summaryrefslogtreecommitdiff
path: root/src/devices/device.c
diff options
context:
space:
mode:
authorMyles Watson <mylesgw@gmail.com>2009-07-02 18:56:24 +0000
committerMyles Watson <mylesgw@gmail.com>2009-07-02 18:56:24 +0000
commit29cc9eda2021a87396ef31a6fc81daff6fd1be7a (patch)
treed3dfa07ca85547c77c5d07825fc8afcc19489076 /src/devices/device.c
parent2468331952bae0abdc4d76dbe6cf26f05b7825e5 (diff)
downloadcoreboot-29cc9eda2021a87396ef31a6fc81daff6fd1be7a.tar.xz
Move the v3 resource allocator to v2.
Major changes: 1. Separate resource allocation into: A. Read Resources B. Avoid fixed resources (constrain limits) C. Allocate resources D. Set resources Usage notes: Resources which have IORESOURCE_FIXED set in the flags constrain the placement of other resources. All fixed resources will end up outside (above or below) the allocated resources. Domains usually start with base = 0 and limit = 2^address_bits - 1. I've added an IOAPIC to all platforms so that the old limit of 0xfec00000 is still there for resources. Some platforms may want to change that, but I didn't want to break anyone's board. Resources are allocated in a single block for memory and another for I/O. Currently the resource allocator doesn't support holes. Signed-off-by: Myles Watson <mylesgw@gmail.com> Acked-by: Ronald G. Minnich <rminnich@gmail.com> Acked-by: Patrick Georgi <patrick.georgi@coresystems.de> git-svn-id: svn://svn.coreboot.org/coreboot/trunk@4394 2b7e53f0-3cfb-0310-b3e9-8179ed1497e1
Diffstat (limited to 'src/devices/device.c')
-rw-r--r--src/devices/device.c830
1 files changed, 572 insertions, 258 deletions
diff --git a/src/devices/device.c b/src/devices/device.c
index 51a1203ec0..123d22a971 100644
--- a/src/devices/device.c
+++ b/src/devices/device.c
@@ -12,6 +12,7 @@
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
* Copyright (C) 2005-2006 Stefan Reinauer <stepan@openbios.org>
+ * Copyright (C) 2009 Myles Watson <mylesgw@gmail.com>
*/
/*
@@ -43,12 +44,6 @@ struct device *all_devices = &dev_root;
/** Pointer to the last device */
extern struct device **last_dev_p;
-/** The upper limit of MEM resource of the devices.
- * Reserve 20M for the system */
-#define DEVICE_MEM_HIGH 0xFEBFFFFFUL
-/** The lower limit of IO resource of the devices.
- * Reserve 4k for ISA/Legacy devices */
-#define DEVICE_IO_START 0x1000
/**
* @brief Allocate a new device structure.
@@ -71,25 +66,25 @@ device_t alloc_dev(struct bus *parent, struct device_path *path)
spin_lock(&dev_lock);
- /* Find the last child of our parent */
- for(child = parent->children; child && child->sibling; ) {
+ /* Find the last child of our parent. */
+ for (child = parent->children; child && child->sibling; /* */ ) {
child = child->sibling;
}
dev = malloc(sizeof(*dev));
- if (dev == 0) {
+ if (dev == 0)
die("DEV: out of memory.\n");
- }
+
memset(dev, 0, sizeof(*dev));
memcpy(&dev->path, path, sizeof(*path));
- /* Initialize the back pointers in the link fields */
- for(link = 0; link < MAX_LINKS; link++) {
- dev->link[link].dev = dev;
+ /* Initialize the back pointers in the link fields. */
+ for (link = 0; link < MAX_LINKS; link++) {
+ dev->link[link].dev = dev;
dev->link[link].link = link;
}
- /* By default devices are enabled */
+ /* By default devices are enabled. */
dev->enabled = 1;
/* Add the new device to the list of children of the bus. */
@@ -132,64 +127,46 @@ static void read_resources(struct bus *bus)
{
struct device *curdev;
- printk_spew("%s read_resources bus %d link: %d\n",
- dev_path(bus->dev), bus->secondary, bus->link);
+ printk_spew("%s %s bus %x link: %d\n", dev_path(bus->dev), __func__,
+ bus->secondary, bus->link);
- /* Walk through all of the devices and find which resources they need. */
- for(curdev = bus->children; curdev; curdev = curdev->sibling) {
- unsigned links;
+ /* Walk through all devices and find which resources they need. */
+ for (curdev = bus->children; curdev; curdev = curdev->sibling) {
int i;
- if (curdev->have_resources) {
- continue;
- }
if (!curdev->enabled) {
continue;
}
if (!curdev->ops || !curdev->ops->read_resources) {
printk_err("%s missing read_resources\n",
- dev_path(curdev));
+ dev_path(curdev));
continue;
}
curdev->ops->read_resources(curdev);
- curdev->have_resources = 1;
- /* Read in subtractive resources behind the current device */
- links = 0;
- for(i = 0; i < curdev->resources; i++) {
- struct resource *resource;
- unsigned link;
- resource = &curdev->resource[i];
- if (!(resource->flags & IORESOURCE_SUBTRACTIVE))
- continue;
- link = IOINDEX_SUBTRACTIVE_LINK(resource->index);
- if (link > MAX_LINKS) {
- printk_err("%s subtractive index on link: %d\n",
- dev_path(curdev), link);
- continue;
- }
- if (!(links & (1 << link))) {
- links |= (1 << link);
- read_resources(&curdev->link[link]);
- }
- }
+
+ /* Read in the resources behind the current device's links. */
+ for (i = 0; i < curdev->links; i++)
+ read_resources(&curdev->link[i]);
}
printk_spew("%s read_resources bus %d link: %d done\n",
- dev_path(bus->dev), bus->secondary, bus->link);
+ dev_path(bus->dev), bus->secondary, bus->link);
}
struct pick_largest_state {
struct resource *last;
- struct device *result_dev;
+ struct device *result_dev;
struct resource *result;
int seen_last;
};
-static void pick_largest_resource(void *gp,
- struct device *dev, struct resource *resource)
+static void pick_largest_resource(void *gp, struct device *dev,
+ struct resource *resource)
{
struct pick_largest_state *state = gp;
struct resource *last;
+
last = state->last;
- /* Be certain to pick the successor to last */
+
+ /* Be certain to pick the successor to last. */
if (resource == last) {
state->seen_last = 1;
return;
@@ -206,21 +183,22 @@ static void pick_largest_resource(void *gp,
if (!state->result ||
(state->result->align < resource->align) ||
((state->result->align == resource->align) &&
- (state->result->size < resource->size)))
- {
+ (state->result->size < resource->size))) {
state->result_dev = dev;
state->result = resource;
}
}
-static struct device *largest_resource(struct bus *bus, struct resource **result_res,
- unsigned long type_mask, unsigned long type)
+static struct device *largest_resource(struct bus *bus,
+ struct resource **result_res,
+ unsigned long type_mask,
+ unsigned long type)
{
struct pick_largest_state state;
state.last = *result_res;
- state.result_dev = 0;
- state.result = 0;
+ state.result_dev = NULL;
+ state.result = NULL;
state.seen_last = 0;
search_bus_resources(bus, type_mask, type, pick_largest_resource,
@@ -233,144 +211,136 @@ static struct device *largest_resource(struct bus *bus, struct resource **result
/* Compute allocate resources is the guts of the resource allocator.
*
* The problem.
- * - Allocate resources locations for every device.
+ * - Allocate resource locations for every device.
* - Don't overlap, and follow the rules of bridges.
* - Don't overlap with resources in fixed locations.
* - Be efficient so we don't have ugly strategies.
*
* The strategy.
* - Devices that have fixed addresses are the minority so don't
- * worry about them too much. Instead only use part of the address
- * space for devices with programmable addresses. This easily handles
+ * worry about them too much. Instead only use part of the address
+ * space for devices with programmable addresses. This easily handles
* everything except bridges.
*
- * - PCI devices are required to have thier sizes and their alignments
- * equal. In this case an optimal solution to the packing problem
- * exists. Allocate all devices from highest alignment to least
- * alignment or vice versa. Use this.
+ * - PCI devices are required to have their sizes and their alignments
+ * equal. In this case an optimal solution to the packing problem
+ * exists. Allocate all devices from highest alignment to least
+ * alignment or vice versa. Use this.
*
- * - So we can handle more than PCI run two allocation passes on
- * bridges. The first to see how large the resources are behind
- * the bridge, and what their alignment requirements are. The
- * second to assign a safe address to the devices behind the
- * bridge. This allows me to treat a bridge as just a device with
- * a couple of resources, and not need to special case it in the
- * allocator. Also this allows handling of other types of bridges.
+ * - So we can handle more than PCI run two allocation passes on bridges. The
+ * first to see how large the resources are behind the bridge, and what
+ * their alignment requirements are. The second to assign a safe address to
+ * the devices behind the bridge. This allows us to treat a bridge as just
+ * a device with a couple of resources, and not need to special case it in
+ * the allocator. Also this allows handling of other types of bridges.
*
*/
-
-void compute_allocate_resource(
- struct bus *bus,
- struct resource *bridge,
- unsigned long type_mask,
- unsigned long type)
+void compute_resources(struct bus *bus, struct resource *bridge,
+ unsigned long type_mask, unsigned long type)
{
struct device *dev;
struct resource *resource;
resource_t base;
- unsigned long align, min_align;
- min_align = 0;
- base = bridge->base;
+ base = round(bridge->base, bridge->align);
- printk_spew("%s compute_allocate_resource %s: base: %08Lx size: %08Lx align: %d gran: %d\n",
- dev_path(bus->dev),
- (bridge->flags & IORESOURCE_IO)? "io":
- (bridge->flags & IORESOURCE_PREFETCH)? "prefmem" : "mem",
- base, bridge->size, bridge->align, bridge->gran);
+ printk_spew( "%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx\n",
+ dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran, bridge->limit);
- /* We want different minimum alignments for different kinds of
- * resources. These minimums are not device type specific
- * but resource type specific.
- */
- if (bridge->flags & IORESOURCE_IO) {
- min_align = log2(DEVICE_IO_ALIGN);
- }
- if (bridge->flags & IORESOURCE_MEM) {
- min_align = log2(DEVICE_MEM_ALIGN);
- }
+ /* For each child which is a bridge, compute_resource_needs. */
+ for (dev = bus->children; dev; dev = dev->sibling) {
+ unsigned i;
+ struct resource *child_bridge;
- /* Make certain I have read in all of the resources */
- read_resources(bus);
+ if (!dev->links)
+ continue;
- /* Remember I haven't found anything yet. */
- resource = 0;
+ /* Find the resources with matching type flags. */
+ for (i = 0; i < dev->resources; i++) {
+ unsigned link;
+ child_bridge = &dev->resource[i];
- /* Walk through all the devices on the current bus and
- * compute the addresses.
- */
- while((dev = largest_resource(bus, &resource, type_mask, type))) {
- resource_t size;
- /* Do NOT I repeat do not ignore resources which have zero size.
- * If they need to be ignored dev->read_resources should not even
- * return them. Some resources must be set even when they have
- * no size. PCI bridge resources are a good example of this.
- */
- /* Make certain we are dealing with a good minimum size */
- size = resource->size;
- align = resource->align;
- if (align < min_align) {
- align = min_align;
- }
+ if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
+ (child_bridge->flags & type_mask) != type)
+ continue;
- /* Propagate the resource alignment to the bridge register */
- if (align > bridge->align) {
- bridge->align = align;
+ /* Split prefetchable memory if combined. Many domains
+ * use the same address space for prefetchable memory
+ * and non-prefetchable memory. Bridges below them
+ * need it separated. Add the PREFETCH flag to the
+ * type_mask and type.
+ */
+ link = IOINDEX_LINK(child_bridge->index);
+ compute_resources(&dev->link[link], child_bridge,
+ type_mask | IORESOURCE_PREFETCH,
+ type | (child_bridge->flags &
+ IORESOURCE_PREFETCH));
}
+ }
+
+ /* Remember we haven't found anything yet. */
+ resource = NULL;
+
+ /* Walk through all the resources on the current bus and compute the
+ * amount of address space taken by them. Take granularity and
+ * alignment into account.
+ */
+ while ((dev = largest_resource(bus, &resource, type_mask, type))) {
- if (resource->flags & IORESOURCE_FIXED) {
+ /* Size 0 resources can be skipped. */
+ if (!resource->size) {
continue;
}
- /* Propogate the resource limit to the bridge register */
+ /* Propagate the resource alignment to the bridge resource. */
+ if (resource->align > bridge->align) {
+ bridge->align = resource->align;
+ }
+
+ /* Propagate the resource limit to the bridge register. */
if (bridge->limit > resource->limit) {
bridge->limit = resource->limit;
}
-#warning This heuristic should be replaced by real devices with fixed resources.
- /* Artificially deny limits between DEVICE_MEM_HIGH and 0xffffffff */
- if ((bridge->limit > DEVICE_MEM_HIGH) && (bridge->limit <= 0xffffffff)) {
- bridge->limit = DEVICE_MEM_HIGH;
+
+ /* Warn if it looks like APICs aren't declared. */
+ if ((resource->limit == 0xffffffff) &&
+ (resource->flags & IORESOURCE_ASSIGNED)) {
+ printk_err("Resource limit looks wrong! (no APIC?)\n");
+ printk_err("%s %02lx limit %08Lx\n", dev_path(dev),
+ resource->index, resource->limit);
}
if (resource->flags & IORESOURCE_IO) {
- /* Don't allow potential aliases over the
- * legacy pci expansion card addresses.
- * The legacy pci decodes only 10 bits,
- * uses 100h - 3ffh. Therefor, only 0 - ff
- * can be used out of each 400h block of io
- * space.
+ /* Don't allow potential aliases over the legacy PCI
+ * expansion card addresses. The legacy PCI decodes
+ * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
+ * 0x00 - 0xff can be used out of each 0x400 block of
+ * I/O space.
*/
if ((base & 0x300) != 0) {
base = (base & ~0x3ff) + 0x400;
}
- /* Don't allow allocations in the VGA IO range.
+ /* Don't allow allocations in the VGA I/O range.
* PCI has special cases for that.
*/
else if ((base >= 0x3b0) && (base <= 0x3df)) {
base = 0x3e0;
}
}
- if (((round(base, align) + size) -1) <= resource->limit) {
- /* base must be aligned to size */
- base = round(base, align);
- resource->base = base;
- resource->flags |= IORESOURCE_ASSIGNED;
- resource->flags &= ~IORESOURCE_STORED;
- base += size;
-
- printk_spew("%s %02lx * [0x%08Lx - 0x%08Lx] %s\n",
- dev_path(dev),
- resource->index,
- resource->base,
- resource->base + resource->size - 1,
- (resource->flags & IORESOURCE_IO)? "io":
- (resource->flags & IORESOURCE_PREFETCH)? "prefmem": "mem");
- }
-#if CONFIG_PCIE_CONFIGSPACE_HOLE
-#warning Handle PCIe hole differently...
- if (base >= 0xf0000000 && base < 0xf4000000) {
- base = 0xf4000000;
- }
-#endif
+ /* Base must be aligned. */
+ base = round(base, resource->align);
+ resource->base = base;
+ base += resource->size;
+
+ printk_spew("%s %02lx * [0x%llx - 0x%llx] %s\n",
+ dev_path(dev), resource->index,
+ resource->base,
+ resource->base + resource->size - 1,
+ (resource->flags & IORESOURCE_IO) ? "io" :
+ (resource->flags & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem");
}
/* A pci bridge resource does not need to be a power
* of two size, but it does have a minimum granularity.
@@ -378,13 +348,317 @@ void compute_allocate_resource(
* know not to place something else at an address postitively
* decoded by the bridge.
*/
- bridge->size = round(base, bridge->gran) - bridge->base;
+ bridge->size = round(base, bridge->gran) -
+ round(bridge->base, bridge->align);
+
+ printk_spew("%s %s_%s: base: %llx size: %llx align: %d gran: %d limit: %llx done\n",
+ dev_path(bus->dev), __func__,
+ (bridge->flags & IORESOURCE_IO) ? "io" :
+ (bridge->flags & IORESOURCE_PREFETCH) ? "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran, bridge->limit);
+}
+
+/**
+ * This function is the second part of the resource allocator.
+ *
+ * The problem.
+ * - Allocate resource locations for every device.
+ * - Don't overlap, and follow the rules of bridges.
+ * - Don't overlap with resources in fixed locations.
+ * - Be efficient so we don't have ugly strategies.
+ *
+ * The strategy.
+ * - Devices that have fixed addresses are the minority so don't
+ * worry about them too much. Instead only use part of the address
+ * space for devices with programmable addresses. This easily handles
+ * everything except bridges.
+ *
+ * - PCI devices are required to have their sizes and their alignments
+ * equal. In this case an optimal solution to the packing problem
+ * exists. Allocate all devices from highest alignment to least
+ * alignment or vice versa. Use this.
+ *
+ * - So we can handle more than PCI run two allocation passes on bridges. The
+ * first to see how large the resources are behind the bridge, and what
+ * their alignment requirements are. The second to assign a safe address to
+ * the devices behind the bridge. This allows us to treat a bridge as just
+ * a device with a couple of resources, and not need to special case it in
+ * the allocator. Also this allows handling of other types of bridges.
+ *
+ * - This function assigns the resources a value.
+ *
+ * @param bus The bus we are traversing.
+ * @param bridge The bridge resource which must contain the bus' resources.
+ * @param type_mask This value gets anded with the resource type.
+ * @param type This value must match the result of the and.
+ */
+void allocate_resources(struct bus *bus, struct resource *bridge,
+ unsigned long type_mask, unsigned long type)
+{
+ struct device *dev;
+ struct resource *resource;
+ resource_t base;
+ base = bridge->base;
+
+ printk_spew("%s %s_%s: base:%llx size:%llx align:%d gran:%d limit:%llx\n",
+ dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran, bridge->limit);
+
+ /* Remember we haven't found anything yet. */
+ resource = NULL;
+
+ /* Walk through all the resources on the current bus and allocate them
+ * address space.
+ */
+ while ((dev = largest_resource(bus, &resource, type_mask, type))) {
+
+ /* Propagate the bridge limit to the resource register. */
+ if (resource->limit > bridge->limit) {
+ resource->limit = bridge->limit;
+ }
+
+ /* Size 0 resources can be skipped. */
+ if (!resource->size) {
+ /* Set the base to limit so it doesn't confuse tolm. */
+ resource->base = resource->limit;
+ resource->flags |= IORESOURCE_ASSIGNED;
+ continue;
+ }
+
+ if (resource->flags & IORESOURCE_IO) {
+ /* Don't allow potential aliases over the legacy PCI
+ * expansion card addresses. The legacy PCI decodes
+ * only 10 bits, uses 0x100 - 0x3ff. Therefore, only
+ * 0x00 - 0xff can be used out of each 0x400 block of
+ * I/O space.
+ */
+ if ((base & 0x300) != 0) {
+ base = (base & ~0x3ff) + 0x400;
+ }
+ /* Don't allow allocations in the VGA I/O range.
+ * PCI has special cases for that.
+ */
+ else if ((base >= 0x3b0) && (base <= 0x3df)) {
+ base = 0x3e0;
+ }
+ }
+
+ if ((round(base, resource->align) + resource->size - 1) <=
+ resource->limit) {
+ /* Base must be aligned. */
+ base = round(base, resource->align);
+ resource->base = base;
+ resource->flags |= IORESOURCE_ASSIGNED;
+ resource->flags &= ~IORESOURCE_STORED;
+ base += resource->size;
+ } else {
+ printk_err("!! Resource didn't fit !!\n");
+ printk_err(" aligned base %llx size %llx limit %llx\n",
+ round(base, resource->align), resource->size,
+ resource->limit);
+ printk_err(" %llx needs to be <= %llx (limit)\n",
+ (round(base, resource->align) +
+ resource->size) - 1, resource->limit);
+ printk_err(" %s%s %02lx * [0x%llx - 0x%llx] %s\n",
+ (resource->
+ flags & IORESOURCE_ASSIGNED) ? "Assigned: " :
+ "", dev_path(dev), resource->index,
+ resource->base,
+ resource->base + resource->size - 1,
+ (resource->
+ flags & IORESOURCE_IO) ? "io" : (resource->
+ flags &
+ IORESOURCE_PREFETCH)
+ ? "prefmem" : "mem");
+ }
+
+ printk_spew("%s%s %02lx * [0x%llx - 0x%llx] %s\n",
+ (resource->flags & IORESOURCE_ASSIGNED) ? "Assigned: "
+ : "",
+ dev_path(dev), resource->index, resource->base,
+ resource->size ? resource->base + resource->size - 1 :
+ resource->base,
+ (resource->flags & IORESOURCE_IO) ? "io" :
+ (resource->flags & IORESOURCE_PREFETCH) ? "prefmem" :
+ "mem");
+ }
+ /* A PCI bridge resource does not need to be a power of two size, but
+ * it does have a minimum granularity. Round the size up to that
+ * minimum granularity so we know not to place something else at an
+ * address positively decoded by the bridge.
+ */
+
+ bridge->flags |= IORESOURCE_ASSIGNED;
+
+ printk_spew("%s %s_%s: next_base: %llx size: %llx align: %d gran: %d done\n",
+ dev_path(bus->dev), __func__,
+ (type & IORESOURCE_IO) ? "io" : (type & IORESOURCE_PREFETCH) ?
+ "prefmem" : "mem",
+ base, bridge->size, bridge->align, bridge->gran);
+
+ /* For each child which is a bridge, allocate_resources. */
+ for (dev = bus->children; dev; dev = dev->sibling) {
+ unsigned i;
+ struct resource *child_bridge;
- printk_spew("%s compute_allocate_resource %s: base: %08Lx size: %08Lx align: %d gran: %d done\n",
- dev_path(bus->dev),
- (bridge->flags & IORESOURCE_IO)? "io":
- (bridge->flags & IORESOURCE_PREFETCH)? "prefmem" : "mem",
- base, bridge->size, bridge->align, bridge->gran);
+ if (!dev->links)
+ continue;
+
+ /* Find the resources with matching type flags. */
+ for (i = 0; i < dev->resources; i++) {
+ unsigned link;
+ child_bridge = &dev->resource[i];
+
+ if (!(child_bridge->flags & IORESOURCE_BRIDGE) ||
+ (child_bridge->flags & type_mask) != type)
+ continue;
+
+ /* Split prefetchable memory if combined. Many domains
+ * use the same address space for prefetchable memory
+ * and non-prefetchable memory. Bridges below them
+ * need it separated. Add the PREFETCH flag to the
+ * type_mask and type.
+ */
+ link = IOINDEX_LINK(child_bridge->index);
+ allocate_resources(&dev->link[link], child_bridge,
+ type_mask | IORESOURCE_PREFETCH,
+ type | (child_bridge->flags &
+ IORESOURCE_PREFETCH));
+ }
+ }
+}
+
+#if CONFIG_PCI_64BIT_PREF_MEM == 1
+ #define MEM_MASK (IORESOURCE_PREFETCH | IORESOURCE_MEM)
+#else
+ #define MEM_MASK (IORESOURCE_MEM)
+#endif
+#define IO_MASK (IORESOURCE_IO)
+#define PREF_TYPE (IORESOURCE_PREFETCH | IORESOURCE_MEM)
+#define MEM_TYPE (IORESOURCE_MEM)
+#define IO_TYPE (IORESOURCE_IO)
+
+struct constraints {
+ struct resource pref, io, mem;
+};
+
+static void constrain_resources(struct device *dev, struct constraints* limits)
+{
+ struct device *child;
+ struct resource *res;
+ struct resource *lim;
+ int i;
+
+ printk_spew("%s: %s\n", __func__, dev_path(dev));
+
+ /* Constrain limits based on the fixed resources of this device. */
+ for (i = 0; i < dev->resources; i++) {
+ res = &dev->resource[i];
+ if (!(res->flags & IORESOURCE_FIXED))
+ continue;
+
+ /* PREFETCH, MEM, or I/O - skip any others. */
+ if ((res->flags & MEM_MASK) == PREF_TYPE)
+ lim = &limits->pref;
+ else if ((res->flags & MEM_MASK) == MEM_TYPE)
+ lim = &limits->mem;
+ else if ((res->flags & IO_MASK) == IO_TYPE)
+ lim = &limits->io;
+ else
+ continue;
+
+ /* Is it already outside the limits? */
+ if (res->size && (((res->base + res->size -1) < lim->base) ||
+ (res->base > lim->limit)))
+ continue;
+
+ /* Choose to be above or below fixed resources. This
+ * check is signed so that "negative" amounts of space
+ * are handled correctly.
+ */
+ if ((signed long long)(lim->limit - (res->base + res->size -1)) >
+ (signed long long)(res->base - lim->base))
+ lim->base = res->base + res->size;
+ else
+ lim->limit = res->base -1;
+ }
+
+ /* Descend into every enabled child and look for fixed resources. */
+ for (i = 0; i < dev->links; i++)
+ for (child = dev->link[i].children; child;
+ child = child->sibling)
+ if (child->enabled)
+ constrain_resources(child, limits);
+}
+
+static void avoid_fixed_resources(struct device *dev)
+{
+ struct constraints limits;
+ struct resource *res;
+ int i;
+
+ printk_spew("%s: %s\n", __func__, dev_path(dev));
+ /* Initialize constraints to maximum size. */
+
+ limits.pref.base = 0;
+ limits.pref.limit = 0xffffffffffffffffULL;
+ limits.io.base = 0;
+ limits.io.limit = 0xffffffffffffffffULL;
+ limits.mem.base = 0;
+ limits.mem.limit = 0xffffffffffffffffULL;
+
+ /* Constrain the limits to dev's initial resources. */
+ for (i = 0; i < dev->resources; i++) {
+ res = &dev->resource[i];
+ if ((res->flags & IORESOURCE_FIXED))
+ continue;
+ printk_spew("%s:@%s %02lx limit %08Lx\n", __func__,
+ dev_path(dev), res->index, res->limit);
+ if ((res->flags & MEM_MASK) == PREF_TYPE &&
+ (res->limit < limits.pref.limit))
+ limits.pref.limit = res->limit;
+ if ((res->flags & MEM_MASK) == MEM_TYPE &&
+ (res->limit < limits.mem.limit))
+ limits.mem.limit = res->limit;
+ if ((res->flags & IO_MASK) == IO_TYPE &&
+ (res->limit < limits.io.limit))
+ limits.io.limit = res->limit;
+ }
+
+ /* Look through the tree for fixed resources and update the limits. */
+ constrain_resources(dev, &limits);
+
+ /* Update dev's resources with new limits. */
+ for (i = 0; i < dev->resources; i++) {
+ struct resource *lim;
+ res = &dev->resource[i];
+
+ if ((res->flags & IORESOURCE_FIXED))
+ continue;
+
+ /* PREFETCH, MEM, or I/O - skip any others. */
+ if ((res->flags & MEM_MASK) == PREF_TYPE)
+ lim = &limits.pref;
+ else if ((res->flags & MEM_MASK) == MEM_TYPE)
+ lim = &limits.mem;
+ else if ((res->flags & IO_MASK) == IO_TYPE)
+ lim = &limits.io;
+ else
+ continue;
+
+ printk_spew("%s2: %s@%02lx limit %08Lx\n", __func__,
+ dev_path(dev), res->index, res->limit);
+ printk_spew("\tlim->base %08Lx lim->limit %08Lx\n",
+ lim->base, lim->limit);
+
+ /* Is the resource outside the limits? */
+ if (lim->base > res->base)
+ res->base = lim->base;
+ if (res->limit > lim->limit)
+ res->limit = lim->limit;
+ }
}
#if CONFIG_CONSOLE_VGA == 1
@@ -392,9 +666,9 @@ device_t vga_pri = 0;
static void allocate_vga_resource(void)
{
#warning "FIXME modify allocate_vga_resource so it is less pci centric!"
-#warning "This function knows to much about PCI stuff, it should be just a ietrator/visitor."
+#warning "This function knows too much about PCI stuff, it should be just a iterator/visitor."
- /* FIXME handle the VGA pallette snooping */
+ /* FIXME: Handle the VGA palette snooping. */
struct device *dev, *vga, *vga_onboard, *vga_first, *vga_last;
struct bus *bus;
bus = 0;
@@ -402,66 +676,63 @@ static void allocate_vga_resource(void)
vga_onboard = 0;
vga_first = 0;
vga_last = 0;
- for(dev = all_devices; dev; dev = dev->next) {
- if (!dev->enabled) continue;
+ for (dev = all_devices; dev; dev = dev->next) {
+ if (!dev->enabled)
+ continue;
if (((dev->class >> 16) == PCI_BASE_CLASS_DISPLAY) &&
- ((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER))
- {
- if (!vga_first) {
- if (dev->on_mainboard) {
- vga_onboard = dev;
- } else {
- vga_first = dev;
- }
- } else {
- if (dev->on_mainboard) {
- vga_onboard = dev;
- } else {
- vga_last = dev;
- }
- }
-
- /* It isn't safe to enable other VGA cards */
+ ((dev->class >> 8) != PCI_CLASS_DISPLAY_OTHER)) {
+ if (!vga_first) {
+ if (dev->on_mainboard) {
+ vga_onboard = dev;
+ } else {
+ vga_first = dev;
+ }
+ } else {
+ if (dev->on_mainboard) {
+ vga_onboard = dev;
+ } else {
+ vga_last = dev;
+ }
+ }
+
+ /* It isn't safe to enable other VGA cards. */
dev->command &= ~(PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
}
}
- vga = vga_last;
-
- if(!vga) {
- vga = vga_first;
- }
+ vga = vga_last;
+ if (!vga) {
+ vga = vga_first;
+ }
#if CONFIG_CONSOLE_VGA_ONBOARD_AT_FIRST == 1
- if (vga_onboard) // will use on board vga as pri
+ if (vga_onboard) // Will use on board VGA as pri.
#else
- if (!vga) // will use last add on adapter as pri
+ if (!vga) // Will use last add on adapter as pri.
#endif
- {
- vga = vga_onboard;
- }
-
+ {
+ vga = vga_onboard;
+ }
if (vga) {
- /* vga is first add on card or the only onboard vga */
+ /* VGA is first add on card or the only onboard VGA. */
printk_debug("Allocating VGA resource %s\n", dev_path(vga));
- /* All legacy VGA cards have MEM & I/O space registers */
+ /* All legacy VGA cards have MEM & I/O space registers. */
vga->command |= (PCI_COMMAND_MEMORY | PCI_COMMAND_IO);
vga_pri = vga;
bus = vga->bus;
}
- /* Now walk up the bridges setting the VGA enable */
- while(bus) {
+ /* Now walk up the bridges setting the VGA enable. */
+ while (bus) {
printk_debug("Setting PCI_BRIDGE_CTL_VGA for bridge %s\n",
dev_path(bus->dev));
bus->bridge_ctrl |= PCI_BRIDGE_CTL_VGA;
- bus = (bus == bus->dev->bus)? 0 : bus->dev->bus;
+ bus = (bus == bus->dev->bus) ? 0 : bus->dev->bus;
}
}
#endif
-
/**
* @brief Assign the computed resources to the devices on the bus.
*
@@ -480,21 +751,21 @@ void assign_resources(struct bus *bus)
struct device *curdev;
printk_spew("%s assign_resources, bus %d link: %d\n",
- dev_path(bus->dev), bus->secondary, bus->link);
+ dev_path(bus->dev), bus->secondary, bus->link);
- for(curdev = bus->children; curdev; curdev = curdev->sibling) {
+ for (curdev = bus->children; curdev; curdev = curdev->sibling) {
if (!curdev->enabled || !curdev->resources) {
continue;
}
if (!curdev->ops || !curdev->ops->set_resources) {
printk_err("%s missing set_resources\n",
- dev_path(curdev));
+ dev_path(curdev));
continue;
}
curdev->ops->set_resources(curdev);
}
printk_spew("%s assign_resources, bus %d link: %d\n",
- dev_path(bus->dev), bus->secondary, bus->link);
+ dev_path(bus->dev), bus->secondary, bus->link);
}
/**
@@ -539,8 +810,7 @@ void enable_resources(struct device *dev)
*/
int reset_bus(struct bus *bus)
{
- if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus)
- {
+ if (bus && bus->dev && bus->dev->ops && bus->dev->ops->reset_bus) {
bus->dev->ops->reset_bus(bus);
bus->reset_needed = 0;
return 1;
@@ -551,37 +821,34 @@ int reset_bus(struct bus *bus)
/**
* @brief Scan for devices on a bus.
*
- * If there are bridges on the bus, recursively scan the buses behind the bridges.
- * If the setting up and tuning of the bus causes a reset to be required,
- * reset the bus and scan it again.
+ * If there are bridges on the bus, recursively scan the buses behind the
+ * bridges. If the setting up and tuning of the bus causes a reset to be
+ * required, reset the bus and scan it again.
*
- * @param bus pointer to the bus device
- * @param max current bus number
- *
- * @return The maximum bus number found, after scanning all subordinate busses
+ * @param busdev Pointer to the bus device.
+ * @param max Current bus number.
+ * @return The maximum bus number found, after scanning all subordinate buses.
*/
-unsigned int scan_bus(device_t bus, unsigned int max)
+unsigned int scan_bus(struct device *busdev, unsigned int max)
{
unsigned int new_max;
int do_scan_bus;
- if ( !bus ||
- !bus->enabled ||
- !bus->ops ||
- !bus->ops->scan_bus)
- {
+ if (!busdev || !busdev->enabled || !busdev->ops ||
+ !busdev->ops->scan_bus) {
return max;
}
+
do_scan_bus = 1;
- while(do_scan_bus) {
+ while (do_scan_bus) {
int link;
- new_max = bus->ops->scan_bus(bus, max);
+ new_max = busdev->ops->scan_bus(busdev, max);
do_scan_bus = 0;
- for(link = 0; link < bus->links; link++) {
- if (bus->link[link].reset_needed) {
- if (reset_bus(&bus->link[link])) {
+ for (link = 0; link < busdev->links; link++) {
+ if (busdev->link[link].reset_needed) {
+ if (reset_bus(&busdev->link[link])) {
do_scan_bus = 1;
} else {
- bus->bus->reset_needed = 1;
+ busdev->bus->reset_needed = 1;
}
}
}
@@ -589,7 +856,6 @@ unsigned int scan_bus(device_t bus, unsigned int max)
return new_max;
}
-
/**
* @brief Determine the existence of devices and extend the device tree.
*
@@ -619,7 +885,7 @@ void dev_enumerate(void)
printk_info("Enumerating buses...\n");
root = &dev_root;
- show_all_devs(BIOS_DEBUG, "Before Phase 3.");
+ show_all_devs(BIOS_DEBUG, "Before Device Enumeration.");
printk_debug("Compare with tree...\n");
show_devs_tree(root, BIOS_DEBUG, 0, 0);
@@ -643,66 +909,115 @@ void dev_enumerate(void)
* requried by each device. In the second pass, the resources ranges are
* relocated to their final position and stored to the hardware.
*
- * I/O resources start at DEVICE_IO_START and grow upward. MEM resources start
- * at DEVICE_MEM_HIGH and grow downward.
+ * I/O resources grow upward. MEM resources grow downward.
*
* Since the assignment is hierarchical we set the values into the dev_root
* struct.
*/
void dev_configure(void)
{
- struct resource *io, *mem;
+ struct resource *res;
struct device *root;
+ struct device *child;
+ int i;
printk_info("Allocating resources...\n");
root = &dev_root;
- print_resource_tree(root, BIOS_DEBUG, "Original.");
+ /* Each domain should create resources which contain the entire address
+ * space for IO, MEM, and PREFMEM resources in the domain. The
+ * allocation of device resources will be done from this address space.
+ */
- if (!root->ops || !root->ops->read_resources) {
- printk_err("dev_root missing read_resources\n");
- return;
- }
- if (!root->ops || !root->ops->set_resources) {
- printk_err("dev_root missing set_resources\n");
- return;
- }
+ /* Read the resources for the entire tree. */
printk_info("Reading resources...\n");
- root->ops->read_resources(root);
+ read_resources(&root->link[0]);
printk_info("Done reading resources.\n");
print_resource_tree(root, BIOS_DEBUG, "After reading.");
- /* Get the resources */
- io = &root->resource[0];
- mem = &root->resource[1];
- /* Make certain the io devices are allocated somewhere safe. */
- io->base = DEVICE_IO_START;
- io->flags |= IORESOURCE_ASSIGNED;
- io->flags &= ~IORESOURCE_STORED;
- /* Now reallocate the pci resources memory with the
- * highest addresses I can manage.
+ /* Compute resources for all domains. */
+ for (child = root->link[0].children; child; child = child->sibling) {
+ if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
+ continue;
+ for (i = 0; i < child->resources; i++) {
+ res = &child->resource[i];
+ if (res->flags & IORESOURCE_FIXED)
+ continue;
+ if (res->flags & IORESOURCE_PREFETCH) {
+ compute_resources(&child->link[0],
+ res, MEM_MASK, PREF_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_MEM) {
+ compute_resources(&child->link[0],
+ res, MEM_MASK, MEM_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_IO) {
+ compute_resources(&child->link[0],
+ res, IO_MASK, IO_TYPE);
+ continue;
+ }
+ }
+ }
+
+ /* For all domains. */
+ for (child = root->link[0].children; child; child=child->sibling)
+ if (child->path.type == DEVICE_PATH_PCI_DOMAIN)
+ avoid_fixed_resources(child);
+
+ /* Now we need to adjust the resources. MEM resources need to start at
+ * the highest address managable.
*/
- mem->base = resource_max(&root->resource[1]);
- mem->flags |= IORESOURCE_ASSIGNED;
- mem->flags &= ~IORESOURCE_STORED;
+ for (child = root->link[0].children; child; child = child->sibling) {
+ if (child->path.type != DEVICE_PATH_PCI_DOMAIN)
+ continue;
+ for (i = 0; i < child->resources; i++) {
+ res = &child->resource[i];
+ if (!(res->flags & IORESOURCE_MEM) ||
+ res->flags & IORESOURCE_FIXED)
+ continue;
+ res->base = resource_max(res);
+ }
+ }
#if CONFIG_CONSOLE_VGA == 1
- /* Allocate the VGA I/O resource.. */
+ /* Allocate the VGA I/O resource. */
allocate_vga_resource();
print_resource_tree(root, BIOS_DEBUG, "After VGA.");
#endif
/* Store the computed resource allocations into device registers ... */
printk_info("Setting resources...\n");
- root->ops->set_resources(root);
+ for (child = root->link[0].children; child; child = child->sibling) {
+ if (!(child->path.type == DEVICE_PATH_PCI_DOMAIN))
+ continue;
+ for (i = 0; i < child->resources; i++) {
+ res = &child->resource[i];
+ if (res->flags & IORESOURCE_FIXED)
+ continue;
+ if (res->flags & IORESOURCE_PREFETCH) {
+ allocate_resources(&child->link[0],
+ res, MEM_MASK, PREF_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_MEM) {
+ allocate_resources(&child->link[0],
+ res, MEM_MASK, MEM_TYPE);
+ continue;
+ }
+ if (res->flags & IORESOURCE_IO) {
+ allocate_resources(&child->link[0],
+ res, IO_MASK, IO_TYPE);
+ continue;
+ }
+ }
+ }
+ assign_resources(&root->link[0]);
printk_info("Done setting resources.\n");
-#if 0
- mem->flags |= IORESOURCE_STORED;
- report_resource_stored(root, mem, "");
-#endif
print_resource_tree(root, BIOS_DEBUG, "After assigning values.");
printk_info("Done allocating resources.\n");
@@ -736,13 +1051,13 @@ void dev_initialize(void)
struct device *dev;
printk_info("Initializing devices...\n");
- for(dev = all_devices; dev; dev = dev->next) {
+ for (dev = all_devices; dev; dev = dev->next) {
if (dev->enabled && !dev->initialized &&
- dev->ops && dev->ops->init)
- {
+ dev->ops && dev->ops->init) {
if (dev->path.type == DEVICE_PATH_I2C) {
- printk_debug("smbus: %s[%d]->",
- dev_path(dev->bus->dev), dev->bus->link);
+ printk_debug("smbus: %s[%d]->",
+ dev_path(dev->bus->dev),
+ dev->bus->link);
}
printk_debug("%s init\n", dev_path(dev));
dev->initialized = 1;
@@ -752,4 +1067,3 @@ void dev_initialize(void)
printk_info("Devices initialized\n");
show_all_devs(BIOS_DEBUG, "After init.");
}
-