since it is compiled

as a standalone file without header, build tools don’t have the fix-up table needed

for fix-ups.

As a result, all offsets inside of AP Initialization Module remain relative to the

beginning of the file. At the same time, code in AP Initialization Module needs

Intel® Processor

Reference Code Specification Intel Confidential 61

access to parameters passed through registers located in Intel TXT public space in

high memory. For such access AP Initialization code needs to run in big real or

protected mode. Switching to any of these modes is impossible without fixed-up

variables embedded into module’s code. This dilemma is solved by using the

separate fix-up tool STAFIXUP.EXE run as part of build process.

Prerequisites

TxtPeiAp.FFS file must be located on 4KB boundary

TXTPEIAP.FFS file must be placed – between addresses 0xE0000 and 0xFF000

Related Definitions

AP Initialization Module FFS File GUID

#define PEI_AP_STARTUP_FILE_GUID \

 { \

 0xD1E59F50, 0xE8C3, 0x4545, 0xBF, 0x61, 0x11, 0xF0, 0x02, 0x23, 0x3C, 0x97 \

 }

3.4.2.4 BIOS ACM

Description

BIOS ACM interface is described in RS – Intel Trusted Execution Technology BIOS

Specification

Prerequisites

BIOS ACM must be placed in flash part on 4KB boundary

Related Definitions

BIOS ACM FFS file GUID

Intel® Processor

62 Intel Confidential Reference Code Specification

#define PEI_BIOS_ACM_FILE_GUID \

 { \

 0x2D27C618, 0x7DCD, 0x41F5, 0xBB, 0x10, 0x21, 0x16, 0x6B, 0xE7, 0xE1, 0x43 \

 }

3.4.2.5 TpmInitialized PPI

Description

PEI_TPM_INITIALIZED_PPI_GUID is installed by TCG/TPM PEIM if TPM module is

initiated successful..

Definitions

#define PEI_TPM_INITIALIZED_PPI_GUID \

 { \

 0xe9db0d58, 0xd48d, 0x47f6, 0x9c, 0x6e, 0x6f, 0x40, 0xe8, 0x6c, 0x7b, 0x41 \

 }

3.4.2.6 TxtOneTouch GUID

Description

TxT One Touch is optional. Please refer to TxT One Touch BIOS spec for detail

information and refer to TCG Physical Presence specification.

The GUID includes the definitions which are defined by TxT One Touch BIOS spec.

Definitions

#define TXT_ONE_TOUCH_GUID \

 { \

Intel® Processor

Reference Code Specification Intel Confidential 63

 0x3D989471, 0xCFAC, 0x46B7, 0x9B, 0x1C, 0x8, 0x43, 0x1, 0x9, 0x40,

0x2D \

 }

#define ENABLE_VT 128

#define DISABLE_VT_TXT 129

#define ENABLE_VTD 130

#define DISABLE_VTD_TXT 131

#define ENABLE_ACTTPM_VT_VTD_TXT_DISABLE_STM 132

#define ENABLE_ACTTPM_VT_VTD_TXT_STM 133

#define DISABLE_STM 134

#define DISABLE_TXT_STM 135

#define DISABLE_SENTER_VMX 136

#define ENABLE_VMX_SMX_ONLY 137

#define ENABLE_VMX_OUTSIDE_SMX 138

#define ENABLE_VMX 139

#define ENABLE_SENTER_ONLY 140

#define ENABLE_SENTER_VMX_IN_SMX 141

#define ENABLE_SENTER_VMX_OUTSIDE_SMX 142

#define ENABLE_SENTER_VMX 143

#define SET_NO_TXT_MAINTENANCE_FALSE 159

#define SET_NO_TXT_MAINTENANCE_TRUE 160

Prerequisites

BIOS must support Physical Presence function.

3.4.2.7 TxtInfo HOB GUID

Description

TxtInfo HOB is used for passing platform policy settings and CPU/chipset information

within TxT modules.

Intel® Processor

64 Intel Confidential Reference Code Specification

Definitions

#define TXT_INFO_HOB_GUID \

{0x2986883F,0x88E0,0x48d0,0x4B,0x82,0x20,0xC2,0x69,0x48,0xDD,0xAC}

typedef struct {

 BOOLEAN ChipsetIsTxtCapable;

 UINT8 TxtMode;

 UINT64 PmBase;

 UINT64 SinitMemorySize;

 UINT64 TxtHeapMemorySize;

 EFI_PHYSICAL_ADDRESS TxtDprMemoryBase;

 UINT64 TxtDprMemorySize;

 EFI_PHYSICAL_ADDRESS BiosAcmBase;

 UINT64 BiosAcmSize;

 EFI_PHYSICAL_ADDRESS McuUpdateDataAddr;

 EFI_PHYSICAL_ADDRESS SinitAcmBase;

 UINT64 SinitAcmSize;

 UINT64 TgaSize;

 EFI_PHYSICAL_ADDRESS TxtLcpPdBase;

 UINT64 TxtLcpPdSize;

 UINT64 Flags;

} TXT_INFO_DATA;

#define FLAGS0 0x1

#define TXT_CPU_RESET_REQUIRED 0x2

#define TPM_INIT_FAILED 0x4

Intel® Processor

Reference Code Specification Intel Confidential 65

Parameters

ChipsetIsTxtCapable Boolean value is set to logic “1” if chipset is Intel® TXT

capable.

TxtMode Boolean value is set to logic “1” if Intel TXT mode is enabled in

BIOS Setup.

PmBase Address of PM1a_CNT_BLK register block. Is used by TXT PEIM

to clean Sleep Type field of PM1a_CNT_BLK.S4 register before

running of SCLEAN.

SinitMemorySize Size of memory reserved for placement of SINIT module. This

memory is used by MLE.

TxtHeapMemorySize Size of memory reserved for TXT Heap. This memory is used

by MLE.

TxtDprMemoryBase Base address of DPR protected memory reserved for Intel TXT

component.

BiosAcmBase Base address of BIOS ACM in flash part. It can be passed

through platform code for customization; Intel TXT reference

code would skip searching the BIOS ACM in PEI firmware

volume if the field is not zero.

BiosAcmSize Size of BIOS ACM.

McuUpdateDataAddr Base address of CPU micro code patch loaded into BSP. It can

be passed through platform code for customization; Intel TXT

reference code would skip searching the micro code path in

PEI firmware volume if the field is not zero.

SinitAcmBase Base address of SINIT module if installed in flash part. Zero

otherwise.

SinitAcmSize Size of SINIT module if installed in flash part. Zero otherwise

TgaSize Size of Trusted Graphics Aperture if supported by chipset. For

Cantiga must be 0.

TxtLcpPdBase Base address of Platform Default Launch Control Policy data if

installed in flash part. Zero otherwise.

TxtLcpPdSize Size of Platform Default Launch Control Policy data if installed

in flash part. Zero otherwise.

Flags Up to 64 bit flags passed from BIOS to OS or MRC

BIT0 - FLAGS0 for compatible definition

BIT1 - TXT_CPU_RESET_REQUIRED for MRC to issue reset if

required

BIT2 - TPM_INIT_FAILED for indicate TPM initiate status. If the

bit set, ResetEstablishmentBit is skipped in Dxe driver.

Intel® Processor

66 Intel Confidential Reference Code Specification

3.4.3 STAFIXUP Tool

Building of the TXT component requires the fixing up of the AP Initialization

Module file. This task is performed by the custom STAFIXUP utility.

Description

STAFIXUP gets, as one of the command line parameters, the GUID of the FFS file.

It looks for this GUID in the binary image of BIOS ROM file.

It takes, as a second parameter, the name of the text file which has the fix-up

information. This is analogous to the fix-up table of the PE header. Specifically,

each line of text file contains the following information.

Offset from beginning of code section to be fixed;

Width of data to be fixed.

Supported widths are 2 and 4 bytes.

Finally it takes as a parameter range of BIOS ROM file to be searched.

STAFIXUP then searches a specified range of offsets and after the FFS file with a

specified GUID is found, it performs its fix-up using the following methodology.

It assumes that the end of the BIOS ROM file corresponds to physical address

4 Gb for each 4 bytes-wide fix-up and 1 Mb for each 2 byte-wide fix-up.

It then computes the physical address of the beginning of the code section of the

found file by skipping its header.

It reads from the text file fix-up offsets and widths and performs fix-ups using the

following formula:

If (width = 2 bytes)

New_Content_Of_WORD_At_Given_Offset =

 Old_Content_Of_WORD_At_Given_Offset +

 1MB – Offset_from_File_End

 Else if (width = 4 bytes)

New_Content_Of_DWORD_At_Given_Offset =

Intel® Processor

Reference Code Specification Intel Confidential 67

 Old_Content_Of_DWORD_At_Given_Offset +

 4GB - Offset_from_File_End

 Else

 Error

It checksums the file if it is requested by the file attributes

Fix-Up File Format Sample

File format:

#-----------------

Offset, Width

0x12, 4

Command Line Interface

When called without parameters STAFIUP displays the following command line

help.

Standalone file fix-up tool. Rev. 1.0, Copyright (c) Intel Corp. 2007

STAFixup <GUID> <EfiFileName> <FuFileName> [<StartOffset> [<EndOffset>]]

 GUID - GUID of FFS file to fix-up.

 EfiFileName - EFI Image file containing the above FFS file.

 FuFileName - Text file containing fix-up table.

 StartOffset - Offset from end-of-file to start search from.

 EndOffset - Offset from end-of-file to stop search at.

First three parameters – GUID, EfiFileName and FuFileName represent the GUID of

FFS file to search for; BIOS ROM file name to search and Fix-up table file name.

Intel® Processor

68 Intel Confidential Reference Code Specification

These parameters are mandatory and their usage is self-explanatory.

The other two parameters – StartOffset and EndOffset specify the range of the

search. Both offsets are computed from the end of file. These parameters are

optional. If both are omitted, the entire BIOS ROM file will be searched. If only

StartOffset is specified, the search will start of offset (End_Of_File – StartOffset)

and will continue until the end of the file. If both are specified, only a range of

offsets

((End_Of_File – StartOffset) - (End_Of_File – EndOffset)) will be searched.

Safeguarding of Build

Since, as it was explained above, AP Initialization Module must reside in flash part

between 0xE0000 and 0xFF000 addresses, an ability of STAFIXUP tool to search only

a given offset range can safeguard Developer against wrong placement of this module

in flash part.

For instance the following example will search only the last two blocks of BIOS ROM

file.

STAFIXUP My_GUID My_ROM My_Table 0x20000

If My_GUID is not found in the last two blocks, STAFIXUP will return an error and stop

the build. An example is as below.

STAFixup.exe D1E59F50-E8C3-4545-BF61-11F002233C97 0ABOZ035.rom

Platform\IntelMpg\Common\Txt\Pei\Ia32\Apfixup.txt 0x20000

STAfixup utility for patching TXT AP PEI module address fixup, Rev. 1.0.1

Copyright (c) Intel Corp. 2007-2009

Error: FFS GUID D1E59F50 4545E8C3 F01161BF 973C2302 for TxtPeiAp.BIN has not

been found

 in file 0ABOZ035.rom by searching from end of file minus offset 131072 bytes

Intel® Processor

Reference Code Specification Intel Confidential 69

 per CPU AP initialization requirement(refer to Framework TXT reference code

design spec. for more detail).

3.4.4 TxT One Touch Function

TxT One Touch function is an optional function. It defines additional operators of TPM

Physical Presence Interface spec. Please refer to Intel® Trusted Execution

Technology (TXT) – One-Touch Enabling spec. There is a sample code

(TxtOneTouchDxe driver) in sample code folder. The sample code shows the sample

for each operator’s function. BIOS developers need follow ntel® Trusted Execution

Technology (TXT) – One-Touch Enabling and TPM Physical Presence Interface

spec to develop the function.

Intel® Processor

70 Intel Confidential Reference Code Specification

3.5 Boot Guard

3.5.1 Overview

Haswell ULT supports Boot Guard (formerly known as Anchor Cove). Please refer to

Boot Guard BWG and Boot Guard for Shark Bay Ultrabook Architecture Overview for

detail description. With Boot Guard support, BIOS needs to have below changes.

 FIT (Firmware Interface Table) needs to report Anchor Cove ACM (Type 2).

 Report Boot Policy Manifest (Type 0x0C) in FIT

 Report Key Manifest (Type 0x0B) in FIT

 Modified NEM initialization

 Stop PBE (Protect BIOS Environment) Timer

 TPM initialization flow change

3.5.2 FIT Table

BIOS needs to implement FIT table which contains entries for uCode patch, Boot

Guard ACM, Boot Policy Manifest and Key Manifest. Customers need to create a tool to

generate the FIT table and fill it into BIOS image. Please refer to Boot Guard BWG and

Firmware Interface Table Specification for getting detail information.

3.5.3 Boot Policy Manifest and Key Manifest

Boot Policy Manifest and Key Mainifest are required for Boot Guard. Boot Guard ACM

verifies the content of Boot Policy Manifest and Key Manifest. BIOS needs to have

Boot Policy Manifest and Key Manifest reported in FIT table. The structures of Boot

Policy Manifest and Key Manifest are defined in Boot Guard BWG. Customers need to

create a tool to generate Boot Policy Manifest and Key Manifest and fill the data into

BIOS image.

Intel® Processor

Reference Code Specification Intel Confidential 71

Original Flow

3.5.4 NEM Initialization Change

Boot Guard ACM programs NEM for code region. BIOS should not program NEM again.

BIOS only needs to set MTRR for covering DataStack region. The flow of NEM

initialization needs to have below change. Please refer to SampleCode\SecCore.

All non BSP threads are in Wait-for-SIPI

Initialize all MTRR to 0

(Fixed & Variable)

Configure default type to UC

Configure Data region as WB

Determine base address & length for Code region

Configure Code region (IBB) as WP

Configure WDB region as WC

Enable MTRRs

Enable NEM setup state

set all cache values to the

modified state

Enable NEM

Test Data Region

Detect Boot Guard ACM Boot

Read MSR 013AH

Boot Guard
Boot?

Yes

No

Configure Data region as WB

Configure WDB region as WC

set all cache values to the

modified state

Intel® Processor

72 Intel Confidential Reference Code Specification

BIOS reads bit 0 of BOOT_GUARD_SACM_INFO (MSR 0x13A) for ensure NEM enabled

by ACM. If the bit is set, BIOS needs to skip NEM initialization and set MTRR for data

region. Otherwise, BIOS proceeds NEM initialization flow.

3.5.5 Stop PBE Timer

When Boot Guard ACM signals it is executing, PBE Timer is started by Boot Guard

ACM. The timer continues until the BSP executing the BIOS indicates to PBE Timer.

BIOS needs to stop the timer before send SIPI to wake up APs. If BIOS wakes up APs

without stop the timer, system gets reset. If the timer expires, system gets reset also.

Haswell CPU reference code contains the code to stop PBE timer in normal boot path

and S3 resume path.

3.5.6 TPM Initialization

When measured boot is set, Boot Guard ACM initialize TPM. BIOS should not send

Startup command again. BOOT_GUARD_CONFIG is defined in CpuPlatformPolicy PPI.

CpuInitPei checks Boot Guard status and update BOOT_GUARD_CONFIG. BIOS needs

to check the policy and update TPM codes. BOOT_GUARD_CONFIG contains below

information.

Item Name Description

MeasuredBoot TRUE – ACM performs Measured Boot

FALSE – No Measured boot performed by ACM

ByPassTpmInit TRUE – TPM initialization is done by ACM.

FALSE – No TPM initialization happen in ACM

TpmType Report what TPM is available on system.

00 – No TPM

01 – dTPM 1.2

02 – dTPM 2.0

03 - PTT

BootGuardSupport TRUE – Boot Guard is supported

FALSE –Boot Guard is NOT supported

Intel® Processor

Reference Code Specification Intel Confidential 73

DisconnectAllTpms TRUE – BIOS will not to do any futher TPM initization and
extends.

FALSE – BIOS will continue with TPM initization based on
MeasuredBoot.

ByPassTpmEventLog TRUE – Bypass TPM Event Log if Sx Resume Type is
identified.

FALSE – Create TPM event log if not Sx Resume Type.

Ensure BIOS Platform code reads above status to do below items,

1. BIOS has to read DisconnectAllTpms bit to identify if all TPM’s are

disabled. If it is TRUE, it means CPU failed to load Boot Guard ACM

and PTT or dTPM is disconnected until the next platform reset.Thus,

BIOS will not do any further TPM initialization & extends.If it is

FALSE, BIOS will continue with TPM initialization based on M value in

Boot Guard profile.

2. With MeasuredBoot and ByPassTpmInit is TRUE, Boot Guard ACM

does TPM initialization includes Startup command and extend

SCRTM. BIOS will skip these two but do subsequent Extends,

Platform Hierarchy and publish ACPI table. .

3. With MeasuredBoot is FALSE, Boot Guard AMC left TPM untouched,

BIOS will completely initialize TPM based on BIOS policies/Setup

options.

4. BIOS may have different TPM drivers for dTPM 1.2/ dTPM 2.0/PTT.

TpmType reports what TPM is installed on system and initialized by

Boot Guard ACM. BIOS TPM code may need to read TpmType for

executing correct TPM code.

5. The ByPassTpmEventLog is indicated BIOS TPM code not to create

DetailPCR or AuthorityPCR event log if Sx resume type is S3, Deep-

S3, or iFFS Resume.

Intel® Processor

74 Intel Confidential Reference Code Specification

3.5.7 TPM Event Log

Boot Guard ACM performs measurements but within an environment without memory.

Therefore Boot Guard ACM cannot create TCG Event Log Entries for the

measurements. Components after Boot Guard ACM execute (e.g., IBB or DXE or even

later components) must create these events. Boot Guard uses the currently defined

TCG Event Log Structure currently defined for TPM 1.2 in PC Client Specification for

Conventional BIOS even for PTT or dTPM 2.0. This is because Boot Guard for HSW-

ULT implements SHA-1 PCRs for PTT and dTPM 2.0 and TCG has not completed

definition of an Event Log Structure for TPM 2.0

The TCG defined Event Structure is copied below for reference only.

TCG_PCClientPCREventStruc

 pcrIndex DD ?

 eventType DD ?

 digest DB 20 dup (?)

 eventDataSize DD ?

 event DD ?

TCG_PCClientPCREventStruc

If MeasuredBoot is TRUE, BIOS will responsible for calculate Digest field of Detail

PCR Event or Authority PCR Event by steps below. For more detail description please

refer to Boot Guard BWG and SampleCode\Library\BootGuardTpmEventLogLib.

1. Create Detail PCR Event - PCR[0]

a. Create PCR Extend digest by using same data that ACM used to extend to

PCR[0] to create an event.

i. Find the following from FIT Table

1. Find ACM

2. Find KM

3. Find BPM

4. FindBpmIbb

5. FindBpmSignature

ii. Obtain Boot Policy Restrictions, Boot Policy Type, ACM SVN

Intel® Processor

Reference Code Specification Intel Confidential 75

iii. If MSR 0x13A indicates Verified Boot Success use the Hash value

indicated in Boot Policy Manifest for IBB

iv. Create Sha1 digest of PCR Data

2. Create Authority PCR Event - PCR[6] if dTPM1.2 or PCR[7] if dTPM 2.0/PTT

a. Create Authority PCR extend digest by using same data that ACM used to

extend to authority PCR

i. Find following from FIT Table

1. ACM

2. KM

ii. Boot Policy Restrictions, Boot Policy Type, ACM SVN

iii. Calculate ACMKeyHash

Note: The Authority PCR is not extended unless this is also a verified boot. Even if

verified boot AuthorityPCR is only extended if the Boot Policy Manifest instructs it to

do so.

3.6 PFAT

3.6.1 PFAT Overview

PFAT provides flash protection and BIOS update authorization using a combination of

CPU and PCH features

Intel® Processor

76 Intel Confidential Reference Code Specification

3.6.2 PFAT Initialization Boot Flow1

SEC PEI DXE

PFAT
Initialization

Create DPR
Infrastructure

PFAT –
SMM Init

BIOS Update
Interface

 Create PFAT HOB
 Enable PFAT
 Obtain PPDT & SHA256 Hash of PPDT
 Program PFAT MSR’s
 Provision EC(if EC supports PFAT)
 Lock PFAT status

 Create DPR Directory
 Reserve Memory below TSEG for

DMA Protected region

PI
 S

M
M

 C
o

re

C
PU

 S
M

M
 In

it

 Create PFAT Directory
 Update PFAT Directory elements
 Register IO Trap for PFAT Tools

Interface Initialization at
ExitPMAuth

 Install PFAT SMM Protocol

 Register IO Trap for
BIOS Update

 Update ACPI Tables

Flash Writes & Erases are
possible only after PFAT
SMM Protocol is installed

No Flash Write/Erases

3.6.2.1 PEI Initialization

PFAT Feature is initialized and locked based on platform policy for enabling PFAT. PFAT

HOB is created for accessing relevant PFAT data in DXE, SMM phases. PFAT MSR’s are

programmed and locked after enabling PFAT. Here after flash writes/erases can

happen only in SMM via PFAT module.

3.6.2.1.1 PPDT2

PFAT Platform Data Table has all the information of platform like Platform ID, Keys

used for signing flash updates. Most importantly SFAM which is signed flash address

map is part of PPDT. This is used to communicate to PFAT module the signed and

unsigned flash regions in flash.

1 RC is provided for all the components in this diagram

2 PPDT can be static for a given platform configuration

Intel® Processor

Reference Code Specification Intel Confidential 77

Platform attributes like EC Present and EC support for PFAT are part of PPDT. EC

Command/Status and Data ports used to communicate to EC, commands used to

communicate to EC are also part of PPDT table.

SHA256 hash of PPDT is programmed into PFAT MSR’s before locking PFAT status to

protect the integrity of PPDT.

3.6.2.1.2 EC Support

BIOS generates ephemeral password and provisions both EC and CPU early post for

PFAT support on EC. BIOS writes password to PLAT_FRMW_PROT_PASSWD for

provisioning CPU. BIOS sends password to EC via KSC (Keyboard & System

Management Controller) ports. EC Flash update with PFAT enabled will not use IO

ports, instead will use same SMI handler in BIOS that is used to update BIOS. PUP

header attributes will be read by PFAT module to identify if update package is

BIOS/EC FW.

3.6.2.2 DPR Infrastructure

DMA Protected Region (DPR) is below TSEG in memory map and is shared by TXT &

PFAT on platform. DPR directory3 (part of SA RC) is created in BIOS during PEI phase

and is allocated in memory map during Memory Initialization. DPR directory is in

SA_DATA_HOB and contains information on layout of DPR region.

3.6.2.3 SMM Initialization

PFAT Module can be invoked in SMM only. SMM Base has to be initialized before PFAT

SMM protocol is installed and any writes/erases to flash happen. During PFAT

initialization in SMM

6. PFAT Directory is created

3 Refer to Appendix in PFAT BWG for more information on DPR Infrastructure

its usage by PFAT.

Intel® Processor

78 Intel Confidential Reference Code Specification

7. Update PFAT Directory elements with their addresses – PFAT Module

& PPDT are allocated in TSEG and PUP, PUPC, & Log buffer are

allocated in DPR.

8. Register IO Trap for initialization of PFAT Tools Interface. This IO

trap will be triggered at ExitPMAuth4 event allowing BIOS to proxy

into SMM for initialization PFAT interface required for runtime

updates.

9. Install PFAT SMM protocol.

3.6.2.4 ExitPmAuth Event

PFAT Tools interface is initialized at ExitPmAuth Event. IO Trap required for BIOS/EC

FW update is registered. All PFAT ACPI tables are published with required PFAT data.

Here after runtime flash updates can be done via PFAT.

3.6.3 Platform BIOS Requirements

 BIOS region SMM protection5 must be enabled early post. This can be done

based on PchPlatformPolicy. Refer to PCH Integration guide for more

information.

 All UEFI variable writes/erases should happen in SMM only and after

installation of SMM_PFAT_PROTOCOL.

 Enabling PFAT on platform requires all flash writes & erases to be done via

PFAT Module.

 PFAT Module should be compiled into BIOS image with PFAT_MODULE_GUID

4 All PFAT ACPI tables must be initialized by ExitPmAuth Event

5 Enabling SMM Protection is a must for PFAT enabled platforms, disabling

this feature will void security provided by PFAT and allows any Non-SMM

driver to access flash

Intel® Processor

Reference Code Specification Intel Confidential 79

 Prior to SMM_PFAT_PROTOCOL installation the following elements of PFAT

Directory should be ready

o PFAT platform data table (PPDT) – Sample code provided, SHA256

Hash of the PPDT has to passed to PFAT_CONFIG in CPU platform

policy PPI. Hash can be either hardcoded value for given platform

configuration/calculated in run time using libraries, if available in

platform BIOS.

o PUP Header – Sample code provided. Most of the information in PUP

header is fixed for a given platform. PFAT module reads header and

identifies if flash update is targeted to EC Flash/BIOS.

 For PFAT Flash Components are always treated as one composite flash

component F0 irrespective of the physical flash components on platform.

Address passed to PFAT services to write/erase to flash is offset address from

base of composite flash component.

 Size allocated for PFAT module should always be 256K irrespective to size of

PFAT module to eliminate AC-RAM overlap of PFAT directory elements. Please

refer to PFAT EAS for more information on this.

3.6.4 Variable Writes with PFAT

All Non-volatile UEFI variable writes/erases should be done via PFAT Module and so

has to be thru SMI Handler. SPI library6 instances has to be modified to map to PFAT

SMM protocol instead of PCH SPI protocol for writes/erases to flash. Rest of the flash

operations will continue to use PCH SPI protocol.

The fact that all flash writes/erases happen in SMM only any variable writes/erases

can happen only after SMM Base is initialized and PFAT SMM protocol is installed. Also

variable writes/erases that happen in DXE has to be proxied to SMM.

6 Customers are responsible for modifying their SPI libraries & Variables

writes to SMM & PFAT protocol. This is not provided as part of RC.

Intel® Processor

80 Intel Confidential Reference Code Specification

Eg: SPI Flash Write

EFI_STATUS

SpiFlashWrite (

 IN UINTN Address,

 IN OUT UINT32 *NumBytes,

 IN UINT8 *Buffer

)

{

...

#ifdef PFAT_FLAG

 if (mPfatProtocol != NULL) {

 mPfatProtocol->Write (

 mPfatProtocol,

 (UINT32) Address,

 RemainingBytes,

 Buffer

);

 return EFI_SUCCESS;

 }

#endif

...

}

Intel® Processor

Reference Code Specification Intel Confidential 81

3.6.5 BIOS/EC FW Update Flow

OS Tool obtains PFAT DPR
physical address + size

SMI handler for IO Trap
will invoke PFAT Module
for processing update

BIOS reads PFAT_STATUS
on PFAT Module exit and
updates it at DPR base for
Tool to read

OS Tool obtains IO
Trap address and

writes to IO to
trigger BIOS Update

OS Tool parses PFAT_STATUS &
Log Buffer to evaluate result of
flash update and reports it

OS Tool Verifies the size of memory
reserved in DPR is big enough to hold
PUP + PUPC

OS Tool copies PUP +
PUPC to PFAT reserved
memory in DPR

OS Tool will read
ACPI Tables

BIOS update flow is one of the possible solutions of implementing BIOS update using

PFAT. This is provided as reference implementation to customers and can be easily

modified to supports customer tools and BIOS update flows.

3.6.6 PFAT ACPI Methods

All PFAT Methods are defined in System Bus namespace under PCI0 device…

S.No ACPI Object Description

1 PTMA PFAT DPR Memory address can be obtained from this
Method, OS tool will read this address and copy PUP
to this location.

2 PTMS PFAT DPR Memory Size can be obtained from this
Method, OS tool will read this information to ensure
that enough memory is reserved for copying PUP.

3 PTIA IO Trap Address that triggers SMI handler can be
obtained from this Method. OS Tool will copy PUP
into DPR and write to this IO address to trigger
BIOS/EC FW update.

Intel® Processor

82 Intel Confidential Reference Code Specification

3.6.7 Code Definitions

3.6.7.1 Depedencies

 EFI_SMM_BASE_PROTOCOL - Documented in System Management Mode Core

Interface Specification (SmmCis.pdf)

3.6.7.2 PFAT Module

Signed PFAT module is delivered by Intel Corporation as separate binary. PFAT module

is launched on all flash writes & erases

PFAT_MODULE_GUID

Summary

PFAT Services during SMM initialization use this GUID to locate PFAT module, and

update PFAT Directory with its location.

GUID

#define PFAT_MODULE_GUID \

 { 0x7934156D, 0xCFCE, 0x460E, 0x92, 0xF5, 0xA0, 0x79, 0x09, 0xA5, 0x9E,

0xCA}

3.6.7.3 PFAT HOB

Description

PFAT HOB is used for passing platform policy settings and CPU/chipset information to

PFAT driver in SMM & DXE phase.

Definitions

#define PFAT_HOB_GUID \

{0x66F0C42D,0x0D0E,0x4C23,0x93,0XC0,0x2D,0x52,0x95,0xDC,0x5E,0x21}

typedef struct {

Intel® Processor

Reference Code Specification Intel Confidential 83

 EFI_HOB_GUID_TYPE EfiHobGuidType;

 PPDT Ppdt;

 PUP_HEADER PupHeader;

 UINT8 NumSpiComponents;

 UINT8 ComponentSize[MAX_SPI_COMPONENTS];

 UINT64 PfatToolsIntIoTrapAdd;

 PFAT_LOG PfatLog;

} PFAT_HOB;

Parameters

EfiHobGuidType

Ppdt PFAT Platform Data Table, refer to PFAT EAS for more

information on PPDT

PupHeader PFAT update package header, all flash updates are appended

to this header along with PSL script

NumSpiComponents Number of physical SPI flash components on platform

ComponentSize Array containing size of each flash component

UINT64 IO Trap address required to Initialize PFAT Tools Interface

PfatLog Header for PFAT Log Buffer

3.6.7.4 SMM PFAT Protocol

PFAT Module can only be launched from SMM, this means that all flash writes & erases

that BIOS needs to do must flow thru SMI Handler and so dependency on

SMM_BASE_PROTOCOL for installing PFAT Protocol. Prior to PFAT SMM Protocol being

installed there should be no writes/erases to flash.

Summary

This protocol provides all the services required for flash writes/erases via PFAT

Intel® Processor

84 Intel Confidential Reference Code Specification

GUID

#define SMM_PFAT_PROTOCOL_GUID \

 { 0xc3e156e4, 0x27b3, 0x4dff, 0xb8, 0x96, 0xfb, 0x11, 0x3b, 0x2e, 0x68,

0xb5 }

Prototype

typedef struct _PFAT_PROTOCOL {

 PFAT_WRITE Write;

 PFAT_ERASE Erase;

 PFAT_EXECUTE Execute;

} PFAT_PROTOCOL;

Parameters

PFAT_WRITE

 Invoked to fill up PFAT script buffer for flash writes

PFAT_ERASE

 Invoked to fill up PFAT script buffer for flash erases

PFAT_EXECUTE

 Will trigger invocation of PFAT module

3.6.7.5 PFAT_PROTOCOL.Write()

Summary

This service fills PFAT script buffer for flash writes.

Prototype

typedef

EFI_STATUS

(EFIAPI *PFAT_WRITE) (

 IN PFAT_PROTOCOL * This,

 IN UINTN Address,

 IN UINT32 DataByteCount,

 IN OUT UINT8 * Buffer

);

Parameters

This

Protocol entry

Intel® Processor

Reference Code Specification Intel Confidential 85

Address

Offset Address to write to from start of BIOS region in flash

DataByteCount

Number of Bytes to write to flash

Buffer

Pointer to the buffer containing data to be written to flash

Description

BIOS should invoke this function prior to calling PFAT_PROTOCOL.Execute() with all

the relevant data required for flash write. This function will not invoke PFAT Module,

only create script required for writing to flash.

Related Definitions

None

Status Codes Returned

EFI_SUCCESS Successfully created script required for writing to flash

3.6.7.6 PFAT_PROTOCOL.Erase()

Summary

This service fills PFAT script buffer for erasing block in flash.

Prototype

typedef

EFI_STATUS

(EFIAPI *PFAT_ERASE) (

 IN PFAT_PROTOCOL * This,

 IN UINTN Address,

);

Parameters

This

Protocol entry

Intel® Processor

86 Intel Confidential Reference Code Specification

Address

Address of the block that is going to be erased

Description

BIOS should invoke this function prior to calling PFAT_PROTOCOL.Execute() with all

the relevant data required for flash erase. This function will not invoke PFAT module,

only create script required for erasing each block in the flash

Related Definitions

None

Status Codes Returned

EFI_SUCCESS Successfully created script required for erasing block in flash

3.6.7.7 PFAT_PROTOCOL.Execute()

Summary

This service will write PFAT_DIRECTORY MSR and invoke the PFAT Module by writing

to PLAT_FRMW_PROT_TRIGGER MSR for writing/erasing to flash.

Prototype

typedef

EFI_STATUS

(EFIAPI *PFAT_EXECUTE) (

 IN PFAT_PROTOCOL * This,

 IN BOOLEAN BiosUpdate

);

Parameters

This

Protocol entry

BiosUpdate

Flag that indicates that a BIOS/EC FW update is requested

Intel® Processor

Reference Code Specification Intel Confidential 87

Description

BIOS should invoke PFAT_PROTOCOL.Write/Erase() function prior to calling

PFAT_PROTOCOL.Execute() for flash writes/erases(except for BiosUpdate).

Write/Erase() function will render PFAT script during execution. Execute() function will

implement the following steps…

1. Update PFAT directory with address of PUP

2. All the AP’s except the master thread are put to sleep.

3. PFAT module is invoked from BSP for completing flash operation.

If BiosUpdate flag is set to true, PUP (PUP Header + PFAT Script + Update data) is

part of data that is passed to SMI Handler. SMI Handler invokes PFAT module to

process the update.

Related Definitions

None

Status Codes Returned

EFI_SUCCESS Successfully completed flash operation

3.7 Overclocking

3.7.1 Overclocking Overview

Significant changes have been made on Haswell in order to provide a more

consolidated interface for overclocking. Part of these changes was required as a result

of adding the integrated voltage regulator (iVR) and removing external voltage rails

from the platform.

At a high level, clock ratio-based overclocking is supported on the IA core, GT, cache,

and Uncore domains. Support includes voltage/frequency curve control for each of

Intel® Processor

88 Intel Confidential Reference Code Specification

these domains, maximum overclocking ratio overrides and input voltage regulator

management.

Voltage overrides are supported for several domains. At a high level, support

includes:

 Direct voltage override across the entire range of operation

 Positive and negative offset across the entire range of operation

 Voltage “Interpolation” applied only to the overclocked core frequencies

Access to these overclocking controls are provided through the Overclocking Mailbox.

For more detailed overclocking information refer to the Shark Bay Client Performance

Tuning Guide.

3.7.2 Software Architecture

Configuration of most overclocking settings uses the services provided by two

different libraries: CpuPlatform Library and the Overclocking Library. The Cpu Platform

Library contains generic mailbox services while the Overclocking Library provides

abstracted API’s specific to overclocking. These libraries are also used for overclocking

within the System Agent Reference Code. The following diagram shows the

relationship between these libraries.

Intel® Processor

Reference Code Specification Intel Confidential 89

3.7.3 Overclocking Mailbox

Almost all overclocking controls will be managed through a new

OVERCLOCKING_MAILBOX MSR (0x150). This MSR mailbox is new on Haswell and is

a portal into PCU control and telemetry. This MSR based mailbox is implemented as a

library in the processor reference code. Mailbox read and writes services are provided

as part of the CPU platform library. These mailbox services can be accessed in both

PEI and DXE.

3.7.4 Interfaces and Functions

This section describes mailbox interfaces provided by the Cpu platform library.

3.7.4.1 MailboxRead()

Summary

This procedure is a generic read of a mailbox interface.

Prototype

CpuPlatformLibrary

OC Mailbox

Interface

Processor Reference Code

System Agent Reference

Code

Overclocking Library

Haswell

CPU

Cpu Platform

Services

OC Mailbox

Service

OC Configuration Services

Intel® Processor

90 Intel Confidential Reference Code Specification

EFI_STATUS

MailboxRead (

 IN UINT32 MailboxType,

 IN UINT32 MailboxCommand,

 OUT UINT32 *MailboxDataPtr,

 OUT UINT32 *MailboxStatus

);

Parameters

MailboxType

The type of mailbox interface to read. The Overclocking mailbox is defined as

MAILBOX_TYPE_OC = 2.

MailboxCommand

Overclocking mailbox command data

*MailboxDataPtr

Pointer to the overclocking mailbox interface data

*MailboxStatus

Pointer to the mailbox status returned from pcode. Possible mailbox status

values are:

SUCCESS (0) Command succeeded.

OC_LOCKED (1) Overclocking is locked. Service is read-only.

INVALID_DOMAIN (2) Invalid Domain ID provided in command data.

MAX_RATIO_EXCEEDED (3) Ratio exceeds maximum overclocking limits.

MAX_VOLTAGE_EXCEEDED (4) Voltage exceeds input VR’s max voltage.

OC_NOT_SUPPORTED (5) Domain does not support overclocking.

Description

This procedure performs a read request from the mailbox type provided. The return

data is copied to the MailboxDataPtr.

Status Codes Returned

EFI_SUCCESS Command succeeded.

Intel® Processor

Reference Code Specification Intel Confidential 91

EFI_INVALID_PARAMETER Invalid read data detected from pcode.

EFI_UNSUPPORTED Unsupported MailboxType parameter.

3.7.4.2 MailboxWrite()

Summary

This procedure is a generic write to a mailbox interface.

Prototype

EFI_STATUS

MailboxRead (

 IN UINT32 MailboxType,

 IN UINT32 MailboxCommand,

 OUT UINT32 MailboxDataPtr,

 OUT UINT32 *MailboxStatus

);

Parameters

MailboxType

The type of mailbox interface to read. The Overclocking mailbox is defined as

MAILBOX_TYPE_OC = 2.

MailboxCommand

Overclocking mailbox command data

MailboxDataPtr

Overclocking mailbox interface data

*MailboxStatus

Pointer to the mailbox status returned from pcode. Possible mailbox status

values are:

SUCCESS (0) Command succeeded.

OC_LOCKED (1) Overclocking is locked. Service is read-only.

INVALID_DOMAIN (2) Invalid Domain ID provided in command data.

Intel® Processor

92 Intel Confidential Reference Code Specification

MAX_RATIO_EXCEEDED (3) Ratio exceeds maximum overclocking limits.

MAX_VOLTAGE_EXCEEDED (4) Voltage exceeds input VR’s max voltage.

OC_NOT_SUPPORTED (5) Domain does not support overclocking.

Description

This procedure performs a write to the mailbox type provided. The status of the write

request is copied to MailboxStatus.

Status Codes Returned

EFI_SUCCESS Command succeeded.

EFI_INVALID_PARAMETER Invalid read data detected from pcode.

EFI_UNSUPPORTED Unsupported MailboxType parameter.

For complete overclocking mailbox command and interface data definitions please

refer to the Shark Bay Performance Tuning Guide.

3.7.5 Overclocking Library

In addition to the overclocking mailbox service there is a separate overclocking library

included in the Processor Reference Code. The overclocking library provides an

abstracted interface for CPU reference code components to interact with the OC

mailbox MSR interface. The intent of this library is to provide an easy interface to

configure overclocking settings. The overclocking library provides the following

services:

 GetVoltageFrequencyItem()

o Gets the overclocking voltage, frequency, and max ratio information

from all of the CPU domains: IA core, GT, Cache, Uncore, IOA, and

IOD.

 SetVoltageFrequencyItem()

o Sets the overclocking voltage, frequency, and max ratio information

for any of the CPU domains: IA core, GT, Cache, Uncore, IOA, and

IOD.

Intel® Processor

Reference Code Specification Intel Confidential 93

 GetSvidConfig()

o Gets the current external VR voltage level.

 SetSvidConfig()

o Sets the external VR voltage level.

 GetOcCapabilities()

o Gets the overclocking capabilities for all CPU domains: IA core, GT,

Cache, Uncore, IOA, and IOD.

 GetFivrConfig()

o Gets the iVR configuration information.

 SetFivrConfig()

o Sets the iVR configuration information.

Detailed interface definitions can be found in the RcCpuApi help file.

3.8 HowTo

3.8.1 How processor code perform Microcode

Update in POST and S3?

POST:

CpuInitDxe driver uses DXE_CPU_POLICY_PROTOCOL. RetrieveMicrocode ()

interface to get the microcode location.

CpuInitDxe driver copies the Microcode into SMM region

CpuInitDxe driver perform MCU update via the flow in BWG by MpServices for all

CPUs.

S3:

Intel® Processor

94 Intel Confidential Reference Code Specification

During S3 resume path, CpuS3Peim get the Microcode in SMM region.

CpuS3Peim uses its simple MpService to perform Microcode update for all CPUs.

3.8.2 How Remap is done in S3(PEIM) and

POST(DXE)?

POST:

1. SmmBaseRuntime driver loads SmmRelocDxe to perform the remap.

2. SmmBaseRuntime driver loads SmmRelocPeim to SMM region with some

information

S3:

1. SmmBasePeim driver execute SmmRelocPeim in S3 resume path to perform

remap work.

2. BIOS follow the ACPI spec to return to OS wake vector

Intel® Processor

Reference Code Specification Intel Confidential 95

3.8.3 How to provide cache layout when memory is

ready?

Sample Code 1: Notify by gPeiMemoryDiscoveredPpiGuid

 EFI_STATUS Status;

 EFI_PEI_HOB_POINTERS Hob;

 PEI_CACHE_PPI *CachePpi;

 UINT64 MemoryBase;

 UINT64 MemoryLength;

 EFI_BOOT_MODE BootMode;

 //

 // Load Cache PPI

 //

 Status = (**PeiServices).LocatePpi (

 PeiServices,

 &gPeiCachePpiGuid, // GUID

 0, // Instance

 NULL, // PEI_PPI_DESCRIPTOR

 &CachePpi // PPI

);

 if (!EFI_ERROR (Status)) {

 Status = (**PeiServices).NotifyPpi (PeiServices, &mMtrrNotifyList);

 ASSERT_PEI_ERROR (PeiServices, Status);

 //

 // It will reset all MTRR setting.

 //

 CachePpi->ResetCache (

 PeiServices,

 CachePpi

);

 //

 // Cache the Flash area as WP to boost performance

 //

 CachePpi->SetCache (

 PeiServices,

 CachePpi,

 FLASH_BASE,

 FLASH_SIZE,

 EFI_CACHE_WRITEPROTECTED

);

 //

 // Assume size of main memory is multiple of 256MB

 //

 MemoryLength = (LowMemoryLength + 0xFFFFFFF) & 0xF0000000;

 MemoryBase = 0;

 CachePpi->SetCache (

Intel® Processor

96 Intel Confidential Reference Code Specification

 PeiServices,

 CachePpi,

 MemoryBase,

 MemoryLength,

 EFI_CACHE_WRITEBACK

);

 MemoryBase = LowMemoryLength;

 MemoryLength -= LowMemoryLength;

 CachePpi->SetCache (

 PeiServices,

 CachePpi,

 MemoryBase,

 MemoryLength,

 EFI_CACHE_UNCACHEABLE

);

 //

 // Disable NEM, Update MTRR setting from MTRR buffer

 //

 CachePpi->ActivateCache (PeiServices, CachePpi);

 }

 AsmCpuid (0x80000000, &RegEax, NULL, NULL, NULL);

 if (RegEax >= 0x80000008) {

 AsmCpuid (0x80000008, &RegEax, NULL, NULL, NULL);

 PhysicalAddressBits = (UINT8) RegEax;

 } else {

 PhysicalAddressBits = 36;

 }

 //

 // Create a CPU hand-off information

 //

 Status = PeiBuildHobCpu (PeiServices, PhysicalAddressBits, 16);

Sample code 2: Notify by gEndOfPeiSignalPpiGuid

 //

 // Load Cache PPI

 //

 Status = (**PeiServices).LocatePpi (

 PeiServices,

 &gPeiCachePpiGuid, // GUID

 0, // Instance

 NULL, // PEI_PPI_DESCRIPTOR

 &CachePpi // PPI

);

 if (!EFI_ERROR (Status)) {

 //

Intel® Processor

Reference Code Specification Intel Confidential 97

 // Clear the CAR Settings

 //

 Status = CachePpi->ResetCache (

 PeiServices,

 CachePpi

);

 ASSERT_PEI_ERROR (PeiServices, Status);

 //

 // Set fixed cache for memory range below 1MB

 //

 Status = CachePpi->SetCache (

 PeiServices,

 CachePpi,

 0x0,

 0xA0000,

 EFI_CACHE_WRITEBACK

);

 ASSERT_PEI_ERROR (PeiServices, Status);

 Status = CachePpi->SetCache (

 PeiServices,

 CachePpi,

 0xA0000,

 0x20000,

 EFI_CACHE_UNCACHEABLE

);

 ASSERT_PEI_ERROR (PeiServices, Status);

 Status = CachePpi->SetCache (

 PeiServices,

 CachePpi,

 0xC0000,

 0x40000,

 EFI_CACHE_WRITEPROTECTED

);

 ASSERT_PEI_ERROR (PeiServices, Status);

...

 //

 // Set non system memory as UC

 //

 MemoryBase = 0x100000000;

 //

 // Add IED size to set whole SMRAM as WB to save MTRR count

 //

 SmramSize += 0x400000;

 MemoryLength = MemoryBase - (SmramBase + SmramSize);

Intel® Processor

98 Intel Confidential Reference Code Specification

 while (MemoryLength != 0) {

 Power2Length = GetPowerOfTwo (MemoryLength);

 MemoryBase -= Power2Length;

 CachePpi->SetCache (

 PeiServices,

 CachePpi,

 MemoryBase,

 Power2Length,

 EFI_CACHE_UNCACHEABLE

);

 MemoryLength -= Power2Length;

 }

 //

 // Update MTRR setting from MTRR buffer

 //

 CachePpi->ActivateCache (PeiServices, CachePpi);

 //

 // Default Cachable attribute will be set to WB to support large

memory size/hot plug memory

 //

 SetDefaultMemoryCacheAsWB ();

3.8.4 Responsiveness

TBD

Integration Guide

Reference Code Specification Intel Confidential 99

4 Integration Guide

4.1 Integration Overview

The reference code needs to be properly integrated into a Framework source code

base to be utilized effectively. It is assumed that the target code base utilizes an EDK

from the TianoCore.org website. Failure to use the proper EDK code may result in the

need to make significant modifications to the reference code.

Topics included in this guide are:

 Reference code package contents

 Integration checklist

 Building with EDK1117 Instructions

 Building with Patch 8 Instructions

 Required and recommended porting details for the sub modules.

It is expected that firmware developers wishing to support Framework

implementations utilizing Intel Haswell hardware will use this specification as a guide

for how to include, review, modify, and validate the Framework Client Bios Haswell

Processor Reference Code.

4.2 Reference Code Package Contents

The Framework Client Bios Haswell Processor Reference code package contains:

 Framework Client Bios Haswell Processor Reference Code Specification

 This document

 Framework Client Bios Haswell Processor Reference Code

Framework-compliant code written per architecture and design requirements

to support common features for the Shark Bay platform.

Integration Guide

100 Intel Confidential Reference Code Specification

 Release Note

Integration Guide

Reference Code Specification Intel Confidential 101

4.3 Integration Checklist

Please follow this checklist for integrating the reference code:

1. Integrate the following reference codes into the EDK source in advance:

a. Framework Client Bios System Agent Reference Code

b. Framework Client Bios LynxPoint PCH Reference Code

2. Unzip the reference code to a source directory that is commonly accessible to all

platforms.

3. Review each module:

a. Review module description.

b. Verify prerequisites documented in the Intel Haswell processor Reference

Code Design Specification are met.

c. Verify Integration Steps documented in Section Error! Reference source

not found. are completed.

4. Build and test each module’s functionality.

5. Review release notes.

Note: Sample DSC files are provided for direct integration into platform DSC files.
There are DSC files for the Libraries, and DXE or later modules.

If needs to support TxT, please follow below checklist.

1. Proper BIOS ACM file for the platform must be obtained through your Intel

Representative and placed into Txt\BiosAcm folder.

2. STAFIXUP command needs to be added proper into build process.

3. To build TxtPeiAp.bin requires Link16.exe which is 32 bit link tool.

4. Take the necessary steps to include BIOSAC_xxxxx.FFS, TXTPEI.FFS and

TXTPEIAP.BIN into the boot block FV and must be located at the highest 128KB of

BIOS image.

5. MemoryInit PEIM of SA reference code needs to set TXT_SUPPORT_FLAG for

enabling TxT support. It is required to ensure the flag is set for MemoryInit if TxT

code is integrated.

Integration Guide

102 Intel Confidential Reference Code Specification

4.4 Building with EDK1117 Instructions

The reference code modules are designed to be built with the EDK or EDK derived

products. Building with the EDK may be useful to baseline build results as different

core code bases may vary widely in build infrastructure or environment.

Note: Please get EDK V8 Patch from tianocore.org.

Here are the steps to build the reference code with the EDK20081117 (V8 applied)

environment:

1. Integrate PCH and SA reference code first.

2. Copy Processor Reference Code to $(EDK_SOURCE)\Edk\Sample\Cpu\Haswell

3. Modify Common.dsc under Sample\Platform:

From:

[Compile.Ia32.asm,Compile.x64.asm]

To:

[Compile.Ia32.asm16,Compile.Ia32.asm,Compile.x64.asm]

4. Change PlatformTools.env under x64\Build, add these macros:

PROJECT_NAME = x64

PROJECT_CPU_ROOT = Sample\Cpu\Haswell

5. Change the Makefile in x64\Build folder, add these lines to the ProcessDsc

calls:

-d PROJECT_CPU_ROOT=$(PROJECT_CPU_ROOT)\

6. Modify the following line in the [Libraries.Platform] section after

DEFINE PROCESSOR=IA32 on X64.dsc:

From:

Integration Guide

Reference Code Specification Intel Confidential 103

!include "$(EDK_SOURCE)\Sample\Platform\EdkLib32.dsc"

To:

!include "$(EDK_SOURCE)\Sample\Platform\EdkLibAll.dsc"

7. Add EdkII Glue Library, MePeiLib in the [Libraries.Platform] section

after DEFINE PROCESSOR=IA32 on X64.dsc:

!include "$(EDK_SOURCE)\Sample\Platform\EdkIIGlueLib32.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_CPU_ROOT)\Include\IntelCpuPeiLib.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_PCH_ROOT)\Include\IntelPchPeiLib.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_SA_ROOT)\Include\IntelSaPeiLib.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_ME_ROOT)\Include\MePeiLib.dsc"

8. Add EdkII Glue Library and Intel processor Library in the

[Libraries.Platform] section after DEFINE PROCESSOR=X64 on

X64.dsc:

!include "$(EDK_SOURCE)\Sample\Platform\EdkIIGlueLibAll.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_CPU_ROOT)\Include\IntelCpuDxeLib.dsc"

!include

"$(EDK_SOURCE)\$(PROJECT_CPU_ROOT)\SampleCode\Include\IntelCpuDxeSampleCo

de.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_PCH_ROOT)\Include\IntelPchDxeLib.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_SA_ROOT)\Include\IntelSaDxeLib.dsc"

!include "$(EDK_SOURCE)\$(PROJECT_ME_ROOT)\Include\MeDxeLib.dsc"

9. Add DSC build extensions in the x64build folder

(Edk\Sample\Platform\x64\Build) x64.dsc, in the [Defines] section to build

ACPI tables and PPM code,

!include

"$(EFI_SOURCE)\$(PROJECT_CPU_ROOT)\SampleCode\Include\AcpiBuild.

dsc"

!include

”$(EFI_SOURCE)\$(PROJECT_CPU_ROOT)\Include\CpuPowerMgmt.dsc

10. Add the Pei modules individually or add following line in the [Components]

section after DEFINE FV=Fv DEFINE PROCESSOR=IA32 on X64.dsc

!include "$(EDK_SOURCE)\$(PROJECT_CPU_ROOT)\Include\IntelCpuPei.dsc"

Add the Dxe modules individually or the following line in the

[Components] section after DEFINE FV=Fv DEFINE PROCESSOR=X64

on X64.dsc

Integration Guide

104 Intel Confidential Reference Code Specification

!include "$(EDK_SOURCE)\$(PROJECT_CPU_ROOT)\Include\IntelCpuDxe.dsc"

11. Define EDK build configuration on Sample\Platform\X64\Build\Config.env

EFI_S3_RESUME = YES

12. If you are building with Visual Studio 2008, modify

Sample\Platform\X64\Build\X64.dsc to comment out these components or

resolve the build issues generated (Some sample resolutions available in EDK

1.05 or later)

#Sample\Universal\Ebc\Dxe\Ebc.inf

#Sample\Universal\UserInterface\HiiDataBase\Dxe\HiiDatabase.inf

#Sample\Bus\Pci\PciBusNoEnumeration\Dxe\PciBusNoEnumeration.inf

#Sample\Universal\UserInterface\SetupBrowser\Dxe\SetupBrowser.Inf

Run nmake in $(EDK_SOURCE)\Sample\Platform\x64\build directory.

Refer to the EFI Developer Kit (EDK) Getting Started Guide for other EDK build

instructions.

It is not guaranteed that modules built with the EDK are valid for use with real

hardware. Building with EDK provides guidance for integrating reference code into any

Framework-based system BIOS and is meant for reference purposes only.

4.5 MASM

Haswell CPU reference code contains 16/32 bit assembly code. It requires 16/32 bit

assembler and linker. Please ensure both 16/32 bit assembler and linker are installed.

Assume 16/32 bit linker is Link16.exe. Follow below instructions.

1. Copy Link16.exe to $(MASMPATH)\binr. $(MASMPATH) is defined in

‘\Sample\LocalTools.env’ as ‘c:\masm611’

2. Modify Sample\CommonTools.env with below lines following

For IA32 build, it requires Link16.exe to build 16/32 bit assembly code.

!IF “$(EFI_ASSEMBLER_NAME)” == “”

From:

Integration Guide

Reference Code Specification Intel Confidential 105

 ASKLINK =$(MASMPATH)\binr\link16

To:

 ASMLINK =”$(VCINSTALLDIR)\bin\link”

For X64 build,

!IF “$(EFI_ASSEMBLER_NAME)” == “”

From:

 ASM =$(MASMPATH)\bin\ml

 ASKLINK =$(MASMPATH)\binr\link

To:

 ASM =”$(VCINSTALLDIR)\bin\ml”

 ASMLINK =”$(VCINSTALLDIR)\bin\link”

4.6 Visual Studio 2008 SP1 Support

The modules are designed to be built with the EDK source by Visual Studio 2008 SP1.

If you are using Visual Studio 2008 please follow below additional instructions.

1. Modify all necessary files basing on 2.4 and integration guides, including H, DSC,

INF, ENV and Makefile…etc.

Integration Guide

106 Intel Confidential Reference Code Specification

2. Modify Sample\CommonTools.env with below lines following !IF

“$(EFI_COMPILER_X64_NAME)”==””

From:

 CC =$(WIN_DDK_X64_PATH)\cl

 LINK =$(WIN_DDK_X64_PATH)\link

 LIB =$(WIN_DDK_X64_PATH)\lib

 ASM =$(WIN_DDK_X64_PATH)\ml64

To:

 CC =”$(VCINSTALLDIR)\bin\x86_amd64\cl”

 LINK =”$(VCINSTALLDIR)\bin\x86_amd64\link”

 LIB =”$(VCINSTALLDIR)\bin\x86_amd64\lib”

 ASM =”$(VCINSTALLDIR)\bin\x86_amd64\ml64”

3. Define your EDK build configuration on Sample\Platform\x64\Build\Config.env

UEFI_MODE = YES

USE_VC8 = YES

4. Modify Sample\Platform\x64\Build\x64.dsc to comment out below components or

resolve the build issues they generated (Some sample resolutions available in EDK

1.05 or later)

#Sample\Universal\Ebc\Dxe\Ebc.inf

#Sample\Universal\UserInterface\HiiDataBase\Dxe\HiiDatabase.inf

#Sample\Bus\Pci\PciBusNoEnumeration\Dxe\PciBusNoEnumeration.inf

#Sample\Universal\KUserInterface\SetupBrowser\Dxe\SetupBrowser.inf

Integration Guide

Reference Code Specification Intel Confidential 107

Call vsvar32.bat from your local Visual Studio path (ex: Call “C:\Program

Files\Microsoft Visual Studio 9.0\VC\bin\vcvars32.bat”) and set build tip to

Sample\Platform\x64\build. Following normal build process to build the source.

4.7 Platform Configuration Requirements

4.7.1 Overview

The reference code does not completely configure all aspects of the Haswell Processor

hardware. These tasks may be required and are not currently performed by the

reference code:

 Initialize CPU Platform Policy PPI, which is consumed by CpuInit PEIM and

other PEI phase modules.

 Initialize CPU Platform Policy Protocol, which is consumed by CpuInit DXE

driver and other DXE drivers.

4.7.2 CPU Platform Policy PPI Initialization

The user needs to implement the CPU PLATFORM POLICY PPI in a platform module.

CpuInit PEI and other PEI Modules require the PPI to initialize Processor in PEI phase.

struct _PEI_CPU_PLATFORM_POLICY_PPI {

 UINT8 Revision;

 CPU_CONFIG_PPI *CpuConfig;

 POWER_MGMT_CONFIG_PPI *PowerMgmtConfig;

 SECURITY_CONFIG_PPI *SecurityConfig;

 OVERCLOCKING_CONFIG_PPI *OverclockingConfig;

};

Sample Code

Please refer to SampleCode\CpuPolicyInit\Pei for Policy defaults.

Integration Guide

108 Intel Confidential Reference Code Specification

Suggested Location

The PPI has to be published before CpuInit PEIM are dispatched.

4.7.3 CPU Platform Policy Protocol Initialization

The platform code must publish the SA Platform Policy Protocol to pass platform

settings to SaInit, PciExpress and SmbiosMemory Dxe drivers.

typedef struct _DXE_CPU_PLATFORM_POLICY_PROTOCOL {

 UINT8 Revision;

 CPU_CONFIG *CpuConfig;

 POWER_MGMT_CONFIG *PowerMgmtConfig;

 SECURITY_CONFIG *SecurityConfig;

} DXE_CPU_PLATFORM_POLICY_PROTOCOL;

Sample Code

Please refer to SampleCode\CpuPolicyInit\Dxe for Policy defaults.

Suggested Location

The protocol has to be installed before CpuInitDxe, PowerMgmtInit, TxtDxe drivers are

dispatched.

4.7.4 Build Flags

CPU reference code defines below build flags for enable/disable function support.

BOOT_GUARD_SUPPORT_FLAG – Set the flags to 1 for enable Boot Guard support

4.7.5 Definition changes highlight

In CPU RC v1.3.0, there are two definitions “B_TPM_DISCONNECT” and

“B_BOOT_GUARD_ENF_MASK” are from ME RC MeChipset.h.

