summaryrefslogtreecommitdiff
path: root/MdeModulePkg/Core/Dxe/Mem/Page.c
blob: f3f74720b815cb79f697712670c75f5e994877d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
/** @file
  UEFI Memory page management functions.

Copyright (c) 2007 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "DxeMain.h"
#include "Imem.h"

#define EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT  (EFI_PAGE_SIZE)

//
// Entry for tracking the memory regions for each memory type to coalesce similar memory types
//
typedef struct {
  EFI_PHYSICAL_ADDRESS  BaseAddress;
  EFI_PHYSICAL_ADDRESS  MaximumAddress;
  UINT64                CurrentNumberOfPages;
  UINT64                NumberOfPages;
  UINTN                 InformationIndex;
  BOOLEAN               Special;
  BOOLEAN               Runtime;
} EFI_MEMORY_TYPE_STAISTICS;

//
// MemoryMap - The current memory map
//
UINTN     mMemoryMapKey = 0;

#define MAX_MAP_DEPTH 6

///
/// mMapDepth - depth of new descriptor stack
///
UINTN         mMapDepth = 0;
///
/// mMapStack - space to use as temp storage to build new map descriptors
///
MEMORY_MAP    mMapStack[MAX_MAP_DEPTH];
UINTN         mFreeMapStack = 0;
///
/// This list maintain the free memory map list
///
LIST_ENTRY   mFreeMemoryMapEntryList = INITIALIZE_LIST_HEAD_VARIABLE (mFreeMemoryMapEntryList);
BOOLEAN      mMemoryTypeInformationInitialized = FALSE;

EFI_MEMORY_TYPE_STAISTICS mMemoryTypeStatistics[EfiMaxMemoryType + 1] = {
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiReservedMemoryType
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiLoaderCode
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiLoaderData
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiBootServicesCode
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiBootServicesData
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiRuntimeServicesCode
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiRuntimeServicesData
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiConventionalMemory
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiUnusableMemory
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiACPIReclaimMemory
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  FALSE },  // EfiACPIMemoryNVS
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiMemoryMappedIO
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE },  // EfiMemoryMappedIOPortSpace
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, TRUE,  TRUE  },  // EfiPalCode
  { 0, MAX_ADDRESS, 0, 0, EfiMaxMemoryType, FALSE, FALSE }   // EfiMaxMemoryType
};

EFI_PHYSICAL_ADDRESS mDefaultMaximumAddress = MAX_ADDRESS;

EFI_MEMORY_TYPE_INFORMATION gMemoryTypeInformation[EfiMaxMemoryType + 1] = {
  { EfiReservedMemoryType,      0 },
  { EfiLoaderCode,              0 },
  { EfiLoaderData,              0 },
  { EfiBootServicesCode,        0 },
  { EfiBootServicesData,        0 },
  { EfiRuntimeServicesCode,     0 },
  { EfiRuntimeServicesData,     0 },
  { EfiConventionalMemory,      0 },
  { EfiUnusableMemory,          0 },
  { EfiACPIReclaimMemory,       0 },
  { EfiACPIMemoryNVS,           0 },
  { EfiMemoryMappedIO,          0 },
  { EfiMemoryMappedIOPortSpace, 0 },
  { EfiPalCode,                 0 },
  { EfiMaxMemoryType,           0 }
};
//
// Only used when load module at fixed address feature is enabled. True means the memory is alreay successfully allocated
// and ready to load the module in to specified address.or else, the memory is not ready and module will be loaded at a 
//  address assigned by DXE core.
//
GLOBAL_REMOVE_IF_UNREFERENCED   BOOLEAN       gLoadFixedAddressCodeMemoryReady = FALSE;

/**
  Enter critical section by gaining lock on gMemoryLock.

**/
VOID
CoreAcquireMemoryLock (
  VOID
  )
{
  CoreAcquireLock (&gMemoryLock);
}



/**
  Exit critical section by releasing lock on gMemoryLock.

**/
VOID
CoreReleaseMemoryLock (
  VOID
  )
{
  CoreReleaseLock (&gMemoryLock);
}




/**
  Internal function.  Removes a descriptor entry.

  @param  Entry                  The entry to remove

**/
VOID
RemoveMemoryMapEntry (
  IN OUT MEMORY_MAP      *Entry
  )
{
  RemoveEntryList (&Entry->Link);
  Entry->Link.ForwardLink = NULL;

  if (Entry->FromPages) {
    //
    // Insert the free memory map descriptor to the end of mFreeMemoryMapEntryList
    //
    InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
  }
}

/**
  Internal function.  Adds a ranges to the memory map.
  The range must not already exist in the map.

  @param  Type                   The type of memory range to add
  @param  Start                  The starting address in the memory range Must be
                                 paged aligned
  @param  End                    The last address in the range Must be the last
                                 byte of a page
  @param  Attribute              The attributes of the memory range to add

**/
VOID
CoreAddRange (
  IN EFI_MEMORY_TYPE          Type,
  IN EFI_PHYSICAL_ADDRESS     Start,
  IN EFI_PHYSICAL_ADDRESS     End,
  IN UINT64                   Attribute
  )
{
  LIST_ENTRY        *Link;
  MEMORY_MAP        *Entry;

  ASSERT ((Start & EFI_PAGE_MASK) == 0);
  ASSERT (End > Start) ;

  ASSERT_LOCKED (&gMemoryLock);

  DEBUG ((DEBUG_PAGE, "AddRange: %lx-%lx to %d\n", Start, End, Type));

  //
  // Memory map being altered so updated key
  //
  mMemoryMapKey += 1;

  //
  // UEFI 2.0 added an event group for notificaiton on memory map changes.
  // So we need to signal this Event Group every time the memory map changes.
  // If we are in EFI 1.10 compatability mode no event groups will be
  // found and nothing will happen we we call this function. These events
  // will get signaled but since a lock is held around the call to this
  // function the notificaiton events will only be called after this funciton
  // returns and the lock is released.
  //
  CoreNotifySignalList (&gEfiEventMemoryMapChangeGuid);

  //
  // Look for adjoining memory descriptor
  //

  // Two memory descriptors can only be merged if they have the same Type
  // and the same Attribute
  //

  Link = gMemoryMap.ForwardLink;
  while (Link != &gMemoryMap) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    Link  = Link->ForwardLink;

    if (Entry->Type != Type) {
      continue;
    }

    if (Entry->Attribute != Attribute) {
      continue;
    }

    if (Entry->End + 1 == Start) {

      Start = Entry->Start;
      RemoveMemoryMapEntry (Entry);

    } else if (Entry->Start == End + 1) {

      End = Entry->End;
      RemoveMemoryMapEntry (Entry);
    }
  }

  //
  // Add descriptor
  //

  mMapStack[mMapDepth].Signature     = MEMORY_MAP_SIGNATURE;
  mMapStack[mMapDepth].FromPages      = FALSE;
  mMapStack[mMapDepth].Type          = Type;
  mMapStack[mMapDepth].Start         = Start;
  mMapStack[mMapDepth].End           = End;
  mMapStack[mMapDepth].VirtualStart  = 0;
  mMapStack[mMapDepth].Attribute     = Attribute;
  InsertTailList (&gMemoryMap, &mMapStack[mMapDepth].Link);

  mMapDepth += 1;
  ASSERT (mMapDepth < MAX_MAP_DEPTH);

  return ;
}

/**
  Internal function.  Deque a descriptor entry from the mFreeMemoryMapEntryList.
  If the list is emtry, then allocate a new page to refuel the list.
  Please Note this algorithm to allocate the memory map descriptor has a property
  that the memory allocated for memory entries always grows, and will never really be freed
  For example, if the current boot uses 2000 memory map entries at the maximum point, but
  ends up with only 50 at the time the OS is booted, then the memory associated with the 1950
  memory map entries is still allocated from EfiBootServicesMemory.


  @return The Memory map descriptor dequed from the mFreeMemoryMapEntryList

**/
MEMORY_MAP *
AllocateMemoryMapEntry (
  VOID
  )
{
  MEMORY_MAP*            FreeDescriptorEntries;
  MEMORY_MAP*            Entry;
  UINTN                  Index;

  if (IsListEmpty (&mFreeMemoryMapEntryList)) {
    //
    // The list is empty, to allocate one page to refuel the list
    //
    FreeDescriptorEntries = CoreAllocatePoolPages (EfiBootServicesData, EFI_SIZE_TO_PAGES(DEFAULT_PAGE_ALLOCATION), DEFAULT_PAGE_ALLOCATION);
    if(FreeDescriptorEntries != NULL) {
      //
      // Enque the free memmory map entries into the list
      //
      for (Index = 0; Index< DEFAULT_PAGE_ALLOCATION / sizeof(MEMORY_MAP); Index++) {
        FreeDescriptorEntries[Index].Signature = MEMORY_MAP_SIGNATURE;
        InsertTailList (&mFreeMemoryMapEntryList, &FreeDescriptorEntries[Index].Link);
      }
    } else {
      return NULL;
    }
  }
  //
  // dequeue the first descriptor from the list
  //
  Entry = CR (mFreeMemoryMapEntryList.ForwardLink, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
  RemoveEntryList (&Entry->Link);

  return Entry;
}


/**
  Internal function.  Moves any memory descriptors that are on the
  temporary descriptor stack to heap.

**/
VOID
CoreFreeMemoryMapStack (
  VOID
  )
{
  MEMORY_MAP      *Entry;
  MEMORY_MAP      *Entry2;
  LIST_ENTRY      *Link2;

  ASSERT_LOCKED (&gMemoryLock);

  //
  // If already freeing the map stack, then return
  //
  if (mFreeMapStack != 0) {
    return ;
  }

  //
  // Move the temporary memory descriptor stack into pool
  //
  mFreeMapStack += 1;

  while (mMapDepth != 0) {
    //
    // Deque an memory map entry from mFreeMemoryMapEntryList
    //
    Entry = AllocateMemoryMapEntry ();

    ASSERT (Entry);

    //
    // Update to proper entry
    //
    mMapDepth -= 1;

    if (mMapStack[mMapDepth].Link.ForwardLink != NULL) {

      //
      // Move this entry to general memory
      //
      RemoveEntryList (&mMapStack[mMapDepth].Link);
      mMapStack[mMapDepth].Link.ForwardLink = NULL;

      CopyMem (Entry , &mMapStack[mMapDepth], sizeof (MEMORY_MAP));
      Entry->FromPages = TRUE;

      //
      // Find insertion location
      //
      for (Link2 = gMemoryMap.ForwardLink; Link2 != &gMemoryMap; Link2 = Link2->ForwardLink) {
        Entry2 = CR (Link2, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
        if (Entry2->FromPages && Entry2->Start > Entry->Start) {
          break;
        }
      }

      InsertTailList (Link2, &Entry->Link);

    } else {
      //
      // This item of mMapStack[mMapDepth] has already been dequeued from gMemoryMap list,
      // so here no need to move it to memory.
      //
      InsertTailList (&mFreeMemoryMapEntryList, &Entry->Link);
    }
  }

  mFreeMapStack -= 1;
}

/**
  Find untested but initialized memory regions in GCD map and convert them to be DXE allocatable.

**/
VOID
PromoteMemoryResource (
  VOID
  )
{
  LIST_ENTRY                       *Link;
  EFI_GCD_MAP_ENTRY                *Entry;

  DEBUG ((DEBUG_PAGE, "Promote the memory resource\n"));

  CoreAcquireGcdMemoryLock ();

  Link = mGcdMemorySpaceMap.ForwardLink;
  while (Link != &mGcdMemorySpaceMap) {

    Entry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);

    if (Entry->GcdMemoryType == EfiGcdMemoryTypeReserved &&
        Entry->EndAddress < MAX_ADDRESS &&
        (Entry->Capabilities & (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED)) ==
          (EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED)) {
      //
      // Update the GCD map
      //
      Entry->GcdMemoryType = EfiGcdMemoryTypeSystemMemory;
      Entry->Capabilities |= EFI_MEMORY_TESTED;
      Entry->ImageHandle  = gDxeCoreImageHandle;
      Entry->DeviceHandle = NULL;

      //
      // Add to allocable system memory resource
      //

      CoreAddRange (
        EfiConventionalMemory,
        Entry->BaseAddress,
        Entry->EndAddress,
        Entry->Capabilities & ~(EFI_MEMORY_PRESENT | EFI_MEMORY_INITIALIZED | EFI_MEMORY_TESTED | EFI_MEMORY_RUNTIME)
        );
      CoreFreeMemoryMapStack ();

    }

    Link = Link->ForwardLink;
  }

  CoreReleaseGcdMemoryLock ();

  return;
}
/**
  This function try to allocate Runtime code & Boot time code memory range. If LMFA enabled, 2 patchable PCD 
  PcdLoadFixAddressRuntimeCodePageNumber & PcdLoadFixAddressBootTimeCodePageNumber which are set by tools will record the 
  size of boot time and runtime code.

**/
VOID
CoreLoadingFixedAddressHook (
  VOID
  )
{
   UINT32                     RuntimeCodePageNumber;
   UINT32                     BootTimeCodePageNumber;
   EFI_PHYSICAL_ADDRESS       RuntimeCodeBase;
   EFI_PHYSICAL_ADDRESS       BootTimeCodeBase;
   EFI_STATUS                 Status;

   //
   // Make sure these 2 areas are not initialzied.
   //
   if (!gLoadFixedAddressCodeMemoryReady) {   
     RuntimeCodePageNumber = PcdGet32(PcdLoadFixAddressRuntimeCodePageNumber);
     BootTimeCodePageNumber= PcdGet32(PcdLoadFixAddressBootTimeCodePageNumber);
     RuntimeCodeBase       = (EFI_PHYSICAL_ADDRESS)(gLoadModuleAtFixAddressConfigurationTable.DxeCodeTopAddress - EFI_PAGES_TO_SIZE (RuntimeCodePageNumber));
     BootTimeCodeBase      = (EFI_PHYSICAL_ADDRESS)(RuntimeCodeBase - EFI_PAGES_TO_SIZE (BootTimeCodePageNumber));
     //
     // Try to allocate runtime memory.
     //
     Status = CoreAllocatePages (
                       AllocateAddress,
                       EfiRuntimeServicesCode,
                       RuntimeCodePageNumber,
                       &RuntimeCodeBase
                       );
     if (EFI_ERROR(Status)) {
       //
       // Runtime memory allocation failed 
       //
       return;
     }
     //
     // Try to allocate boot memory.
     //
     Status = CoreAllocatePages (
                       AllocateAddress,
                       EfiBootServicesCode,
                       BootTimeCodePageNumber,
                       &BootTimeCodeBase
                       );
     if (EFI_ERROR(Status)) {
       //
     	 // boot memory allocation failed. Free Runtime code range and will try the allocation again when 
     	 // new memory range is installed.
     	 //
     	 CoreFreePages (
              RuntimeCodeBase,
              RuntimeCodePageNumber
              );
       return;
     }
     gLoadFixedAddressCodeMemoryReady = TRUE;
   } 
   return;
}  

/**
  Called to initialize the memory map and add descriptors to
  the current descriptor list.
  The first descriptor that is added must be general usable
  memory as the addition allocates heap.

  @param  Type                   The type of memory to add
  @param  Start                  The starting address in the memory range Must be
                                 page aligned
  @param  NumberOfPages          The number of pages in the range
  @param  Attribute              Attributes of the memory to add

  @return None.  The range is added to the memory map

**/
VOID
CoreAddMemoryDescriptor (
  IN EFI_MEMORY_TYPE       Type,
  IN EFI_PHYSICAL_ADDRESS  Start,
  IN UINT64                NumberOfPages,
  IN UINT64                Attribute
  )
{
  EFI_PHYSICAL_ADDRESS        End;
  EFI_STATUS                  Status;
  UINTN                       Index;
  UINTN                       FreeIndex;
  
  if ((Start & EFI_PAGE_MASK) != 0) {
    return;
  }

  if (Type >= EfiMaxMemoryType && Type <= 0x7fffffff) {
    return;
  }
  CoreAcquireMemoryLock ();
  End = Start + LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT) - 1;
  CoreAddRange (Type, Start, End, Attribute);
  CoreFreeMemoryMapStack ();
  CoreReleaseMemoryLock ();

  //
  // If Loading Module At Fixed Address feature is enabled. try to allocate memory with Runtime code & Boot time code type
  //
  if (PcdGet64(PcdLoadModuleAtFixAddressEnable) != 0) {
    CoreLoadingFixedAddressHook();
  }
  
  //
  // Check to see if the statistics for the different memory types have already been established
  //
  if (mMemoryTypeInformationInitialized) {
    return;
  }

  
  //
  // Loop through each memory type in the order specified by the gMemoryTypeInformation[] array
  //
  for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
    //
    // Make sure the memory type in the gMemoryTypeInformation[] array is valid
    //
    Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);
    if (Type < 0 || Type > EfiMaxMemoryType) {
      continue;
    }
    if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
      //
      // Allocate pages for the current memory type from the top of available memory
      //
      Status = CoreAllocatePages (
                 AllocateAnyPages,
                 Type,
                 gMemoryTypeInformation[Index].NumberOfPages,
                 &mMemoryTypeStatistics[Type].BaseAddress
                 );
      if (EFI_ERROR (Status)) {
        //
        // If an error occurs allocating the pages for the current memory type, then
        // free all the pages allocates for the previous memory types and return.  This
        // operation with be retied when/if more memory is added to the system
        //
        for (FreeIndex = 0; FreeIndex < Index; FreeIndex++) {
          //
          // Make sure the memory type in the gMemoryTypeInformation[] array is valid
          //
          Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[FreeIndex].Type);
          if (Type < 0 || Type > EfiMaxMemoryType) {
            continue;
          }

          if (gMemoryTypeInformation[FreeIndex].NumberOfPages != 0) {
            CoreFreePages (
              mMemoryTypeStatistics[Type].BaseAddress,
              gMemoryTypeInformation[FreeIndex].NumberOfPages
              );
            mMemoryTypeStatistics[Type].BaseAddress    = 0;
            mMemoryTypeStatistics[Type].MaximumAddress = MAX_ADDRESS;
          }
        }
        return;
      }

      //
      // Compute the address at the top of the current statistics
      //
      mMemoryTypeStatistics[Type].MaximumAddress =
        mMemoryTypeStatistics[Type].BaseAddress +
        LShiftU64 (gMemoryTypeInformation[Index].NumberOfPages, EFI_PAGE_SHIFT) - 1;

      //
      // If the current base address is the lowest address so far, then update the default
      // maximum address
      //
      if (mMemoryTypeStatistics[Type].BaseAddress < mDefaultMaximumAddress) {
        mDefaultMaximumAddress = mMemoryTypeStatistics[Type].BaseAddress - 1;
      }
    }
  }

  //
  // There was enough system memory for all the the memory types were allocated.  So,
  // those memory areas can be freed for future allocations, and all future memory
  // allocations can occur within their respective bins
  //
  for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
    //
    // Make sure the memory type in the gMemoryTypeInformation[] array is valid
    //
    Type = (EFI_MEMORY_TYPE) (gMemoryTypeInformation[Index].Type);
    if (Type < 0 || Type > EfiMaxMemoryType) {
      continue;
    }
    if (gMemoryTypeInformation[Index].NumberOfPages != 0) {
      CoreFreePages (
        mMemoryTypeStatistics[Type].BaseAddress,
        gMemoryTypeInformation[Index].NumberOfPages
        );
      mMemoryTypeStatistics[Type].NumberOfPages   = gMemoryTypeInformation[Index].NumberOfPages;
      gMemoryTypeInformation[Index].NumberOfPages = 0;
    }
  }

  //
  // If the number of pages reserved for a memory type is 0, then all allocations for that type
  // should be in the default range.
  //
  for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {
    for (Index = 0; gMemoryTypeInformation[Index].Type != EfiMaxMemoryType; Index++) {
      if (Type == (EFI_MEMORY_TYPE)gMemoryTypeInformation[Index].Type) {
        mMemoryTypeStatistics[Type].InformationIndex = Index;
      }
    }
    mMemoryTypeStatistics[Type].CurrentNumberOfPages = 0;
    if (mMemoryTypeStatistics[Type].MaximumAddress == MAX_ADDRESS) {
      mMemoryTypeStatistics[Type].MaximumAddress = mDefaultMaximumAddress;
    }
  }

  mMemoryTypeInformationInitialized = TRUE;
}


/**
  Internal function.  Converts a memory range to the specified type.
  The range must exist in the memory map.

  @param  Start                  The first address of the range Must be page
                                 aligned
  @param  NumberOfPages          The number of pages to convert
  @param  NewType                The new type for the memory range

  @retval EFI_INVALID_PARAMETER  Invalid parameter
  @retval EFI_NOT_FOUND          Could not find a descriptor cover the specified
                                 range  or convertion not allowed.
  @retval EFI_SUCCESS            Successfully converts the memory range to the
                                 specified type.

**/
EFI_STATUS
CoreConvertPages (
  IN UINT64           Start,
  IN UINT64           NumberOfPages,
  IN EFI_MEMORY_TYPE  NewType
  )
{

  UINT64          NumberOfBytes;
  UINT64          End;
  UINT64          RangeEnd;
  UINT64          Attribute;
  LIST_ENTRY      *Link;
  MEMORY_MAP      *Entry;

  Entry = NULL;
  NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
  End = Start + NumberOfBytes - 1;

  ASSERT (NumberOfPages);
  ASSERT ((Start & EFI_PAGE_MASK) == 0);
  ASSERT (End > Start) ;
  ASSERT_LOCKED (&gMemoryLock);

  if (NumberOfPages == 0 || ((Start & EFI_PAGE_MASK) != 0) || (Start > (Start + NumberOfBytes))) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Convert the entire range
  //

  while (Start < End) {

    //
    // Find the entry that the covers the range
    //
    for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
      Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);

      if (Entry->Start <= Start && Entry->End > Start) {
        break;
      }
    }

    if (Link == &gMemoryMap) {
      DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: failed to find range %lx - %lx\n", Start, End));
      return EFI_NOT_FOUND;
    }

    //
    // Convert range to the end, or to the end of the descriptor
    // if that's all we've got
    //
    RangeEnd = End;

    ASSERT (Entry != NULL);
    if (Entry->End < End) {
      RangeEnd = Entry->End;
    }

    DEBUG ((DEBUG_PAGE, "ConvertRange: %lx-%lx to %d\n", Start, RangeEnd, NewType));

    //
    // Debug code - verify conversion is allowed
    //
    if (!(NewType == EfiConventionalMemory ? 1 : 0) ^ (Entry->Type == EfiConventionalMemory ? 1 : 0)) {
      DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "ConvertPages: Incompatible memory types\n"));
      return EFI_NOT_FOUND;
    }

    //
    // Update counters for the number of pages allocated to each memory type
    //
    if (Entry->Type >= 0 && Entry->Type < EfiMaxMemoryType) {
      if (Start >= mMemoryTypeStatistics[Entry->Type].BaseAddress &&
          Start <= mMemoryTypeStatistics[Entry->Type].MaximumAddress) {
        if (NumberOfPages > mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages) {
          mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages = 0;
        } else {
          mMemoryTypeStatistics[Entry->Type].CurrentNumberOfPages -= NumberOfPages;
        }
      }
    }

    if (NewType >= 0 && NewType < EfiMaxMemoryType) {
      if (Start >= mMemoryTypeStatistics[NewType].BaseAddress && Start <= mMemoryTypeStatistics[NewType].MaximumAddress) {
        mMemoryTypeStatistics[NewType].CurrentNumberOfPages += NumberOfPages;
        if (mMemoryTypeStatistics[NewType].CurrentNumberOfPages >
            gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages) {
          gMemoryTypeInformation[mMemoryTypeStatistics[NewType].InformationIndex].NumberOfPages = (UINT32)mMemoryTypeStatistics[NewType].CurrentNumberOfPages;
        }
      }
    }

    //
    // Pull range out of descriptor
    //
    if (Entry->Start == Start) {

      //
      // Clip start
      //
      Entry->Start = RangeEnd + 1;

    } else if (Entry->End == RangeEnd) {

      //
      // Clip end
      //
      Entry->End = Start - 1;

    } else {

      //
      // Pull it out of the center, clip current
      //

      //
      // Add a new one
      //
      mMapStack[mMapDepth].Signature = MEMORY_MAP_SIGNATURE;
      mMapStack[mMapDepth].FromPages  = FALSE;
      mMapStack[mMapDepth].Type      = Entry->Type;
      mMapStack[mMapDepth].Start     = RangeEnd+1;
      mMapStack[mMapDepth].End       = Entry->End;

      //
      // Inherit Attribute from the Memory Descriptor that is being clipped
      //
      mMapStack[mMapDepth].Attribute = Entry->Attribute;

      Entry->End = Start - 1;
      ASSERT (Entry->Start < Entry->End);

      Entry = &mMapStack[mMapDepth];
      InsertTailList (&gMemoryMap, &Entry->Link);

      mMapDepth += 1;
      ASSERT (mMapDepth < MAX_MAP_DEPTH);
    }

    //
    // The new range inherits the same Attribute as the Entry
    //it is being cut out of
    //
    Attribute = Entry->Attribute;

    //
    // If the descriptor is empty, then remove it from the map
    //
    if (Entry->Start == Entry->End + 1) {
      RemoveMemoryMapEntry (Entry);
      Entry = NULL;
    }

    //
    // Add our new range in
    //
    CoreAddRange (NewType, Start, RangeEnd, Attribute);
    if (NewType == EfiConventionalMemory) {
      DEBUG_CLEAR_MEMORY ((VOID *)(UINTN) Start, (UINTN) (RangeEnd - Start + 1));
    }

    //
    // Move any map descriptor stack to general pool
    //
    CoreFreeMemoryMapStack ();

    //
    // Bump the starting address, and convert the next range
    //
    Start = RangeEnd + 1;
  }

  //
  // Converted the whole range, done
  //

  return EFI_SUCCESS;
}



/**
  Internal function. Finds a consecutive free page range below
  the requested address.

  @param  MaxAddress             The address that the range must be below
  @param  NumberOfPages          Number of pages needed
  @param  NewType                The type of memory the range is going to be
                                 turned into
  @param  Alignment              Bits to align with

  @return The base address of the range, or 0 if the range was not found

**/
UINT64
CoreFindFreePagesI (
  IN UINT64           MaxAddress,
  IN UINT64           NumberOfPages,
  IN EFI_MEMORY_TYPE  NewType,
  IN UINTN            Alignment
  )
{
  UINT64          NumberOfBytes;
  UINT64          Target;
  UINT64          DescStart;
  UINT64          DescEnd;
  UINT64          DescNumberOfBytes;
  LIST_ENTRY      *Link;
  MEMORY_MAP      *Entry;

  if ((MaxAddress < EFI_PAGE_MASK) ||(NumberOfPages == 0)) {
    return 0;
  }

  if ((MaxAddress & EFI_PAGE_MASK) != EFI_PAGE_MASK) {

    //
    // If MaxAddress is not aligned to the end of a page
    //

    //
    // Change MaxAddress to be 1 page lower
    //
    MaxAddress -= (EFI_PAGE_MASK + 1);

    //
    // Set MaxAddress to a page boundary
    //
    MaxAddress &= ~EFI_PAGE_MASK;

    //
    // Set MaxAddress to end of the page
    //
    MaxAddress |= EFI_PAGE_MASK;
  }

  NumberOfBytes = LShiftU64 (NumberOfPages, EFI_PAGE_SHIFT);
  Target = 0;

  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);

    //
    // If it's not a free entry, don't bother with it
    //
    if (Entry->Type != EfiConventionalMemory) {
      continue;
    }

    DescStart = Entry->Start;
    DescEnd = Entry->End;

    //
    // If desc is past max allowed address, skip it
    //
    if (DescStart >= MaxAddress) {
      continue;
    }

    //
    // If desc ends past max allowed address, clip the end
    //
    if (DescEnd >= MaxAddress) {
      DescEnd = MaxAddress;
    }

    DescEnd = ((DescEnd + 1) & (~(Alignment - 1))) - 1;

    //
    // Compute the number of bytes we can used from this
    // descriptor, and see it's enough to satisfy the request
    //
    DescNumberOfBytes = DescEnd - DescStart + 1;

    if (DescNumberOfBytes >= NumberOfBytes) {

      //
      // If this is the best match so far remember it
      //
      if (DescEnd > Target) {
        Target = DescEnd;
      }
    }
  }

  //
  // If this is a grow down, adjust target to be the allocation base
  //
  Target -= NumberOfBytes - 1;

  //
  // If we didn't find a match, return 0
  //
  if ((Target & EFI_PAGE_MASK) != 0) {
    return 0;
  }

  return Target;
}


/**
  Internal function.  Finds a consecutive free page range below
  the requested address

  @param  MaxAddress             The address that the range must be below
  @param  NoPages                Number of pages needed
  @param  NewType                The type of memory the range is going to be
                                 turned into
  @param  Alignment              Bits to align with

  @return The base address of the range, or 0 if the range was not found.

**/
UINT64
FindFreePages (
    IN UINT64           MaxAddress,
    IN UINT64           NoPages,
    IN EFI_MEMORY_TYPE  NewType,
    IN UINTN            Alignment
    )
{
  UINT64  NewMaxAddress;
  UINT64  Start;

  NewMaxAddress = MaxAddress;

  if (NewType >= 0 && NewType < EfiMaxMemoryType && NewMaxAddress >= mMemoryTypeStatistics[NewType].MaximumAddress) {
    NewMaxAddress  = mMemoryTypeStatistics[NewType].MaximumAddress;
  } else {
    if (NewMaxAddress > mDefaultMaximumAddress) {
      NewMaxAddress  = mDefaultMaximumAddress;
    }
  }

  Start = CoreFindFreePagesI (NewMaxAddress, NoPages, NewType, Alignment);
  if (Start == 0) {
    Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);
    if (Start == 0) {
      //
      // Here means there may be no enough memory to use, so try to go through
      // all the memory descript to promote the untested memory directly
      //
      PromoteMemoryResource ();

      //
      // Allocate memory again after the memory resource re-arranged
      //
      Start = CoreFindFreePagesI (MaxAddress, NoPages, NewType, Alignment);
    }
  }

  return Start;
}



/**
  Allocates pages from the memory map.

  @param  Type                   The type of allocation to perform
  @param  MemoryType             The type of memory to turn the allocated pages
                                 into
  @param  NumberOfPages          The number of pages to allocate
  @param  Memory                 A pointer to receive the base allocated memory
                                 address

  @return Status. On success, Memory is filled in with the base address allocated
  @retval EFI_INVALID_PARAMETER  Parameters violate checking rules defined in
                                 spec.
  @retval EFI_NOT_FOUND          Could not allocate pages match the requirement.
  @retval EFI_OUT_OF_RESOURCES   No enough pages to allocate.
  @retval EFI_SUCCESS            Pages successfully allocated.

**/
EFI_STATUS
EFIAPI
CoreAllocatePages (
  IN EFI_ALLOCATE_TYPE      Type,
  IN EFI_MEMORY_TYPE        MemoryType,
  IN UINTN                  NumberOfPages,
  IN OUT EFI_PHYSICAL_ADDRESS  *Memory
  )
{
  EFI_STATUS      Status;
  UINT64          Start;
  UINT64          MaxAddress;
  UINTN           Alignment;

  if (Type < AllocateAnyPages || Type >= (UINTN) MaxAllocateType) {
    return EFI_INVALID_PARAMETER;
  }

  if ((MemoryType >= EfiMaxMemoryType && MemoryType <= 0x7fffffff) ||
       MemoryType == EfiConventionalMemory) {
    return EFI_INVALID_PARAMETER;
  }

  Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;

  if  (MemoryType == EfiACPIReclaimMemory   ||
       MemoryType == EfiACPIMemoryNVS       ||
       MemoryType == EfiRuntimeServicesCode ||
       MemoryType == EfiRuntimeServicesData) {

    Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;
  }

  if (Type == AllocateAddress) {
    if ((*Memory & (Alignment - 1)) != 0) {
      return EFI_NOT_FOUND;
    }
  }

  NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
  NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);

  //
  // If this is for below a particular address, then
  //
  Start = *Memory;

  //
  // The max address is the max natively addressable address for the processor
  //
  MaxAddress = MAX_ADDRESS;

  if (Type == AllocateMaxAddress) {
    MaxAddress = Start;
  }

  CoreAcquireMemoryLock ();

  //
  // If not a specific address, then find an address to allocate
  //
  if (Type != AllocateAddress) {
    Start = FindFreePages (MaxAddress, NumberOfPages, MemoryType, Alignment);
    if (Start == 0) {
      Status = EFI_OUT_OF_RESOURCES;
      goto Done;
    }
  }

  //
  // Convert pages from FreeMemory to the requested type
  //
  Status = CoreConvertPages (Start, NumberOfPages, MemoryType);

Done:
  CoreReleaseMemoryLock ();

  if (!EFI_ERROR (Status)) {
    *Memory = Start;
  }

  return Status;
}


/**
  Frees previous allocated pages.

  @param  Memory                 Base address of memory being freed
  @param  NumberOfPages          The number of pages to free

  @retval EFI_NOT_FOUND          Could not find the entry that covers the range
  @retval EFI_INVALID_PARAMETER  Address not aligned
  @return EFI_SUCCESS         -Pages successfully freed.

**/
EFI_STATUS
EFIAPI
CoreFreePages (
  IN EFI_PHYSICAL_ADDRESS   Memory,
  IN UINTN                  NumberOfPages
  )
{
  EFI_STATUS      Status;
  LIST_ENTRY      *Link;
  MEMORY_MAP      *Entry;
  UINTN           Alignment;

  //
  // Free the range
  //
  CoreAcquireMemoryLock ();

  //
  // Find the entry that the covers the range
  //
  Entry = NULL;
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    if (Entry->Start <= Memory && Entry->End > Memory) {
        break;
    }
  }
  if (Link == &gMemoryMap) {
    Status = EFI_NOT_FOUND;
    goto Done;
  }

  Alignment = EFI_DEFAULT_PAGE_ALLOCATION_ALIGNMENT;

  ASSERT (Entry != NULL);
  if  (Entry->Type == EfiACPIReclaimMemory   ||
       Entry->Type == EfiACPIMemoryNVS       ||
       Entry->Type == EfiRuntimeServicesCode ||
       Entry->Type == EfiRuntimeServicesData) {

    Alignment = EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT;

  }

  if ((Memory & (Alignment - 1)) != 0) {
    Status = EFI_INVALID_PARAMETER;
    goto Done;
  }

  NumberOfPages += EFI_SIZE_TO_PAGES (Alignment) - 1;
  NumberOfPages &= ~(EFI_SIZE_TO_PAGES (Alignment) - 1);

  Status = CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);

  if (EFI_ERROR (Status)) {
    goto Done;
  }

Done:
  CoreReleaseMemoryLock ();
  return Status;
}


/**
  This function returns a copy of the current memory map. The map is an array of
  memory descriptors, each of which describes a contiguous block of memory.

  @param  MemoryMapSize          A pointer to the size, in bytes, of the
                                 MemoryMap buffer. On input, this is the size of
                                 the buffer allocated by the caller.  On output,
                                 it is the size of the buffer returned by the
                                 firmware  if the buffer was large enough, or the
                                 size of the buffer needed  to contain the map if
                                 the buffer was too small.
  @param  MemoryMap              A pointer to the buffer in which firmware places
                                 the current memory map.
  @param  MapKey                 A pointer to the location in which firmware
                                 returns the key for the current memory map.
  @param  DescriptorSize         A pointer to the location in which firmware
                                 returns the size, in bytes, of an individual
                                 EFI_MEMORY_DESCRIPTOR.
  @param  DescriptorVersion      A pointer to the location in which firmware
                                 returns the version number associated with the
                                 EFI_MEMORY_DESCRIPTOR.

  @retval EFI_SUCCESS            The memory map was returned in the MemoryMap
                                 buffer.
  @retval EFI_BUFFER_TOO_SMALL   The MemoryMap buffer was too small. The current
                                 buffer size needed to hold the memory map is
                                 returned in MemoryMapSize.
  @retval EFI_INVALID_PARAMETER  One of the parameters has an invalid value.

**/
EFI_STATUS
EFIAPI
CoreGetMemoryMap (
  IN OUT UINTN                  *MemoryMapSize,
  IN OUT EFI_MEMORY_DESCRIPTOR  *MemoryMap,
  OUT UINTN                     *MapKey,
  OUT UINTN                     *DescriptorSize,
  OUT UINT32                    *DescriptorVersion
  )
{
  EFI_STATUS                        Status;
  UINTN                             Size;
  UINTN                             BufferSize;
  UINTN                             NumberOfRuntimeEntries;
  LIST_ENTRY                        *Link;
  MEMORY_MAP                        *Entry;
  EFI_GCD_MAP_ENTRY                 *GcdMapEntry;
  EFI_MEMORY_TYPE                   Type;

  //
  // Make sure the parameters are valid
  //
  if (MemoryMapSize == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CoreAcquireGcdMemoryLock ();

  //
  // Count the number of Reserved and MMIO entries that are marked for runtime use
  //
  NumberOfRuntimeEntries = 0;
  for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {
    GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
    if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||
        (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {
      if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {
        NumberOfRuntimeEntries++;
      }
    }
  }

  Size = sizeof (EFI_MEMORY_DESCRIPTOR);

  //
  // Make sure Size != sizeof(EFI_MEMORY_DESCRIPTOR). This will
  // prevent people from having pointer math bugs in their code.
  // now you have to use *DescriptorSize to make things work.
  //
  Size += sizeof(UINT64) - (Size % sizeof (UINT64));

  if (DescriptorSize != NULL) {
    *DescriptorSize = Size;
  }

  if (DescriptorVersion != NULL) {
    *DescriptorVersion = EFI_MEMORY_DESCRIPTOR_VERSION;
  }

  CoreAcquireMemoryLock ();

  //
  // Compute the buffer size needed to fit the entire map
  //
  BufferSize = Size * NumberOfRuntimeEntries;
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    BufferSize += Size;
  }

  if (*MemoryMapSize < BufferSize) {
    Status = EFI_BUFFER_TOO_SMALL;
    goto Done;
  }

  if (MemoryMap == NULL) {
    Status = EFI_INVALID_PARAMETER;
    goto Done;
  }

  //
  // Build the map
  //
  ZeroMem (MemoryMap, BufferSize);
  for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
    Entry = CR (Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
    ASSERT (Entry->VirtualStart == 0);

    //
    // Convert internal map into an EFI_MEMORY_DESCRIPTOR
    //
    MemoryMap->Type           = Entry->Type;
    MemoryMap->PhysicalStart  = Entry->Start;
    MemoryMap->VirtualStart   = Entry->VirtualStart;
    MemoryMap->NumberOfPages  = RShiftU64 (Entry->End - Entry->Start + 1, EFI_PAGE_SHIFT);
    //
    // If the memory type is EfiConventionalMemory, then determine if the range is part of a
    // memory type bin and needs to be converted to the same memory type as the rest of the
    // memory type bin in order to minimize EFI Memory Map changes across reboots.  This
    // improves the chances for a successful S4 resume in the presence of minor page allocation
    // differences across reboots.
    //
    if (MemoryMap->Type == EfiConventionalMemory) {
      for (Type = (EFI_MEMORY_TYPE) 0; Type < EfiMaxMemoryType; Type++) {
        if (mMemoryTypeStatistics[Type].Special                        &&
            mMemoryTypeStatistics[Type].NumberOfPages > 0              &&
            Entry->Start >= mMemoryTypeStatistics[Type].BaseAddress    &&
            Entry->End   <= mMemoryTypeStatistics[Type].MaximumAddress) {
          MemoryMap->Type = Type;
        }
      }
    }
    MemoryMap->Attribute = Entry->Attribute;
    if (mMemoryTypeStatistics[MemoryMap->Type].Runtime) {
      MemoryMap->Attribute |= EFI_MEMORY_RUNTIME;
    }

    MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
  }

  for (Link = mGcdMemorySpaceMap.ForwardLink; Link != &mGcdMemorySpaceMap; Link = Link->ForwardLink) {
    GcdMapEntry = CR (Link, EFI_GCD_MAP_ENTRY, Link, EFI_GCD_MAP_SIGNATURE);
    if ((GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) ||
        (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo)) {
      if ((GcdMapEntry->Attributes & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {
        // 
        // Create EFI_MEMORY_DESCRIPTOR for every Reserved and MMIO GCD entries
        // that are marked for runtime use
        //
        MemoryMap->PhysicalStart = GcdMapEntry->BaseAddress;
        MemoryMap->VirtualStart  = 0;
        MemoryMap->NumberOfPages = RShiftU64 ((GcdMapEntry->EndAddress - GcdMapEntry->BaseAddress + 1), EFI_PAGE_SHIFT);
        MemoryMap->Attribute     = GcdMapEntry->Attributes & ~EFI_MEMORY_PORT_IO;

        if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeReserved) {
          MemoryMap->Type = EfiReservedMemoryType;
        } else if (GcdMapEntry->GcdMemoryType == EfiGcdMemoryTypeMemoryMappedIo) {
          if ((GcdMapEntry->Attributes & EFI_MEMORY_PORT_IO) == EFI_MEMORY_PORT_IO) {
            MemoryMap->Type = EfiMemoryMappedIOPortSpace;
          } else {
            MemoryMap->Type = EfiMemoryMappedIO;
          }
        }

        MemoryMap = NEXT_MEMORY_DESCRIPTOR (MemoryMap, Size);
      }
    }
  }

  Status = EFI_SUCCESS;

Done:

  CoreReleaseMemoryLock ();

  CoreReleaseGcdMemoryLock ();

  //
  // Update the map key finally
  //
  if (MapKey != NULL) {
    *MapKey = mMemoryMapKey;
  }

  *MemoryMapSize = BufferSize;

  return Status;
}


/**
  Internal function.  Used by the pool functions to allocate pages
  to back pool allocation requests.

  @param  PoolType               The type of memory for the new pool pages
  @param  NumberOfPages          No of pages to allocate
  @param  Alignment              Bits to align.

  @return The allocated memory, or NULL

**/
VOID *
CoreAllocatePoolPages (
  IN EFI_MEMORY_TYPE    PoolType,
  IN UINTN              NumberOfPages,
  IN UINTN              Alignment
  )
{
  UINT64            Start;

  //
  // Find the pages to convert
  //
  Start = FindFreePages (MAX_ADDRESS, NumberOfPages, PoolType, Alignment);

  //
  // Convert it to boot services data
  //
  if (Start == 0) {
    DEBUG ((DEBUG_ERROR | DEBUG_PAGE, "AllocatePoolPages: failed to allocate %d pages\n", (UINT32)NumberOfPages));
  } else {
    CoreConvertPages (Start, NumberOfPages, PoolType);
  }

  return (VOID *)(UINTN) Start;
}


/**
  Internal function.  Frees pool pages allocated via AllocatePoolPages ()

  @param  Memory                 The base address to free
  @param  NumberOfPages          The number of pages to free

**/
VOID
CoreFreePoolPages (
  IN EFI_PHYSICAL_ADDRESS   Memory,
  IN UINTN                  NumberOfPages
  )
{
  CoreConvertPages (Memory, NumberOfPages, EfiConventionalMemory);
}



/**
  Make sure the memory map is following all the construction rules,
  it is the last time to check memory map error before exit boot services.

  @param  MapKey                 Memory map key

  @retval EFI_INVALID_PARAMETER  Memory map not consistent with construction
                                 rules.
  @retval EFI_SUCCESS            Valid memory map.

**/
EFI_STATUS
CoreTerminateMemoryMap (
  IN UINTN          MapKey
  )
{
  EFI_STATUS        Status;
  LIST_ENTRY        *Link;
  MEMORY_MAP        *Entry;

  Status = EFI_SUCCESS;

  CoreAcquireMemoryLock ();

  if (MapKey == mMemoryMapKey) {

    //
    // Make sure the memory map is following all the construction rules
    // This is the last chance we will be able to display any messages on
    // the  console devices.
    //

    for (Link = gMemoryMap.ForwardLink; Link != &gMemoryMap; Link = Link->ForwardLink) {
      Entry = CR(Link, MEMORY_MAP, Link, MEMORY_MAP_SIGNATURE);
      if ((Entry->Attribute & EFI_MEMORY_RUNTIME) != 0) {
        if (Entry->Type == EfiACPIReclaimMemory || Entry->Type == EfiACPIMemoryNVS) {
          DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: ACPI memory entry has RUNTIME attribute set.\n"));
          Status =  EFI_INVALID_PARAMETER;
          goto Done;
        }
        if ((Entry->Start & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {
          DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
          Status =  EFI_INVALID_PARAMETER;
          goto Done;
        }
        if (((Entry->End + 1) & (EFI_ACPI_RUNTIME_PAGE_ALLOCATION_ALIGNMENT - 1)) != 0) {
          DEBUG((DEBUG_ERROR | DEBUG_PAGE, "ExitBootServices: A RUNTIME memory entry is not on a proper alignment.\n"));
          Status =  EFI_INVALID_PARAMETER;
          goto Done;
        }
      }
    }

    //
    // The map key they gave us matches what we expect. Fall through and
    // return success. In an ideal world we would clear out all of
    // EfiBootServicesCode and EfiBootServicesData. However this function
    // is not the last one called by ExitBootServices(), so we have to
    // preserve the memory contents.
    //
  } else {
    Status = EFI_INVALID_PARAMETER;
  }

Done:
  CoreReleaseMemoryLock ();

  return Status;
}