summaryrefslogtreecommitdiff
path: root/ReferenceCode/Haswell/CpuInit/Dxe/MpCommon.c
blob: dd9a55e4dbaafd12056175087fb22e9c22a86be1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
/** @file
  Code which support multi-processor

@copyright
  Copyright (c) 1999 - 2012 Intel Corporation. All rights reserved
  This software and associated documentation (if any) is furnished
  under a license and may only be used or copied in accordance
  with the terms of the license. Except as permitted by such
  license, no part of this software or documentation may be
  reproduced, stored in a retrieval system, or transmitted in any
  form or by any means without the express written consent of
  Intel Corporation.

  This file contains an 'Intel Peripheral Driver' and uniquely
  identified as "Intel Reference Module" and is
  licensed for Intel CPUs and chipsets under the terms of your
  license agreement with Intel or your vendor.  This file may
  be modified by the user, subject to additional terms of the
  license agreement

**/
#if !defined(EDK_RELEASE_VERSION) || (EDK_RELEASE_VERSION < 0x00020000)
#include "EdkIIGlueDxe.h"
#include "MpCommon.h"
#include "CpuInitDxe.h"
#include "Features.h"
#include EFI_PROTOCOL_DEFINITION (ExitPmAuth)
#endif

extern MP_SYSTEM_DATA *mMPSystemData;

extern EFI_PHYSICAL_ADDRESS             mOriginalBuffer;
extern EFI_PHYSICAL_ADDRESS             mBackupBuffer;
extern EFI_METRONOME_ARCH_PROTOCOL      *mMetronome;
extern DXE_CPU_PLATFORM_POLICY_PROTOCOL *mPlatformCpu;
volatile UINTN                          mSwitchToLegacyRegionCount = 0;

EFI_PHYSICAL_ADDRESS mLegacyRegion;
//(AMI_CHG+)>
#if (REQUEST_EBDA_SIZE != 0x1000)
UINTN mEbdaOffset = 0;
#endif
//<(AMI_CHG+) 

/**
  Check if X2APIC is enabled

  @retval TRUE if enabled
  @retval FALSE if not enabled
**/
BOOLEAN
IsXapicEnabled (
  VOID
  )
{
  UINT64 MsrValue;

  MsrValue = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  if (MsrValue & B_MSR_IA32_APIC_BASE_G_XAPIC) {
    if (MsrValue & B_MSR_IA32_APIC_BASE_M_XAPIC) {
      return TRUE;
    } else {
      return FALSE;
    }
  } else {
    return FALSE;
  }
}

/**
  Function to get APIC register from MSR or MMIO

  @param[in] XapicEnabled    - x2APIC enabled or not
  @param[in] MsrIndex        - MSR index of APIC register
  @param[in] MemoryMappedIo  - MMIO address for APIC register

  @retval The value of APIC register
**/
UINT64
ReadApicMsrOrMemory (
  BOOLEAN XapicEnabled,
  UINT32  MsrIndex,
  UINT64  MemoryMappedIo
  )
{
  UINT64 Value;

  if (XapicEnabled) {
    Value = AsmReadMsr64 (MsrIndex);
  } else {
    Value = (UINT64) *(volatile UINT32 *) (UINTN) MemoryMappedIo;
  }

  return Value;
}

/**
  Function to write APIC register by MSR or MMIO

  @param[in] XapicEnabled    - x2APIC enabled or not
  @param[in] MsrIndex        - MSR index of APIC register
  @param[in] MemoryMappedIo  - MMIO address for APIC register
  @param[in] Value           - Value that will be written to APIC register
**/
VOID
WriteApicMsrOrMemory (
  BOOLEAN XapicEnabled,
  UINT32  MsrIndex,
  UINT64  MemoryMappedIo,
  UINT64  Value
  )
{
  if (XapicEnabled) {
    AsmWriteMsr64 (MsrIndex, Value);
  } else {
    if (MsrIndex == EXT_XAPIC_ICR) {
      *(volatile UINT32 *) (UINTN) (MemoryMappedIo - APIC_REGISTER_ICR_LOW_OFFSET + APIC_REGISTER_ICR_HIGH_OFFSET) = (UINT32) (Value >> 32);
    }
    *(volatile UINT32 *) (UINTN) MemoryMappedIo = (UINT32) Value;
  }
}

/**
  Send interrupt to CPU

  @param[in] BroadcastMode       - Interrupt broadcast mode
  @param[in] ApicID              - APIC ID for sending interrupt
  @param[in] VectorNumber        - Vector number
  @param[in] DeliveryMode        - Interrupt delivery mode
  @param[in] TriggerMode         - Interrupt trigger mode
  @param[in] Assert              - Interrupt pin polarity

  @retval EFI_INVALID_PARAMETER  - Input parameter not correct
  @retval EFI_NOT_READY          - There was a pending interrupt
  @retval EFI_SUCCESS            - Interrupt sent successfully
**/
EFI_STATUS
SendInterrupt (
  IN UINT32  BroadcastMode,
  IN UINT32  ApicID,
  IN UINT32  VectorNumber,
  IN UINT32  DeliveryMode,
  IN UINT32  TriggerMode,
  IN BOOLEAN Assert
  )
{
  UINT64               ApicBaseReg;
  EFI_PHYSICAL_ADDRESS ApicBase;
  UINT32               ICRLow;
  UINT32               ICRHigh;
  BOOLEAN              XapicEnabled;

  ///
  /// Initialze ICR high dword, since P6 family processor needs
  /// the destination field to be 0x0F when it is a broadcast
  ///
  ICRHigh = 0x0f000000;
  ICRLow  = VectorNumber | (DeliveryMode << 8);

  if (TriggerMode == TRIGGER_MODE_LEVEL) {
    ICRLow |= 0x8000;
  }

  if (Assert) {
    ICRLow |= 0x4000;
  }

  XapicEnabled = IsXapicEnabled ();

  switch (BroadcastMode) {
    case BROADCAST_MODE_SPECIFY_CPU:
      if (XapicEnabled) {
        ICRHigh = (UINT32) ApicID;
      } else {
        ICRHigh = ApicID << 24;
      }
      break;

    case BROADCAST_MODE_ALL_INCLUDING_SELF:
      ICRLow |= 0x80000;
      break;

    case BROADCAST_MODE_ALL_EXCLUDING_SELF:
      ICRLow |= 0xC0000;
      break;

    default:
      return EFI_INVALID_PARAMETER;
  }

  ApicBaseReg = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  ApicBase    = ApicBaseReg & 0xffffff000;

  ///
  /// According Nehalem BWG, if Extended XAPIC Mode is enabled,
  /// legacy xAPIC is no longer working.
  /// So, previous MMIO offset must be transferred to MSR offset R/W.
  /// ----------------------------------------------------------------
  /// MMIO Offset     MSR Offset     Register Name
  /// ----------------------------------------------------------------
  ///  300h-310h        830h         Interrupt Command Register [63:0]
  ///                   831h         [Reserved]
  /// ----------------------------------------------------------------
  ///
  WriteApicMsrOrMemory (
          XapicEnabled,
          EXT_XAPIC_ICR,
          ApicBase + APIC_REGISTER_ICR_LOW_OFFSET,
          (((UINT64) ICRHigh << 32) | (UINT64) ICRLow)
          );

  gBS->Stall (10);

  ICRLow = (UINT32) ReadApicMsrOrMemory (XapicEnabled, EXT_XAPIC_ICR, ApicBase + APIC_REGISTER_ICR_LOW_OFFSET);

  if (ICRLow & BIT12) {
    return EFI_NOT_READY;
  }

  gBS->Stall (100);

  return EFI_SUCCESS;
}

/**
  Check number of cores in the package.

  @retval Number of cores in the package.
**/
UINT8
GetCoreNumber (
  VOID
  )
{
  EFI_CPUID_REGISTER Cpuid;
  AsmCpuidEx (
          4,
          0,
          &Cpuid.RegEax,
          NULL,
          NULL,
          NULL
          );
  return (UINT8)(RShiftU64 (Cpuid.RegEax, 26) & 0x3f) + 1;
}

/**
  Get APIC ID of processor

  @param[in] ApicBase    - APIC base
  @param[in] ApicVersion - APIC version

  @retval APIC ID of processor
**/
UINT32
GetApicID (
  OUT EFI_PHYSICAL_ADDRESS *ApicBase OPTIONAL,
  OUT UINT32 *ApicVersion            OPTIONAL
  )
{
  UINT64  ApicBaseReg;
  UINT32  ApicID;
  UINT32  LocalApicVersion;
  UINT64  LocalApicBase;
  UINTN   MsrValue;
  BOOLEAN XapicEnabled;

  XapicEnabled = IsXapicEnabled ();

  if (XapicEnabled) {
    ///
    /// According Nehalem BWG, if Extended XAPIC Mode
    /// is enabled, legacy xAPIC is no longer working.
    /// So, previous MMIO offset must be transfered
    /// to MSR offset R/W.
    /// MMIO Offset     MSR Offset     Register Name
    ///  020h             802h         EXT_XAPIC_LOGICAL_APIC_ID
    ///  030h             803h         EXT_XAPIC_VERSION
    ///
    MsrValue      = (UINTN) AsmReadMsr64 (EXT_XAPIC_VERSION);
    *ApicVersion  = (UINT32) (MsrValue & 0xff);
    *ApicBase     = 0;

    MsrValue      = (UINTN) AsmReadMsr64 (EXT_XAPIC_LOGICAL_APIC_ID);
    ApicID        = (UINT32) MsrValue;
    return ApicID;
  }

  ApicBaseReg   = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  LocalApicBase = ApicBaseReg & 0xffffff000;
  if (ApicBase) {
    *ApicBase = LocalApicBase;
  }

  ///
  /// if Apic is not enabled yet, enable it here
  ///
  if ((ApicBaseReg & 0x800) == 0) {
    ApicBaseReg |= 0x800;
    AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseReg);
  }

  if (ApicVersion) {
    LocalApicVersion  = *(volatile UINT32 *) (UINTN) (LocalApicBase + APIC_REGISTER_APIC_VERSION_OFFSET);
    *ApicVersion      = LocalApicVersion & 0xff;
  }

  ApicID = *(volatile UINT32 *) (UINTN) (LocalApicBase + APIC_REGISTER_LOCAL_ID_OFFSET);
  return (ApicID >> 24) & 0x0ff;
}

/**
  Programs Local APIC registers.

  @param[in] BSP  - Is this BSP?
**/
VOID
ProgramXApic (
  BOOLEAN BSP
  )
{
  UINT64               ApicBaseReg;
  EFI_PHYSICAL_ADDRESS ApicBase;
  UINT64               EntryValue;
  BOOLEAN              XapicEnabled;

  ApicBaseReg   = AsmReadMsr64 (MSR_IA32_APIC_BASE);
  ApicBase      = ApicBaseReg & 0xffffff000;

  XapicEnabled  = IsXapicEnabled ();

  ///
  /// Program the Spurious Vector entry if XAPIC is enabled
  ///
  EntryValue = ReadApicMsrOrMemory (XapicEnabled, EXT_XAPIC_SVR, ApicBase + APIC_REGISTER_SPURIOUS_VECTOR_OFFSET);
  EntryValue &= 0xFFFFFD0F;
  EntryValue |= 0x10F;
  WriteApicMsrOrMemory (XapicEnabled, EXT_XAPIC_SVR, ApicBase + APIC_REGISTER_SPURIOUS_VECTOR_OFFSET, EntryValue);

  ///
  /// Double check if it is BSP
  ///
  if (!BSP) {
    CpuDisableInterrupt ();
  }

  ///
  /// Program the LINT0 vector entry as EntInt
  ///
  EntryValue = ReadApicMsrOrMemory (XapicEnabled, EXT_XAPIC_LVT_LINT0, ApicBase + APIC_REGISTER_LINT0_VECTOR_OFFSET);
  if (BSP) {
    EntryValue &= 0xFFFE00FF;
    EntryValue |= 0x700;
  } else {
    EntryValue |= 0x10000;
    ///
    /// set bit 16 as mask for LINT0
    ///
  }

  WriteApicMsrOrMemory (XapicEnabled, EXT_XAPIC_LVT_LINT0, ApicBase + APIC_REGISTER_LINT0_VECTOR_OFFSET, EntryValue);

  ///
  /// Program the LINT1 vector entry as NMI
  ///
  EntryValue = ReadApicMsrOrMemory (XapicEnabled, EXT_XAPIC_LVT_LINT1, ApicBase + APIC_REGISTER_LINT1_VECTOR_OFFSET);
  EntryValue &= 0xFFFE00FF;
  if (BSP) {
    EntryValue |= 0x400;
  } else {
    EntryValue |= 0x10400;
  }

  WriteApicMsrOrMemory (XapicEnabled, EXT_XAPIC_LVT_LINT1, ApicBase + APIC_REGISTER_LINT1_VECTOR_OFFSET, EntryValue);

}

/**
  Allocate a temporary memory under 1MB for MP Init to perform INIT-SIPI.
  This buffer also provides memory for stack/data for MP running

  @param[in] WakeUpBuffer  - Return buffer location

  @retval EFI_SUCCESS if ok to get a memory under 1MB for MP running.
**/
EFI_STATUS
AllocateWakeUpBuffer (
  OUT EFI_PHYSICAL_ADDRESS *WakeUpBuffer
  )
{
  EFI_STATUS Status;

  Status = EFI_SUCCESS;
  for (*WakeUpBuffer = 0x58000; *WakeUpBuffer >= 0x2000; *WakeUpBuffer -= 0x1000) {
    Status = (gBS->AllocatePages)(AllocateAddress, EfiReservedMemoryType, 1, WakeUpBuffer);
    if (!EFI_ERROR (Status)) {
      break;
    }
  }

  return Status;
}

/**
  Allocate Reserved Memory

  @param[in] Size       - Memory Size
  @param[in] Alignment  - Alignment size
  @param[in] Pointer    - return memory location

  @retval EFI_SUCCESS   - Allocate a reserved memory successfully
**/
EFI_STATUS
AllocateAlignedReservedMemory (
  IN UINTN Size,
  IN UINTN Alignment,
  OUT VOID **Pointer
  )
{
  EFI_STATUS Status;
  UINTN      PointerValue;

  Status = AllocateReservedMemoryBelow4G (
                  Size + Alignment - 1,
                  Pointer
                  );
  if (EFI_ERROR (Status)) {
    return Status;
  }

  PointerValue  = (UINTN) *Pointer;
  PointerValue  = (PointerValue + Alignment - 1) / Alignment * Alignment;

  *Pointer      = (VOID *) PointerValue;
  return EFI_SUCCESS;
}

/**
  Fill in the CPU location information

  @param[in] Location  - CPU location information

  @retval EFI_SUCCESS  - always return success
**/
EFI_STATUS
FillInCpuLocation (
  IN CPU_PHYSICAL_LOCATION *Location
  )
{
  UINT32             ApicId;
  EFI_CPUID_REGISTER RegsInfo;
  UINT32             LevelType;
  UINT32             LevelBits;
  UINT8              Shift;
  UINT8              Bits;
  UINT32             Mask;
  BOOLEAN            HyperThreadingEnabled;

  AsmCpuid (CPUID_VERSION_INFO, &RegsInfo.RegEax, &RegsInfo.RegEbx, &RegsInfo.RegEcx, &RegsInfo.RegEdx);
  ApicId = (RegsInfo.RegEbx >> 24);

  AsmCpuid (CPUID_SIGNATURE, &RegsInfo.RegEax, &RegsInfo.RegEbx, &RegsInfo.RegEcx, &RegsInfo.RegEdx);
  if (RegsInfo.RegEax >= CPUID_CORE_TOPOLOGY) {
    LevelBits = 0;
    LevelType = 0;
    do {
      AsmCpuidEx (
              CPUID_CORE_TOPOLOGY,
              LevelType,
              &RegsInfo.RegEax,
              &RegsInfo.RegEbx,
              &RegsInfo.RegEcx,
              &RegsInfo.RegEdx
              );
      LevelType = ((RegsInfo.RegEcx >> 8) & 0xFF);
      switch (LevelType) {
        case 1:
          ///
          /// Thread
          ///
          Location->Thread  = ApicId & ((1 << (RegsInfo.RegEax & 0x0F)) - 1);
          LevelBits         = RegsInfo.RegEax & 0x0F;
          break;

        case 2:
          ///
          /// Core
          ///
          Location->Core  = ApicId >> LevelBits;
          LevelBits       = RegsInfo.RegEax & 0x0F;
          break;

        default:
          ///
          /// End of Level
          ///
          Location->Die     = 0;
          Location->Package = ApicId >> LevelBits;
          break;
      }
    } while (!(RegsInfo.RegEax == 0 && RegsInfo.RegEbx == 0));
  } else {

    AsmCpuid (CPUID_VERSION_INFO, &RegsInfo.RegEax, &RegsInfo.RegEbx, &RegsInfo.RegEcx, &RegsInfo.RegEdx);
    Bits  = 0;
    Shift = (UINT8) ((RegsInfo.RegEbx >> 16) & 0xFF);

    Mask  = Shift - 1;
    while (Shift > 1) {
      Shift >>= 1;
      Bits++;
    }

    HyperThreadingEnabled = FALSE;
    AsmCpuidEx (CPUID_CACHE_PARAMS, 0, &RegsInfo.RegEax, &RegsInfo.RegEbx, &RegsInfo.RegEcx, &RegsInfo.RegEdx);
    if (Mask > (RegsInfo.RegEax >> 26)) {
      HyperThreadingEnabled = TRUE;
    }

    Location->Package = (ApicId >> Bits);
    Location->Die     = 0;
    if (HyperThreadingEnabled) {
      Location->Core    = (ApicId & Mask) >> 1;
      Location->Thread  = (ApicId & Mask) & 1;
    } else {
      Location->Core    = (ApicId & Mask);
      Location->Thread  = 0;
    }
  }

  return EFI_SUCCESS;
}

/**
  Fill in CPU relevant information into data hub

  @param[in] CpuNumber          - CPU number
  @param[in] CpuDataforDatahub  - pointer to data hub that will be updated

  @retval EFI_SUCCESS           - always return success
**/
EFI_STATUS
FillinDataforDataHub (
  IN UINTN                 CpuNumber,
  OUT CPU_DATA_FOR_DATAHUB *CpuDataforDatahub
  )
{
  ZeroMem (CpuDataforDatahub, sizeof (*CpuDataforDatahub));

  ///
  /// Read Cpu Frequency from MSR instead
  ///
  CpuDataforDatahub->IntendCoreFrequency =
                  (
                    100 *
                    (((UINT32) EfiReadMsr (MSR_IA32_PERF_STS) >> N_IA32_PERF_STSP_STATE_TARGET) & B_IA32_PERF_STSP_STATE_MASK)
                  );

  GetProcessorVersion (&CpuDataforDatahub->Version);
  CpuDataforDatahub->Manufacturer = GetProcessorManufacturer ();

  EfiCpuid (CPUID_VERSION_INFO, (EFI_CPUID_REGISTER *) &CpuDataforDatahub->CpuidData);

  CpuDataforDatahub->Family   = GetProcessorFamily ();
  CpuDataforDatahub->Voltage  = GetProcessorVoltage ();
  CpuDataforDatahub->ApicID = GetApicID (
                  &CpuDataforDatahub->ApicBase,
                  &CpuDataforDatahub->ApicVersion
                  );

  CpuDataforDatahub->MicrocodeRevision = GetCpuUcodeRevision ();
  EfiCpuid (CPUID_CACHE_INFO, CpuDataforDatahub->CacheInformation);

  ///
  /// Status field will be updated later, after calling CpuPlatformPolicy protocol to override
  ///
  CpuDataforDatahub->Status = GetProcessorStatus (CpuNumber);;

  FillInCpuLocation (&CpuDataforDatahub->Location);

  ///
  /// Health field will be filled in else where
  ///
  return EFI_SUCCESS;
}

/**
  Allocate EfiReservedMemoryType below 4G memory address.

  @param[in] Size      - Size of memory to allocate.
  @param[in] Buffer    - Allocated address for output.

  @retval EFI_SUCCESS  - Memory successfully allocated.
  @retval Other        - Other errors occur.
**/
EFI_STATUS
AllocateReservedMemoryBelow4G (
  IN UINTN Size,
  OUT VOID **Buffer
  )
{
  UINTN                Pages;
  EFI_PHYSICAL_ADDRESS Address;
  EFI_STATUS           Status;

  Pages   = EFI_SIZE_TO_PAGES (Size);
  Address = 0xffffffff;

  Status  = (gBS->AllocatePages)(AllocateMaxAddress, EfiReservedMemoryType, Pages, &Address);

  *Buffer = (VOID *) (UINTN) Address;

  return Status;
}

/**
  This function is invoked when SMM_BASE protocol is installed, then we
  allocate SMRAM and save all information there.

  @param[in] Event   - The triggered event.
  @param[in] Context - Context for this event.
**/
VOID
EFIAPI
InitializeSmramDataContent (
  IN EFI_EVENT Event,
  IN VOID      *Context
  )
{
  EFI_SMM_BASE_PROTOCOL    *SmmBase;
  SMRAM_CPU_DATA           SmramCpuDataTemplate;
  UINTN                    LockBoxSize;
  UINT8                    *LockBoxData;
  PSEUDO_DESCRIPTOR        *Idtr;
  PSEUDO_DESCRIPTOR        *Gdtr;
  UINTN                    MicrocodeSize;
  EFI_CPU_MICROCODE_HEADER **Microcode;
  UINT8                    *LockBoxMicrocode;
  UINTN                    Index;
  EFI_STATUS               Status;
  EFI_SMM_CONTROL_PROTOCOL *SmmControl;
  UINT8                    *SmramCpuData;
  UINTN                    VarSize;
  SMRAM_CPU_DATA_ADDRESS   SmramCpuDataAddr;
  UINTN                    ArgBufferSize;
  UINT8                    ArgBuffer;
  EFI_SMM_CONTROL_REGISTER SmiRegister;

  DEBUG ((EFI_D_INFO, "InitializeSmramDataContent\n"));

  Status = gBS->LocateProtocol (&gEfiSmmBaseProtocolGuid, NULL, (VOID **) &SmmBase);
  ASSERT_EFI_ERROR (Status);

  Status = gBS->LocateProtocol (&gEfiSmmControlProtocolGuid, NULL, (VOID **) &SmmControl);
  ASSERT_EFI_ERROR (Status);

  ///
  /// Init
  ///
  CopyMem (&SmramCpuDataTemplate.HeaderGuid, &gSmramCpuDataHeaderGuid, sizeof (EFI_GUID));
  SmramCpuDataTemplate.AcpiCpuPointer = (EFI_PHYSICAL_ADDRESS) (UINTN) mAcpiCpuData;
  CopyMem (&SmramCpuDataTemplate.AcpiCpuData, mAcpiCpuData, sizeof (ACPI_CPU_DATA));

  ///
  /// Calculate size
  ///
  SmramCpuDataTemplate.GdtrProfileSize        = sizeof (PSEUDO_DESCRIPTOR);
  Gdtr = (PSEUDO_DESCRIPTOR *) (UINTN) mAcpiCpuData->GdtrProfile;
  SmramCpuDataTemplate.GdtSize = Gdtr->Limit + 1;
  SmramCpuDataTemplate.IdtrProfileSize = sizeof (PSEUDO_DESCRIPTOR);
  Idtr = (PSEUDO_DESCRIPTOR *) (UINTN) mAcpiCpuData->GdtrProfile;
  SmramCpuDataTemplate.IdtSize = Idtr->Limit + 1;
  SmramCpuDataTemplate.CpuPrivateDataSize = sizeof (MP_CPU_S3_DATA_POINTER);
  SmramCpuDataTemplate.S3BootScriptTableSize = sizeof (mMPSystemData->S3BootScriptTable);
  SmramCpuDataTemplate.S3BspMtrrTableSize = sizeof (mMPSystemData->S3BspMtrrTable);
  ///
  /// Record best match for each CPU Microcode and NULL for end
  ///
  SmramCpuDataTemplate.MicrocodePointerBufferSize = sizeof (UINT32) * (mAcpiCpuData->NumberOfCpus + 1);
  ///
  /// Calculate Microcode DataSize
  ///
  SmramCpuDataTemplate.MicrocodeDataBufferSize  = 0;
  Microcode = (VOID *) (UINTN) mAcpiCpuData->MicrocodePointerBuffer;
  if (Microcode != NULL) {
    Index         = 0;
    MicrocodeSize = 0;
    while (Microcode[Index] != NULL) {
      if (Microcode[Index]->DataSize == 0) {
        MicrocodeSize = 2048;
      } else {
        MicrocodeSize = Microcode[Index]->TotalSize;
      }

      SmramCpuDataTemplate.MicrocodeDataBufferSize += (UINT32) MicrocodeSize;
      Index++;
    }
  }

  SmramCpuDataTemplate.GdtrProfileOffset    = sizeof (SMRAM_CPU_DATA);
  SmramCpuDataTemplate.GdtOffset            = SmramCpuDataTemplate.GdtrProfileOffset + SmramCpuDataTemplate.GdtrProfileSize;
  SmramCpuDataTemplate.IdtrProfileOffset    = SmramCpuDataTemplate.GdtOffset + SmramCpuDataTemplate.GdtSize;
  SmramCpuDataTemplate.IdtOffset            = SmramCpuDataTemplate.IdtrProfileOffset + SmramCpuDataTemplate.IdtrProfileSize;
  SmramCpuDataTemplate.CpuPrivateDataOffset = SmramCpuDataTemplate.IdtOffset + SmramCpuDataTemplate.IdtSize;
  SmramCpuDataTemplate.S3BootScriptTableOffset = SmramCpuDataTemplate.CpuPrivateDataOffset + SmramCpuDataTemplate.CpuPrivateDataSize;
  SmramCpuDataTemplate.S3BspMtrrTableOffset = SmramCpuDataTemplate.S3BootScriptTableOffset + SmramCpuDataTemplate.S3BootScriptTableSize;
  SmramCpuDataTemplate.MicrocodePointerBufferOffset = SmramCpuDataTemplate.S3BspMtrrTableOffset + SmramCpuDataTemplate.S3BspMtrrTableSize;
  SmramCpuDataTemplate.MicrocodeDataBufferOffset = SmramCpuDataTemplate.MicrocodePointerBufferOffset + SmramCpuDataTemplate.MicrocodePointerBufferSize;

  LockBoxSize = sizeof (SMRAM_CPU_DATA) +
          SmramCpuDataTemplate.GdtrProfileSize +
          SmramCpuDataTemplate.GdtSize +
          SmramCpuDataTemplate.IdtrProfileSize +
          SmramCpuDataTemplate.IdtSize +
          SmramCpuDataTemplate.CpuPrivateDataSize +
          SmramCpuDataTemplate.S3BootScriptTableSize +
          SmramCpuDataTemplate.S3BspMtrrTableSize +
          SmramCpuDataTemplate.MicrocodePointerBufferSize +
          SmramCpuDataTemplate.MicrocodeDataBufferSize;

  DEBUG ((EFI_D_INFO, "LockBoxSize                               - %x\n", LockBoxSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.GdtrProfileSize              - %x\n", SmramCpuDataTemplate.GdtrProfileSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.GdtSize                      - %x\n", SmramCpuDataTemplate.GdtSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.IdtrProfileSize              - %x\n", SmramCpuDataTemplate.IdtrProfileSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.IdtSize                      - %x\n", SmramCpuDataTemplate.IdtSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.CpuPrivateDataSize           - %x\n", SmramCpuDataTemplate.CpuPrivateDataSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.S3BootScriptTableSize        - %x\n", SmramCpuDataTemplate.S3BootScriptTableSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.S3BspMtrrTableSize           - %x\n", SmramCpuDataTemplate.S3BspMtrrTableSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.MicrocodePointerBufferSize   - %x\n", SmramCpuDataTemplate.MicrocodePointerBufferSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.MicrocodeDataBufferSize      - %x\n", SmramCpuDataTemplate.MicrocodeDataBufferSize));
  DEBUG ((EFI_D_INFO, "SmramCpuData.GdtrProfileOffset            - %x\n", SmramCpuDataTemplate.GdtrProfileOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.GdtOffset                    - %x\n", SmramCpuDataTemplate.GdtOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.IdtrProfileOffset            - %x\n", SmramCpuDataTemplate.IdtrProfileOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.IdtOffset                    - %x\n", SmramCpuDataTemplate.IdtOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.CpuPrivateDataOffset         - %x\n", SmramCpuDataTemplate.CpuPrivateDataOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.S3BootScriptTableOffset      - %x\n", SmramCpuDataTemplate.S3BootScriptTableOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.S3BspMtrrTableOffset         - %x\n", SmramCpuDataTemplate.S3BspMtrrTableOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.MicrocodePointerBufferOffset - %x\n", SmramCpuDataTemplate.MicrocodePointerBufferOffset));
  DEBUG ((EFI_D_INFO, "SmramCpuData.MicrocodeDataBufferOffset    - %x\n", SmramCpuDataTemplate.MicrocodeDataBufferOffset));

  ///
  /// Allocate Normal Memory
  ///
  Status = (gBS->AllocatePool)(EfiBootServicesData, LockBoxSize, &SmramCpuData);
  ASSERT_EFI_ERROR (Status);

  ///
  /// Allocate SMRAM
  ///
  Status = SmmBase->SmmAllocatePool (
                  SmmBase,
                  EfiRuntimeServicesData,
                  LockBoxSize + EFI_PAGE_SIZE,
                  &LockBoxData
                  );
  ASSERT_EFI_ERROR (Status);

  ///
  /// Let it page aligned
  ///
  LockBoxData = (UINT8 *) (((UINTN) LockBoxData + EFI_PAGE_SIZE - 1) &~(EFI_PAGE_SIZE - 1));
  DEBUG ((EFI_D_INFO, "CPU SMRAM NVS Data - %x\n", LockBoxData));

  ///
  /// Copy data buffer
  ///
  CopyMem (SmramCpuData, &SmramCpuDataTemplate, sizeof (SmramCpuDataTemplate));

  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.GdtrProfileOffset,
          (VOID *) (UINTN) mAcpiCpuData->GdtrProfile,
          SmramCpuDataTemplate.GdtrProfileSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.GdtOffset,
          (VOID *) (UINTN) Gdtr->Base,
          SmramCpuDataTemplate.GdtSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.IdtrProfileOffset,
          (VOID *) (UINTN) mAcpiCpuData->IdtrProfile,
          SmramCpuDataTemplate.IdtrProfileSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.IdtOffset,
          (VOID *) (UINTN) Idtr->Base,
          SmramCpuDataTemplate.IdtSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.CpuPrivateDataOffset,
          (VOID *) (UINTN) mAcpiCpuData->CpuPrivateData,
          SmramCpuDataTemplate.CpuPrivateDataSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.S3BootScriptTableOffset,
          (VOID *) (UINTN) mMPSystemData->S3DataPointer.S3BootScriptTable,
          SmramCpuDataTemplate.S3BootScriptTableSize
          );
  CopyMem (
          SmramCpuData + SmramCpuDataTemplate.S3BspMtrrTableOffset,
          (VOID *) (UINTN) mMPSystemData->S3DataPointer.S3BspMtrrTable,
          SmramCpuDataTemplate.S3BspMtrrTableSize
          );
  Microcode = (VOID *) (UINTN) mAcpiCpuData->MicrocodePointerBuffer;
  if (Microcode != NULL) {
    ///
    /// Copy Microcode Pointer Buffer
    ///
    CopyMem (
            SmramCpuData + SmramCpuDataTemplate.MicrocodePointerBufferOffset,
            Microcode,
            SmramCpuDataTemplate.MicrocodePointerBufferSize
            );
    ///
    /// Copy Microcode Data
    ///
    Index             = 0;
    MicrocodeSize     = 0;
    LockBoxMicrocode  = SmramCpuData + SmramCpuDataTemplate.MicrocodeDataBufferOffset;
    while (Microcode[Index] != NULL) {
      if (Microcode[Index]->DataSize == 0) {
        MicrocodeSize = 2048;
      } else {
        MicrocodeSize = Microcode[Index]->TotalSize;
      }

      CopyMem (LockBoxMicrocode, Microcode[Index], MicrocodeSize);
      LockBoxMicrocode += MicrocodeSize;
      Index++;
    }
  }

  ///
  /// Copy to SMRAM
  ///
  ///
  /// We have to use SMI to copy SMRAM, because we can not access SMRAM after SMRR enabled.
  /// SMM_ACCESS.Open () takes no effect.
  ///
  VarSize                       = sizeof (SmramCpuDataAddr);
  SmramCpuDataAddr.LockBoxData  = (UINT64) (UINTN) LockBoxData;
  SmramCpuDataAddr.SmramCpuData = (UINT64) (UINTN) SmramCpuData;
  SmramCpuDataAddr.LockBoxSize  = (UINT64) LockBoxSize;

  Status = gRT->SetVariable (
                  SMRAM_CPU_DATA_VARIABLE,
                  &gSmramCpuDataVariableGuid,
                  EFI_VARIABLE_BOOTSERVICE_ACCESS,
                  VarSize,
                  &SmramCpuDataAddr
                  );
  ASSERT_EFI_ERROR (Status);

  ///
  /// Fill SMI data port
  ///
  Status = SmmControl->GetRegisterInfo (SmmControl, &SmiRegister);
  ASSERT_EFI_ERROR (Status);
  IoWrite8 (SmiRegister.SmiDataRegister, SMM_FROM_CPU_DRIVER_SAVE_INFO);

  ///
  /// Trigger SMI
  ///
  ArgBufferSize = sizeof (ArgBuffer);
  ArgBuffer     = mSmmbaseSwSmiNumber;
  Status        = SmmControl->Trigger (SmmControl, (INT8 *) &ArgBuffer, &ArgBufferSize, FALSE, 0);
  Status        = SmmControl->Clear (SmmControl, 0);
  return;
}

/**
  This function is invoked when LegacyBios protocol is installed, we must
  allocate reserved memory under 1M for AP.

  @param[in] Event    - The triggered event.
  @param[in] Context  - Context for this event.
**/
VOID
EFIAPI
ReAllocateEbdaMemoryForAP (
  IN EFI_EVENT Event,
  IN VOID      *Context
  )
{
  EFI_LEGACY_BIOS_PROTOCOL *LegacyBios;
  EFI_PHYSICAL_ADDRESS     EbdaOld;
  EFI_PHYSICAL_ADDRESS     EbdaNew;
  UINTN                    EbdaSize;
  EFI_STATUS               Status;

  ///
  /// Check whether this is real LegacyBios notification
  ///
  Status = gBS->LocateProtocol (&gEfiLegacyBiosProtocolGuid, NULL, (VOID **) &LegacyBios);
  if (EFI_ERROR (Status)) {
    return;
  }
  ///
  /// PLEASE NOTE:
  /// For legacy implementation, we have reserved 0x9F000 to 0x9FFFF for S3 usage in CSM,
  /// No don't need to allocate it again
  /// This range will be used for MpS3 driver and S3Resume driver on S3 boot path
  /// The base needs to be aligned to 4K to satisfy the AP vector requirement
  /// The original implementation requires 8K from legacy memory form E/F segment,
  /// which needs lock/unlock and makes lots of code chipset dependent on S3 boot path
  /// Here we just use normal low memory to eliminate the dependency
  /// In this case, EBDA will start from 0x9F000 - sizeof (EBDA) in CSM definition
  /// CSM EBDA base and memory size in BDA area needs to be consistent with this
  ///
  ///
  /// Get EDBA address/length and turn it into the S3 reserved address
  /// The length of this range is limited so we need to keep the real mode code small
  ///
  EbdaOld                     = (EFI_PHYSICAL_ADDRESS) (*(UINT16 *) (UINTN) 0x40E) << 4;;
  EbdaSize                    = (UINTN) (*((UINT8 *) (UINTN) EbdaOld));
  
//(AMI_CHG+)>
#if (REQUEST_EBDA_SIZE == 0x1000)
  mLegacyRegion               = EbdaOld + (EbdaSize << 10);
  mLegacyRegion               = (mLegacyRegion - 0x1000) & 0xFFFFF000;
  EbdaNew                     = mLegacyRegion - (EbdaSize << 10);
#else
  *(UINT8 *) ((UINTN) EbdaOld)  = (UINT8)(EbdaSize + 8);
  mLegacyRegion               = EbdaOld + (EbdaSize << 10);
  mLegacyRegion               = (mLegacyRegion - REQUEST_EBDA_SIZE) & 0xFFFFF000;
  EbdaNew                     = mLegacyRegion - (EbdaSize << 10);
  mEbdaOffset                 = EbdaSize << 10;
#endif 
//<(AMI_CHG+)

  (*(UINT16 *) (UINTN) 0x40E) = (UINT16) (EbdaNew >> 4);
  CopyMem ((VOID *) (UINTN) EbdaNew, (VOID *) (UINTN) EbdaOld, EbdaSize << 10);

  ///
  /// Update 40:13 with the new size of available base memory
  ///
  *(UINT16 *) (UINTN) 0x413 = (*(UINT16 *) (UINTN) 0x413) - (UINT16) (((EbdaOld - EbdaNew) >> 10));

  ///
  /// Free the Wake-up buffer and re-declare it as Reserved Memory
  ///
  DEBUG ((EFI_D_INFO, "Legacy region freed before re-allocation:  %X\n", mLegacyRegion));
  Status  = (gBS->FreePages) (mLegacyRegion, 1);
  ASSERT_EFI_ERROR (Status);
  DEBUG ((EFI_D_INFO, "Allocate and reserve the 4K buffer for Legacy Region\n"));
  Status = (gBS->AllocatePages)(AllocateAddress, EfiReservedMemoryType, 1, &mLegacyRegion);
  ASSERT_EFI_ERROR (Status);
  DEBUG ((EFI_D_INFO, "mLegacyRegion CSM - %x\n", mLegacyRegion));
}

/**
  This function is invoked when LegacyBios protocol is installed, we must
  allocate reserved memory under 1M for AP.

  @param[in] Event    - The triggered event.
  @param[in] Context  - Context for this event.
**/
VOID
EFIAPI
ReAllocateMemoryForAP (
  IN EFI_EVENT Event,
  IN VOID      *Context
  )
{
  EFI_LEGACY_BIOS_PROTOCOL *LegacyBios;
  EFI_STATUS               Status;
  EFI_PHYSICAL_ADDRESS     LegacyRegion;
  MP_CPU_EXCHANGE_INFO     *ExchangeInfo;
  MONITOR_MWAIT_DATA       *MonitorAddr;
  UINTN                    Index;
  UINT64                   MaxCstate;
  UINT64                   CStateLimit;
  UINT32                   SubStates;
  EFI_CPUID_REGISTER       MwaitInfo;
  BOOLEAN                  HasCsm;
  EFI_MP_SERVICES_PROTOCOL *MpService;

  VOID           *ExitPmAuth;
  STATIC BOOLEAN InitDone = FALSE;

  ///
  /// Check whether this is real ExitPmAuth notification
  ///
  Status = gBS->LocateProtocol (&gExitPmAuthProtocolGuid, NULL, &ExitPmAuth);
  if (EFI_ERROR (Status)) {
    return;
  }
  ///
  /// Make sure it is invoked only once.
  ///
  if (InitDone) {
    return;
  }

  InitDone  = TRUE;

  Status    = gBS->LocateProtocol (&gEfiLegacyBiosProtocolGuid, NULL, (VOID **) &LegacyBios);
  if (EFI_ERROR (Status)) {
    HasCsm = FALSE;
  } else {
    HasCsm = TRUE;
  }

  while (ApRunning ()) {
    CpuPause ();
  }
  ///
  /// Re-load microcode patch here!!!
  ///
  ReLoadMicrocodeBeforeBoot ();

  if (HasCsm) {
//(AMI_CHG+)>
#if (REQUEST_EBDA_SIZE == 0x1000)
    LegacyRegion = mLegacyRegion;
#else
	EFI_PHYSICAL_ADDRESS     CurEbda;
    
    CurEbda      = (EFI_PHYSICAL_ADDRESS) (*(UINT16 *) (UINTN) 0x40E) << 4;
    LegacyRegion = (EFI_PHYSICAL_ADDRESS) ((UINTN)CurEbda + mEbdaOffset);
    LegacyRegion += 0x1000;
    LegacyRegion &= 0xffff000;
#endif 
//<(AMI_CHG+)
    DEBUG ((EFI_D_INFO, "Using LegacyRegion CSM - %x\n", LegacyRegion));
  } else {
    ///
    /// The BackBuffer is 4k. Allocate 0x2000 bytes from below 640K memory to ensure 4k aligned spaces of 0x1000 bytes,
    /// since Alignment argument does not work.
    ///
    LegacyRegion = 0x9FFFF;
    Status = (gBS->AllocatePages)(AllocateMaxAddress, EfiReservedMemoryType, EFI_SIZE_TO_PAGES (0x2000), &LegacyRegion);
    ASSERT_EFI_ERROR (Status);
    DEBUG ((EFI_D_INFO, "LegacyRegion NonCSM - %x\n", LegacyRegion));
    if (EFI_ERROR (Status)) {
      return;
    }
  }
  ///
  /// This address should be less than A seg.
  /// And it should be aligned to 4K
  ///
  ASSERT (!((UINTN) LegacyRegion & 0x0FFF) && ((UINTN) LegacyRegion < 0xA0000));

  mAcpiCpuData->WakeUpBuffer  = (EFI_PHYSICAL_ADDRESS) LegacyRegion;
  mAcpiCpuData->WakeUpBuffer  = (mAcpiCpuData->WakeUpBuffer + 0x0fff) & 0x0fffff000;

  ExchangeInfo                = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mBackupBuffer + MP_CPU_EXCHANGE_INFO_OFFSET);
  ExchangeInfo->BufferStart   = (UINT32) mAcpiCpuData->WakeUpBuffer;
  CopyMem (
          (VOID *) (UINTN) mAcpiCpuData->WakeUpBuffer,
          (VOID *) (UINTN) mBackupBuffer,
          EFI_PAGE_SIZE
          );
  RedirectFarJump ();

  if (HasCsm) {
    Status = LegacyBios->CopyLegacyRegion (
                    LegacyBios,
                    sizeof (MP_CPU_EXCHANGE_INFO),
                    (VOID *) (UINTN) (mAcpiCpuData->WakeUpBuffer + MP_CPU_EXCHANGE_INFO_OFFSET),
                    (VOID *) (UINTN) (mBackupBuffer + MP_CPU_EXCHANGE_INFO_OFFSET)
                    );
  }

  ///
  /// Set all APs to deepest C-State before ready to boot for better power saving,
  /// if boot to DOS/EFI_SHARE or any operating system that running only single thread.
  ///
  ExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN) (mAcpiCpuData->WakeUpBuffer + MP_CPU_EXCHANGE_INFO_OFFSET);
  if (mPlatformCpu->CpuConfig->ApHandoffManner != WakeUpApPerHltLoop) {
    ///
    /// Based on HSW BWG 17.2.7, BIOS should use CPUID.(EAX=5) Monitor/Mwait Leaf and also check MSR E2h[3:0] Package C-state limit to determine
    /// if the processor supports MONITOR/MWAIT extensions for various Haswell specific C-states and sub C-states.
    ///
    CStateLimit = AsmReadMsr64 (MSR_PMG_CST_CONFIG) & B_PACKAGE_C_STATE_LIMIT;
    AsmCpuid (5, &MwaitInfo.RegEax, &MwaitInfo.RegEbx, &MwaitInfo.RegEcx, &MwaitInfo.RegEdx);
    MaxCstate = 0;
    SubStates = 0;
    if (MwaitInfo.RegEcx & BIT0) {
      switch (CStateLimit) {
        case V_CSTATE_LIMIT_C10:
          SubStates = (MwaitInfo.RegEdx & (BIT31 | BIT30 | BIT29 | BIT28)) >> 28;
          MaxCstate = 0x60 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C9:
          SubStates = (MwaitInfo.RegEdx & (BIT27 | BIT26 | BIT25 | BIT24)) >> 24;
          MaxCstate = 0x50 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C8:
          SubStates = (MwaitInfo.RegEdx & (BIT23 | BIT22 | BIT21 | BIT20)) >> 20;
          MaxCstate = 0x40 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C7S:
          SubStates = (MwaitInfo.RegEdx & (BIT19 | BIT18 | BIT17 | BIT16)) >> 16;
          MaxCstate = 0x30 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C7:
          SubStates = (MwaitInfo.RegEdx & (BIT19 | BIT18 | BIT17 | BIT16)) >> 16;
          MaxCstate = 0x30 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C6:
          SubStates = (MwaitInfo.RegEdx & (BIT15 | BIT14 | BIT13 | BIT12)) >> 12;
          MaxCstate = 0x20 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C3:
          SubStates = (MwaitInfo.RegEdx & (BIT11 | BIT10 | BIT9 | BIT8)) >> 8;
          MaxCstate = 0x10 | (SubStates - 1);
          break;

        case V_CSTATE_LIMIT_C1:
          SubStates = (MwaitInfo.RegEdx & (BIT7 | BIT6 | BIT5 | BIT4)) >> 4;
          MaxCstate = 0x00 | (SubStates - 1);
          break;

        default:
          break;
      }
    }

    ///
    /// Use WakeUpApPerMwaitLoop32 if CR4 paging table entities are not allocated as RESERVED MEMORY TYPE in 64-bits mode.
    ///
    ExchangeInfo->WakeUpApManner  = WakeUpApPerMwaitLoop32;
    for (Index = 0; Index < mMPSystemData->NumberOfCpus; Index++) {
      MonitorAddr = (MONITOR_MWAIT_DATA *) ((UINT8 *) ExchangeInfo->StackStart + (Index + 1) * ExchangeInfo->StackSize - MONITOR_FILTER_SIZE);
      MonitorAddr->WakeUpApVectorChangeFlag = TRUE;
      MonitorAddr->MwaitTargetCstate        = MaxCstate;
    }
  } else {
    ExchangeInfo->WakeUpApManner = WakeUpApPerHltLoop;
  }

  ///
  /// Locate MpServices protocol
  ///
  Status = gBS->LocateProtocol (
                  &gEfiMpServiceProtocolGuid,
                  NULL,
                  (VOID **) &MpService
                  );
  ASSERT_EFI_ERROR (Status);

  ///
  /// Move Limit CPUID Maxval configuration here to not impact the BOOT
  /// After setting this, no code can execute CPUID function > 3.
  ///
  ProgramCpuidLimit (MpService);
  Status = MpService->StartupAllAPs (
                  MpService,
                  ProgramCpuidLimit,
                  FALSE,
                  NULL,
                  0,
                  MpService,
                  NULL
                  );

  ///
  /// Invoke the InitializeSmram directly, since it is in ExitPmAuth event.
  ///
  InitializeSmramDataContent (NULL, NULL);
}

/**
  This function is invoked by EFI_EVENT_SIGNAL_LEGACY_BOOT.
  Before booting to legacy OS, reset AP's wakeup buffer address,
  preparing for S3 usage.

  @param[in] Event    - The triggered event.
  @param[in] Context  - Context for this event.
**/
VOID
ResetAPs (
  IN EFI_EVENT Event,
  IN VOID      *Context
  )
{
  return;
}