1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
|
/** @file
A DXE_RUNTIME_DRIVER providing synchronous SMI activations via the
EFI_SMM_CONTROL2_PROTOCOL.
We expect the PEI phase to have covered the following:
- ensure that the underlying QEMU machine type be Q35
(responsible: OvmfPkg/SmmAccess/SmmAccessPei.inf)
- ensure that the ACPI PM IO space be configured
(responsible: OvmfPkg/PlatformPei/PlatformPei.inf)
Our own entry point is responsible for confirming the SMI feature and for
configuring it.
Copyright (C) 2013, 2015, Red Hat, Inc.<BR>
Copyright (c) 2009 - 2010, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials are licensed and made available
under the terms and conditions of the BSD License which accompanies this
distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT
WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include <IndustryStandard/Q35MchIch9.h>
#include <Library/BaseLib.h>
#include <Library/DebugLib.h>
#include <Library/IoLib.h>
#include <Library/PcdLib.h>
#include <Library/PciLib.h>
#include <Library/QemuFwCfgLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Protocol/S3SaveState.h>
#include <Protocol/SmmControl2.h>
//
// Forward declaration.
//
STATIC
VOID
EFIAPI
OnS3SaveStateInstalled (
IN EFI_EVENT Event,
IN VOID *Context
);
//
// The absolute IO port address of the SMI Control and Enable Register. It is
// only used to carry information from the entry point function to the
// S3SaveState protocol installation callback, strictly before the runtime
// phase.
//
STATIC UINTN mSmiEnable;
//
// Event signaled when an S3SaveState protocol interface is installed.
//
STATIC EFI_EVENT mS3SaveStateInstalled;
/**
Invokes SMI activation from either the preboot or runtime environment.
This function generates an SMI.
@param[in] This The EFI_SMM_CONTROL2_PROTOCOL instance.
@param[in,out] CommandPort The value written to the command port.
@param[in,out] DataPort The value written to the data port.
@param[in] Periodic Optional mechanism to engender a periodic
stream.
@param[in] ActivationInterval Optional parameter to repeat at this
period one time or, if the Periodic
Boolean is set, periodically.
@retval EFI_SUCCESS The SMI/PMI has been engendered.
@retval EFI_DEVICE_ERROR The timing is unsupported.
@retval EFI_INVALID_PARAMETER The activation period is unsupported.
@retval EFI_INVALID_PARAMETER The last periodic activation has not been
cleared.
@retval EFI_NOT_STARTED The SMM base service has not been initialized.
**/
STATIC
EFI_STATUS
EFIAPI
SmmControl2DxeTrigger (
IN CONST EFI_SMM_CONTROL2_PROTOCOL *This,
IN OUT UINT8 *CommandPort OPTIONAL,
IN OUT UINT8 *DataPort OPTIONAL,
IN BOOLEAN Periodic OPTIONAL,
IN UINTN ActivationInterval OPTIONAL
)
{
//
// No support for queued or periodic activation.
//
if (Periodic || ActivationInterval > 0) {
return EFI_DEVICE_ERROR;
}
//
// The so-called "Advanced Power Management Status Port Register" is in fact
// a generic data passing register, between the caller and the SMI
// dispatcher. The ICH9 spec calls it "scratchpad register" -- calling it
// "status" elsewhere seems quite the misnomer. Status registers usually
// report about hardware status, while this register is fully governed by
// software.
//
// Write to the status register first, as this won't trigger the SMI just
// yet. Then write to the control register.
//
IoWrite8 (ICH9_APM_STS, DataPort == NULL ? 0 : *DataPort);
IoWrite8 (ICH9_APM_CNT, CommandPort == NULL ? 0 : *CommandPort);
return EFI_SUCCESS;
}
/**
Clears any system state that was created in response to the Trigger() call.
This function acknowledges and causes the deassertion of the SMI activation
source.
@param[in] This The EFI_SMM_CONTROL2_PROTOCOL instance.
@param[in] Periodic Optional parameter to repeat at this period
one time
@retval EFI_SUCCESS The SMI/PMI has been engendered.
@retval EFI_DEVICE_ERROR The source could not be cleared.
@retval EFI_INVALID_PARAMETER The service did not support the Periodic input
argument.
**/
STATIC
EFI_STATUS
EFIAPI
SmmControl2DxeClear (
IN CONST EFI_SMM_CONTROL2_PROTOCOL *This,
IN BOOLEAN Periodic OPTIONAL
)
{
if (Periodic) {
return EFI_INVALID_PARAMETER;
}
//
// The PI spec v1.4 explains that Clear() is only supposed to clear software
// status; it is not in fact responsible for deasserting the SMI. It gives
// two reasons for this: (a) many boards clear the SMI automatically when
// entering SMM, (b) if Clear() actually deasserted the SMI, then it could
// incorrectly suppress an SMI that was asynchronously asserted between the
// last return of the SMI handler and the call made to Clear().
//
// In fact QEMU automatically deasserts CPU_INTERRUPT_SMI in:
// - x86_cpu_exec_interrupt() [target-i386/seg_helper.c], and
// - kvm_arch_pre_run() [target-i386/kvm.c].
//
// So, nothing to do here.
//
return EFI_SUCCESS;
}
STATIC EFI_SMM_CONTROL2_PROTOCOL mControl2 = {
&SmmControl2DxeTrigger,
&SmmControl2DxeClear,
MAX_UINTN // MinimumTriggerPeriod -- we don't support periodic SMIs
};
//
// Entry point of this driver.
//
EFI_STATUS
EFIAPI
SmmControl2DxeEntryPoint (
IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLE *SystemTable
)
{
UINT32 PmBase;
UINT32 SmiEnableVal;
EFI_STATUS Status;
//
// This module should only be included if SMRAM support is required.
//
ASSERT (FeaturePcdGet (PcdSmmSmramRequire));
//
// Calculate the absolute IO port address of the SMI Control and Enable
// Register. (As noted at the top, the PEI phase has left us with a working
// ACPI PM IO space.)
//
PmBase = PciRead32 (POWER_MGMT_REGISTER_Q35 (ICH9_PMBASE)) &
ICH9_PMBASE_MASK;
mSmiEnable = PmBase + ICH9_PMBASE_OFS_SMI_EN;
//
// If APMC_EN is pre-set in SMI_EN, that's QEMU's way to tell us that SMI
// support is not available. (For example due to KVM lacking it.) Otherwise,
// this bit is clear after each reset.
//
SmiEnableVal = IoRead32 (mSmiEnable);
if ((SmiEnableVal & ICH9_SMI_EN_APMC_EN) != 0) {
DEBUG ((EFI_D_ERROR, "%a: this Q35 implementation lacks SMI\n",
__FUNCTION__));
goto FatalError;
}
//
// Otherwise, configure the board to inject an SMI when ICH9_APM_CNT is
// written to. (See the Trigger() method above.)
//
SmiEnableVal |= ICH9_SMI_EN_APMC_EN | ICH9_SMI_EN_GBL_SMI_EN;
IoWrite32 (mSmiEnable, SmiEnableVal);
//
// Prevent software from undoing the above (until platform reset).
//
PciOr16 (POWER_MGMT_REGISTER_Q35 (ICH9_GEN_PMCON_1),
ICH9_GEN_PMCON_1_SMI_LOCK);
//
// If we can clear GBL_SMI_EN now, that means QEMU's SMI support is not
// appropriate.
//
IoWrite32 (mSmiEnable, SmiEnableVal & ~(UINT32)ICH9_SMI_EN_GBL_SMI_EN);
if (IoRead32 (mSmiEnable) != SmiEnableVal) {
DEBUG ((EFI_D_ERROR, "%a: failed to lock down GBL_SMI_EN\n",
__FUNCTION__));
goto FatalError;
}
if (QemuFwCfgS3Enabled ()) {
VOID *Registration;
//
// On S3 resume the above register settings have to be repeated. Register a
// protocol notify callback that, when boot script saving becomes
// available, saves operations equivalent to the above to the boot script.
//
Status = gBS->CreateEvent (EVT_NOTIFY_SIGNAL, TPL_CALLBACK,
OnS3SaveStateInstalled, NULL /* Context */,
&mS3SaveStateInstalled);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: CreateEvent: %r\n", __FUNCTION__, Status));
goto FatalError;
}
Status = gBS->RegisterProtocolNotify (&gEfiS3SaveStateProtocolGuid,
mS3SaveStateInstalled, &Registration);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: RegisterProtocolNotify: %r\n", __FUNCTION__,
Status));
goto ReleaseEvent;
}
//
// Kick the event right now -- maybe the boot script is already saveable.
//
Status = gBS->SignalEvent (mS3SaveStateInstalled);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: SignalEvent: %r\n", __FUNCTION__, Status));
goto ReleaseEvent;
}
}
//
// We have no pointers to convert to virtual addresses. The handle itself
// doesn't matter, as protocol services are not accessible at runtime.
//
Status = gBS->InstallMultipleProtocolInterfaces (&ImageHandle,
&gEfiSmmControl2ProtocolGuid, &mControl2,
NULL);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: InstallMultipleProtocolInterfaces: %r\n",
__FUNCTION__, Status));
goto ReleaseEvent;
}
return EFI_SUCCESS;
ReleaseEvent:
if (mS3SaveStateInstalled != NULL) {
gBS->CloseEvent (mS3SaveStateInstalled);
}
FatalError:
//
// We really don't want to continue in this case.
//
ASSERT (FALSE);
CpuDeadLoop ();
return EFI_UNSUPPORTED;
}
/**
Notification callback for S3SaveState installation.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context The pointer to the notification function's context, which
is implementation-dependent.
**/
STATIC
VOID
EFIAPI
OnS3SaveStateInstalled (
IN EFI_EVENT Event,
IN VOID *Context
)
{
EFI_STATUS Status;
EFI_S3_SAVE_STATE_PROTOCOL *S3SaveState;
UINT32 SmiEnOrMask, SmiEnAndMask;
UINT16 GenPmCon1OrMask, GenPmCon1AndMask;
ASSERT (Event == mS3SaveStateInstalled);
Status = gBS->LocateProtocol (&gEfiS3SaveStateProtocolGuid,
NULL /* Registration */, (VOID **)&S3SaveState);
if (EFI_ERROR (Status)) {
return;
}
//
// These operations were originally done, verified and explained in the entry
// point function of the driver.
//
SmiEnOrMask = ICH9_SMI_EN_APMC_EN | ICH9_SMI_EN_GBL_SMI_EN;
SmiEnAndMask = MAX_UINT32;
Status = S3SaveState->Write (
S3SaveState,
EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE,
EfiBootScriptWidthUint32,
(UINT64)mSmiEnable,
&SmiEnOrMask,
&SmiEnAndMask
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR, "%a: EFI_BOOT_SCRIPT_IO_READ_WRITE_OPCODE: %r\n",
__FUNCTION__, Status));
ASSERT (FALSE);
CpuDeadLoop ();
}
GenPmCon1OrMask = ICH9_GEN_PMCON_1_SMI_LOCK;
GenPmCon1AndMask = MAX_UINT16;
Status = S3SaveState->Write (
S3SaveState,
EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE,
EfiBootScriptWidthUint16,
(UINT64)POWER_MGMT_REGISTER_Q35 (ICH9_GEN_PMCON_1),
&GenPmCon1OrMask,
&GenPmCon1AndMask
);
if (EFI_ERROR (Status)) {
DEBUG ((EFI_D_ERROR,
"%a: EFI_BOOT_SCRIPT_PCI_CONFIG_READ_WRITE_OPCODE: %r\n", __FUNCTION__,
Status));
ASSERT (FALSE);
CpuDeadLoop ();
}
DEBUG ((EFI_D_VERBOSE, "%a: boot script fragment saved\n", __FUNCTION__));
gBS->CloseEvent (Event);
mS3SaveStateInstalled = NULL;
}
|