summaryrefslogtreecommitdiff
path: root/EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c
diff options
context:
space:
mode:
Diffstat (limited to 'EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c')
-rw-r--r--EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c869
1 files changed, 0 insertions, 869 deletions
diff --git a/EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c b/EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c
deleted file mode 100644
index 3647a12fae..0000000000
--- a/EdkModulePkg/Universal/Ebc/Dxe/Ipf/EbcSupport.c
+++ /dev/null
@@ -1,869 +0,0 @@
-/*++
-
-Copyright (c) 2006, Intel Corporation
-All rights reserved. This program and the accompanying materials
-are licensed and made available under the terms and conditions of the BSD License
-which accompanies this distribution. The full text of the license may be found at
-http://opensource.org/licenses/bsd-license.php
-
-THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
-WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
-
-Module Name:
-
- EbcSupport.c
-
-Abstract:
-
- This module contains EBC support routines that are customized based on
- the target processor.
-
---*/
-
-#include "EbcInt.h"
-#include "EbcExecute.h"
-#include "EbcSupport.h"
-
-STATIC
-EFI_STATUS
-WriteBundle (
- IN VOID *MemPtr,
- IN UINT8 Template,
- IN UINT64 Slot0,
- IN UINT64 Slot1,
- IN UINT64 Slot2
- );
-
-STATIC
-VOID
-PushU64 (
- VM_CONTEXT *VmPtr,
- UINT64 Arg
- )
-{
- //
- // Advance the VM stack down, and then copy the argument to the stack.
- // Hope it's aligned.
- //
- VmPtr->R[0] -= sizeof (UINT64);
- *(UINT64 *) VmPtr->R[0] = Arg;
-}
-
-STATIC
-UINT64
-EbcInterpret (
- UINT64 Arg1,
- ...
- )
-{
- //
- // Create a new VM context on the stack
- //
- VM_CONTEXT VmContext;
- UINTN Addr;
- EFI_STATUS Status;
- UINTN StackIndex;
- VA_LIST List;
- UINT64 Arg2;
- UINT64 Arg3;
- UINT64 Arg4;
- UINT64 Arg5;
- UINT64 Arg6;
- UINT64 Arg7;
- UINT64 Arg8;
- UINT64 Arg9;
- UINT64 Arg10;
- UINT64 Arg11;
- UINT64 Arg12;
- UINT64 Arg13;
- UINT64 Arg14;
- UINT64 Arg15;
- UINT64 Arg16;
- //
- // Get the EBC entry point from the processor register. Make sure you don't
- // call any functions before this or you could mess up the register the
- // entry point is passed in.
- //
- Addr = EbcLLGetEbcEntryPoint ();
- //
- // Need the args off the stack.
- //
- VA_START (List, Arg1);
- Arg2 = VA_ARG (List, UINT64);
- Arg3 = VA_ARG (List, UINT64);
- Arg4 = VA_ARG (List, UINT64);
- Arg5 = VA_ARG (List, UINT64);
- Arg6 = VA_ARG (List, UINT64);
- Arg7 = VA_ARG (List, UINT64);
- Arg8 = VA_ARG (List, UINT64);
- Arg9 = VA_ARG (List, UINT64);
- Arg10 = VA_ARG (List, UINT64);
- Arg11 = VA_ARG (List, UINT64);
- Arg12 = VA_ARG (List, UINT64);
- Arg13 = VA_ARG (List, UINT64);
- Arg14 = VA_ARG (List, UINT64);
- Arg15 = VA_ARG (List, UINT64);
- Arg16 = VA_ARG (List, UINT64);
- //
- // Now clear out our context
- //
- ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
- //
- // Set the VM instruction pointer to the correct location in memory.
- //
- VmContext.Ip = (VMIP) Addr;
- //
- // Initialize the stack pointer for the EBC. Get the current system stack
- // pointer and adjust it down by the max needed for the interpreter.
- //
- //
- // NOTE: Eventually we should have the interpreter allocate memory
- // for stack space which it will use during its execution. This
- // would likely improve performance because the interpreter would
- // no longer be required to test each memory access and adjust
- // those reading from the stack gap.
- //
- // For IPF, the stack looks like (assuming 10 args passed)
- // arg10
- // arg9 (Bottom of high stack)
- // [ stack gap for interpreter execution ]
- // [ magic value for detection of stack corruption ]
- // arg8 (Top of low stack)
- // arg7....
- // arg1
- // [ 64-bit return address ]
- // [ ebc stack ]
- // If the EBC accesses memory in the stack gap, then we assume that it's
- // actually trying to access args9 and greater. Therefore we need to
- // adjust memory accesses in this region to point above the stack gap.
- //
- //
- // Now adjust the EBC stack pointer down to leave a gap for interpreter
- // execution. Then stuff a magic value there.
- //
-
- Status = GetEBCStack((EFI_HANDLE)(UINTN)-1, &VmContext.StackPool, &StackIndex);
- if (EFI_ERROR(Status)) {
- return Status;
- }
- VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
- VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
- VmContext.HighStackBottom = (UINTN) VmContext.R[0];
- VmContext.R[0] -= sizeof (UINTN);
-
-
- PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
- VmContext.StackMagicPtr = (UINTN *) VmContext.R[0];
- VmContext.LowStackTop = (UINTN) VmContext.R[0];
- //
- // Push the EBC arguments on the stack. Does not matter that they may not
- // all be valid.
- //
- PushU64 (&VmContext, Arg16);
- PushU64 (&VmContext, Arg15);
- PushU64 (&VmContext, Arg14);
- PushU64 (&VmContext, Arg13);
- PushU64 (&VmContext, Arg12);
- PushU64 (&VmContext, Arg11);
- PushU64 (&VmContext, Arg10);
- PushU64 (&VmContext, Arg9);
- PushU64 (&VmContext, Arg8);
- PushU64 (&VmContext, Arg7);
- PushU64 (&VmContext, Arg6);
- PushU64 (&VmContext, Arg5);
- PushU64 (&VmContext, Arg4);
- PushU64 (&VmContext, Arg3);
- PushU64 (&VmContext, Arg2);
- PushU64 (&VmContext, Arg1);
- //
- // Push a bogus return address on the EBC stack because the
- // interpreter expects one there. For stack alignment purposes on IPF,
- // EBC return addresses are always 16 bytes. Push a bogus value as well.
- //
- PushU64 (&VmContext, 0);
- PushU64 (&VmContext, 0xDEADBEEFDEADBEEF);
- VmContext.StackRetAddr = (UINT64) VmContext.R[0];
- //
- // Begin executing the EBC code
- //
- EbcExecute (&VmContext);
- //
- // Return the value in R[7] unless there was an error
- //
- ReturnEBCStack(StackIndex);
- return (UINT64) VmContext.R[7];
-}
-
-STATIC
-UINT64
-ExecuteEbcImageEntryPoint (
- IN EFI_HANDLE ImageHandle,
- IN EFI_SYSTEM_TABLE *SystemTable
- )
-/*++
-
-Routine Description:
-
- IPF implementation.
-
- Begin executing an EBC image. The address of the entry point is passed
- in via a processor register, so we'll need to make a call to get the
- value.
-
-Arguments:
-
- ImageHandle - image handle for the EBC application we're executing
- SystemTable - standard system table passed into an driver's entry point
-
-Returns:
-
- The value returned by the EBC application we're going to run.
-
---*/
-{
- //
- // Create a new VM context on the stack
- //
- VM_CONTEXT VmContext;
- UINTN Addr;
- EFI_STATUS Status;
- UINTN StackIndex;
-
- //
- // Get the EBC entry point from the processor register. Make sure you don't
- // call any functions before this or you could mess up the register the
- // entry point is passed in.
- //
- Addr = EbcLLGetEbcEntryPoint ();
-
- //
- // Now clear out our context
- //
- ZeroMem ((VOID *) &VmContext, sizeof (VM_CONTEXT));
-
- //
- // Save the image handle so we can track the thunks created for this image
- //
- VmContext.ImageHandle = ImageHandle;
- VmContext.SystemTable = SystemTable;
-
- //
- // Set the VM instruction pointer to the correct location in memory.
- //
- VmContext.Ip = (VMIP) Addr;
-
- //
- // Get the stack pointer. This is the bottom of the upper stack.
- //
- Addr = EbcLLGetStackPointer ();
-
- Status = GetEBCStack(ImageHandle, &VmContext.StackPool, &StackIndex);
- if (EFI_ERROR(Status)) {
- return Status;
- }
- VmContext.StackTop = (UINT8*)VmContext.StackPool + (STACK_REMAIN_SIZE);
- VmContext.R[0] = (UINT64) ((UINT8*)VmContext.StackPool + STACK_POOL_SIZE);
- VmContext.HighStackBottom = (UINTN) VmContext.R[0];
- VmContext.R[0] -= sizeof (UINTN);
-
-
- //
- // Allocate stack space for the interpreter. Then put a magic value
- // at the bottom so we can detect stack corruption.
- //
- PushU64 (&VmContext, (UINT64) VM_STACK_KEY_VALUE);
- VmContext.StackMagicPtr = (UINTN *) (UINTN) VmContext.R[0];
-
- //
- // When we thunk to external native code, we copy the last 8 qwords from
- // the EBC stack into the processor registers, and adjust the stack pointer
- // up. If the caller is not passing 8 parameters, then we've moved the
- // stack pointer up into the stack gap. If this happens, then the caller
- // can mess up the stack gap contents (in particular our magic value).
- // Therefore, leave another gap below the magic value. Pick 10 qwords down,
- // just as a starting point.
- //
- VmContext.R[0] -= 10 * sizeof (UINT64);
-
- //
- // Align the stack pointer such that after pushing the system table,
- // image handle, and return address on the stack, it's aligned on a 16-byte
- // boundary as required for IPF.
- //
- VmContext.R[0] &= (INT64)~0x0f;
- VmContext.LowStackTop = (UINTN) VmContext.R[0];
- //
- // Simply copy the image handle and system table onto the EBC stack.
- // Greatly simplifies things by not having to spill the args
- //
- PushU64 (&VmContext, (UINT64) SystemTable);
- PushU64 (&VmContext, (UINT64) ImageHandle);
-
- //
- // Interpreter assumes 64-bit return address is pushed on the stack.
- // IPF does not do this so pad the stack accordingly. Also, a
- // "return address" is 16 bytes as required for IPF stack alignments.
- //
- PushU64 (&VmContext, (UINT64) 0);
- PushU64 (&VmContext, (UINT64) 0x1234567887654321);
- VmContext.StackRetAddr = (UINT64) VmContext.R[0];
-
- //
- // Begin executing the EBC code
- //
- EbcExecute (&VmContext);
-
- //
- // Return the value in R[7] unless there was an error
- //
- ReturnEBCStack(StackIndex);
- return (UINT64) VmContext.R[7];
-}
-
-EFI_STATUS
-EbcCreateThunks (
- IN EFI_HANDLE ImageHandle,
- IN VOID *EbcEntryPoint,
- OUT VOID **Thunk,
- IN UINT32 Flags
- )
-/*++
-
-Routine Description:
-
- Create thunks for an EBC image entry point, or an EBC protocol service.
-
-Arguments:
-
- ImageHandle - Image handle for the EBC image. If not null, then we're
- creating a thunk for an image entry point.
- EbcEntryPoint - Address of the EBC code that the thunk is to call
- Thunk - Returned thunk we create here
- Flags - Flags indicating options for creating the thunk
-
-Returns:
-
- Standard EFI status.
-
---*/
-{
- UINT8 *Ptr;
- UINT8 *ThunkBase;
- UINT64 Addr;
- UINT64 Code[3]; // Code in a bundle
- UINT64 RegNum; // register number for MOVL
- UINT64 I; // bits of MOVL immediate data
- UINT64 Ic; // bits of MOVL immediate data
- UINT64 Imm5c; // bits of MOVL immediate data
- UINT64 Imm9d; // bits of MOVL immediate data
- UINT64 Imm7b; // bits of MOVL immediate data
- UINT64 Br; // branch register for loading and jumping
- UINT64 *Data64Ptr;
- UINT32 ThunkSize;
- UINT32 Size;
-
- //
- // Check alignment of pointer to EBC code, which must always be aligned
- // on a 2-byte boundary.
- //
- if ((UINT32) (UINTN) EbcEntryPoint & 0x01) {
- return EFI_INVALID_PARAMETER;
- }
- //
- // Allocate memory for the thunk. Make the (most likely incorrect) assumption
- // that the returned buffer is not aligned, so round up to the next
- // alignment size.
- //
- Size = EBC_THUNK_SIZE + EBC_THUNK_ALIGNMENT - 1;
- ThunkSize = Size;
- Ptr = AllocatePool (Size);
-
- if (Ptr == NULL) {
- return EFI_OUT_OF_RESOURCES;
- }
- //
- // Save the start address of the buffer.
- //
- ThunkBase = Ptr;
-
- //
- // Make sure it's aligned for code execution. If not, then
- // round up.
- //
- if ((UINT32) (UINTN) Ptr & (EBC_THUNK_ALIGNMENT - 1)) {
- Ptr = (UINT8 *) (((UINTN) Ptr + (EBC_THUNK_ALIGNMENT - 1)) &~ (UINT64) (EBC_THUNK_ALIGNMENT - 1));
- }
- //
- // Return the pointer to the thunk to the caller to user as the
- // image entry point.
- //
- *Thunk = (VOID *) Ptr;
-
- //
- // Clear out the thunk entry
- // ZeroMem(Ptr, Size);
- //
- // For IPF, when you do a call via a function pointer, the function pointer
- // actually points to a function descriptor which consists of a 64-bit
- // address of the function, followed by a 64-bit gp for the function being
- // called. See the the Software Conventions and Runtime Architecture Guide
- // for details.
- // So first off in our thunk, create a descriptor for our actual thunk code.
- // This means we need to create a pointer to the thunk code (which follows
- // the descriptor we're going to create), followed by the gp of the Vm
- // interpret function we're going to eventually execute.
- //
- Data64Ptr = (UINT64 *) Ptr;
-
- //
- // Write the function's entry point (which is our thunk code that follows
- // this descriptor we're creating).
- //
- *Data64Ptr = (UINT64) (Data64Ptr + 2);
- //
- // Get the gp from the descriptor for EbcInterpret and stuff it in our thunk
- // descriptor.
- //
- *(Data64Ptr + 1) = *(UINT64 *) ((UINT64 *) (UINTN) EbcInterpret + 1);
- //
- // Advance our thunk data pointer past the descriptor. Since the
- // descriptor consists of 16 bytes, the pointer is still aligned for
- // IPF code execution (on 16-byte boundary).
- //
- Ptr += sizeof (UINT64) * 2;
-
- //
- // *************************** MAGIC BUNDLE ********************************
- //
- // Write magic code bundle for: movl r8 = 0xca112ebcca112ebc to help the VM
- // to recognize it is a thunk.
- //
- Addr = (UINT64) 0xCA112EBCCA112EBC;
-
- //
- // Now generate the code bytes. First is nop.m 0x0
- //
- Code[0] = OPCODE_NOP;
-
- //
- // Next is simply Addr[62:22] (41 bits) of the address
- //
- Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
-
- //
- // Extract bits from the address for insertion into the instruction
- // i = Addr[63:63]
- //
- I = RShiftU64 (Addr, 63) & 0x01;
- //
- // ic = Addr[21:21]
- //
- Ic = RShiftU64 (Addr, 21) & 0x01;
- //
- // imm5c = Addr[20:16] for 5 bits
- //
- Imm5c = RShiftU64 (Addr, 16) & 0x1F;
- //
- // imm9d = Addr[15:7] for 9 bits
- //
- Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
- //
- // imm7b = Addr[6:0] for 7 bits
- //
- Imm7b = Addr & 0x7F;
-
- //
- // The EBC entry point will be put into r8, so r8 can be used here
- // temporary. R8 is general register and is auto-serialized.
- //
- RegNum = 8;
-
- //
- // Next is jumbled data, including opcode and rest of address
- //
- Code[2] = LShiftU64 (Imm7b, 13);
- Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
- Code[2] = Code[2] | LShiftU64 (Ic, 21);
- Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
- Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
- Code[2] = Code[2] | LShiftU64 (I, 36);
- Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
- Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
-
- WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
-
- //
- // *************************** FIRST BUNDLE ********************************
- //
- // Write code bundle for: movl r8 = EBC_ENTRY_POINT so we pass
- // the ebc entry point in to the interpreter function via a processor
- // register.
- // Note -- we could easily change this to pass in a pointer to a structure
- // that contained, among other things, the EBC image's entry point. But
- // for now pass it directly.
- //
- Ptr += 16;
- Addr = (UINT64) EbcEntryPoint;
-
- //
- // Now generate the code bytes. First is nop.m 0x0
- //
- Code[0] = OPCODE_NOP;
-
- //
- // Next is simply Addr[62:22] (41 bits) of the address
- //
- Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
-
- //
- // Extract bits from the address for insertion into the instruction
- // i = Addr[63:63]
- //
- I = RShiftU64 (Addr, 63) & 0x01;
- //
- // ic = Addr[21:21]
- //
- Ic = RShiftU64 (Addr, 21) & 0x01;
- //
- // imm5c = Addr[20:16] for 5 bits
- //
- Imm5c = RShiftU64 (Addr, 16) & 0x1F;
- //
- // imm9d = Addr[15:7] for 9 bits
- //
- Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
- //
- // imm7b = Addr[6:0] for 7 bits
- //
- Imm7b = Addr & 0x7F;
-
- //
- // Put the EBC entry point in r8, which is the location of the return value
- // for functions.
- //
- RegNum = 8;
-
- //
- // Next is jumbled data, including opcode and rest of address
- //
- Code[2] = LShiftU64 (Imm7b, 13);
- Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
- Code[2] = Code[2] | LShiftU64 (Ic, 21);
- Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
- Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
- Code[2] = Code[2] | LShiftU64 (I, 36);
- Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
- Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
-
- WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
-
- //
- // *************************** NEXT BUNDLE *********************************
- //
- // Write code bundle for:
- // movl rx = offset_of(EbcInterpret|ExecuteEbcImageEntryPoint)
- //
- // Advance pointer to next bundle, then compute the offset from this bundle
- // to the address of the entry point of the interpreter.
- //
- Ptr += 16;
- if (Flags & FLAG_THUNK_ENTRY_POINT) {
- Addr = (UINT64) ExecuteEbcImageEntryPoint;
- } else {
- Addr = (UINT64) EbcInterpret;
- }
- //
- // Indirection on Itanium-based systems
- //
- Addr = *(UINT64 *) Addr;
-
- //
- // Now write the code to load the offset into a register
- //
- Code[0] = OPCODE_NOP;
-
- //
- // Next is simply Addr[62:22] (41 bits) of the address
- //
- Code[1] = RShiftU64 (Addr, 22) & 0x1ffffffffff;
-
- //
- // Extract bits from the address for insertion into the instruction
- // i = Addr[63:63]
- //
- I = RShiftU64 (Addr, 63) & 0x01;
- //
- // ic = Addr[21:21]
- //
- Ic = RShiftU64 (Addr, 21) & 0x01;
- //
- // imm5c = Addr[20:16] for 5 bits
- //
- Imm5c = RShiftU64 (Addr, 16) & 0x1F;
- //
- // imm9d = Addr[15:7] for 9 bits
- //
- Imm9d = RShiftU64 (Addr, 7) & 0x1FF;
- //
- // imm7b = Addr[6:0] for 7 bits
- //
- Imm7b = Addr & 0x7F;
-
- //
- // Put it in r31, a scratch register
- //
- RegNum = 31;
-
- //
- // Next is jumbled data, including opcode and rest of address
- //
- Code[2] = LShiftU64(Imm7b, 13);
- Code[2] = Code[2] | LShiftU64 (0x00, 20); // vc
- Code[2] = Code[2] | LShiftU64 (Ic, 21);
- Code[2] = Code[2] | LShiftU64 (Imm5c, 22);
- Code[2] = Code[2] | LShiftU64 (Imm9d, 27);
- Code[2] = Code[2] | LShiftU64 (I, 36);
- Code[2] = Code[2] | LShiftU64 ((UINT64)MOVL_OPCODE, 37);
- Code[2] = Code[2] | LShiftU64 ((RegNum & 0x7F), 6);
-
- WriteBundle ((VOID *) Ptr, 0x05, Code[0], Code[1], Code[2]);
-
- //
- // *************************** NEXT BUNDLE *********************************
- //
- // Load branch register with EbcInterpret() function offset from the bundle
- // address: mov b6 = RegNum
- //
- // See volume 3 page 4-29 of the Arch. Software Developer's Manual.
- //
- // Advance pointer to next bundle
- //
- Ptr += 16;
- Code[0] = OPCODE_NOP;
- Code[1] = OPCODE_NOP;
- Code[2] = OPCODE_MOV_BX_RX;
-
- //
- // Pick a branch register to use. Then fill in the bits for the branch
- // register and user register (same user register as previous bundle).
- //
- Br = 6;
- Code[2] |= LShiftU64 (Br, 6);
- Code[2] |= LShiftU64 (RegNum, 13);
- WriteBundle ((VOID *) Ptr, 0x0d, Code[0], Code[1], Code[2]);
-
- //
- // *************************** NEXT BUNDLE *********************************
- //
- // Now do the branch: (p0) br.cond.sptk.few b6
- //
- // Advance pointer to next bundle.
- // Fill in the bits for the branch register (same reg as previous bundle)
- //
- Ptr += 16;
- Code[0] = OPCODE_NOP;
- Code[1] = OPCODE_NOP;
- Code[2] = OPCODE_BR_COND_SPTK_FEW;
- Code[2] |= LShiftU64 (Br, 13);
- WriteBundle ((VOID *) Ptr, 0x1d, Code[0], Code[1], Code[2]);
-
- //
- // Add the thunk to our list of allocated thunks so we can do some cleanup
- // when the image is unloaded. Do this last since the Add function flushes
- // the instruction cache for us.
- //
- EbcAddImageThunk (ImageHandle, (VOID *) ThunkBase, ThunkSize);
-
- //
- // Done
- //
- return EFI_SUCCESS;
-}
-
-STATIC
-EFI_STATUS
-WriteBundle (
- IN VOID *MemPtr,
- IN UINT8 Template,
- IN UINT64 Slot0,
- IN UINT64 Slot1,
- IN UINT64 Slot2
- )
-/*++
-
-Routine Description:
-
- Given raw bytes of Itanium based code, format them into a bundle and
- write them out.
-
-Arguments:
-
- MemPtr - pointer to memory location to write the bundles to
- Template - 5-bit template
- Slot0-2 - instruction slot data for the bundle
-
-Returns:
-
- EFI_INVALID_PARAMETER - Pointer is not aligned
- - No more than 5 bits in template
- - More than 41 bits used in code
- EFI_SUCCESS - All data is written.
-
---*/
-{
- UINT8 *BPtr;
- UINT32 Index;
- UINT64 Low64;
- UINT64 High64;
-
- //
- // Verify pointer is aligned
- //
- if ((UINT64) MemPtr & 0xF) {
- return EFI_INVALID_PARAMETER;
- }
- //
- // Verify no more than 5 bits in template
- //
- if (Template &~0x1F) {
- return EFI_INVALID_PARAMETER;
- }
- //
- // Verify max of 41 bits used in code
- //
- if ((Slot0 | Slot1 | Slot2) &~0x1ffffffffff) {
- return EFI_INVALID_PARAMETER;
- }
-
- Low64 = LShiftU64 (Slot1, 46);
- Low64 = Low64 | LShiftU64 (Slot0, 5) | Template;
-
- High64 = RShiftU64 (Slot1, 18);
- High64 = High64 | LShiftU64 (Slot2, 23);
-
- //
- // Now write it all out
- //
- BPtr = (UINT8 *) MemPtr;
- for (Index = 0; Index < 8; Index++) {
- *BPtr = (UINT8) Low64;
- Low64 = RShiftU64 (Low64, 8);
- BPtr++;
- }
-
- for (Index = 0; Index < 8; Index++) {
- *BPtr = (UINT8) High64;
- High64 = RShiftU64 (High64, 8);
- BPtr++;
- }
-
- return EFI_SUCCESS;
-}
-
-VOID
-EbcLLCALLEX (
- IN VM_CONTEXT *VmPtr,
- IN UINTN FuncAddr,
- IN UINTN NewStackPointer,
- IN VOID *FramePtr,
- IN UINT8 Size
- )
-/*++
-
-Routine Description:
-
- This function is called to execute an EBC CALLEX instruction.
- The function check the callee's content to see whether it is common native
- code or a thunk to another piece of EBC code.
- If the callee is common native code, use EbcLLCAllEXASM to manipulate,
- otherwise, set the VM->IP to target EBC code directly to avoid another VM
- be startup which cost time and stack space.
-
-Arguments:
-
- VmPtr - Pointer to a VM context.
- FuncAddr - Callee's address
- NewStackPointer - New stack pointer after the call
- FramePtr - New frame pointer after the call
- Size - The size of call instruction
-
-Returns:
-
- None.
-
---*/
-{
- UINTN IsThunk;
- UINTN TargetEbcAddr;
- UINTN CodeOne18;
- UINTN CodeOne23;
- UINTN CodeTwoI;
- UINTN CodeTwoIc;
- UINTN CodeTwo7b;
- UINTN CodeTwo5c;
- UINTN CodeTwo9d;
- UINTN CalleeAddr;
-
- IsThunk = 1;
- TargetEbcAddr = 0;
-
- //
- // FuncAddr points to the descriptor of the target instructions.
- //
- CalleeAddr = *((UINT64 *)FuncAddr);
-
- //
- // Processor specific code to check whether the callee is a thunk to EBC.
- //
- if (*((UINT64 *)CalleeAddr) != 0xBCCA000100000005) {
- IsThunk = 0;
- goto Action;
- }
- if (*((UINT64 *)CalleeAddr + 1) != 0x697623C1004A112E) {
- IsThunk = 0;
- goto Action;
- }
-
- CodeOne18 = RShiftU64 (*((UINT64 *)CalleeAddr + 2), 46) & 0x3FFFF;
- CodeOne23 = (*((UINT64 *)CalleeAddr + 3)) & 0x7FFFFF;
- CodeTwoI = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 59) & 0x1;
- CodeTwoIc = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 44) & 0x1;
- CodeTwo7b = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 36) & 0x7F;
- CodeTwo5c = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 45) & 0x1F;
- CodeTwo9d = RShiftU64 (*((UINT64 *)CalleeAddr + 3), 50) & 0x1FF;
-
- TargetEbcAddr = CodeTwo7b;
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo9d, 7);
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwo5c, 16);
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoIc, 21);
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne18, 22);
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeOne23, 40);
- TargetEbcAddr = TargetEbcAddr | LShiftU64 (CodeTwoI, 63);
-
-Action:
- if (IsThunk == 1){
- //
- // The callee is a thunk to EBC, adjust the stack pointer down 16 bytes and
- // put our return address and frame pointer on the VM stack.
- // Then set the VM's IP to new EBC code.
- //
- VmPtr->R[0] -= 8;
- VmWriteMemN (VmPtr, (UINTN) VmPtr->R[0], (UINTN) FramePtr);
- VmPtr->FramePtr = (VOID *) (UINTN) VmPtr->R[0];
- VmPtr->R[0] -= 8;
- VmWriteMem64 (VmPtr, (UINTN) VmPtr->R[0], (UINT64) (VmPtr->Ip + Size));
-
- VmPtr->Ip = (VMIP) (UINTN) TargetEbcAddr;
- } else {
- //
- // The callee is not a thunk to EBC, call native code.
- //
- EbcLLCALLEXNative (FuncAddr, NewStackPointer, FramePtr);
-
- //
- // Get return value and advance the IP.
- //
- VmPtr->R[7] = EbcLLGetReturnValue ();
- VmPtr->Ip += Size;
- }
-}