1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
|
/** @file
Support routines for RDRAND instruction access.
Copyright (c) 2013, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "RdRand.h"
#include "AesCore.h"
//
// Bit mask used to determine if RdRand instruction is supported.
//
#define RDRAND_MASK 0x40000000
/**
Determines whether or not RDRAND instruction is supported by the host hardware.
@retval EFI_SUCCESS RDRAND instruction supported.
@retval EFI_UNSUPPORTED RDRAND instruction not supported.
**/
EFI_STATUS
EFIAPI
IsRdRandSupported (
VOID
)
{
EFI_STATUS Status;
UINT32 RegEax;
UINT32 RegEbx;
UINT32 RegEcx;
UINT32 RegEdx;
BOOLEAN IsIntelCpu;
Status = EFI_UNSUPPORTED;
IsIntelCpu = FALSE;
//
// Checks whether the current processor is an Intel product by CPUID.
//
AsmCpuid (0, &RegEax, &RegEbx, &RegEcx, &RegEdx);
if ((CompareMem ((CHAR8 *)(&RegEbx), "Genu", 4) == 0) &&
(CompareMem ((CHAR8 *)(&RegEdx), "ineI", 4) == 0) &&
(CompareMem ((CHAR8 *)(&RegEcx), "ntel", 4) == 0)) {
IsIntelCpu = TRUE;
}
if (IsIntelCpu) {
//
// Determine RDRAND support by examining bit 30 of the ECX register returned by CPUID.
// A value of 1 indicates that processor supports RDRAND instruction.
//
AsmCpuid (1, 0, 0, &RegEcx, 0);
if ((RegEcx & RDRAND_MASK) == RDRAND_MASK) {
Status = EFI_SUCCESS;
}
}
return Status;
}
/**
Calls RDRAND to obtain a 16-bit random number.
@param[out] Rand Buffer pointer to store the random result.
@param[in] NeedRetry Determine whether or not to loop retry.
@retval EFI_SUCCESS RDRAND call was successful.
@retval EFI_NOT_READY Failed attempts to call RDRAND.
**/
EFI_STATUS
EFIAPI
RdRand16 (
OUT UINT16 *Rand,
IN BOOLEAN NeedRetry
)
{
UINT32 Index;
UINT32 RetryCount;
if (NeedRetry) {
RetryCount = RETRY_LIMIT;
} else {
RetryCount = 1;
}
//
// Perform a single call to RDRAND, or enter a loop call until RDRAND succeeds.
//
for (Index = 0; Index < RetryCount; Index++) {
if (RdRand16Step (Rand)) {
return EFI_SUCCESS;
}
}
return EFI_NOT_READY;
}
/**
Calls RDRAND to obtain a 32-bit random number.
@param[out] Rand Buffer pointer to store the random result.
@param[in] NeedRetry Determine whether or not to loop retry.
@retval EFI_SUCCESS RDRAND call was successful.
@retval EFI_NOT_READY Failed attempts to call RDRAND.
**/
EFI_STATUS
EFIAPI
RdRand32 (
OUT UINT32 *Rand,
IN BOOLEAN NeedRetry
)
{
UINT32 Index;
UINT32 RetryCount;
if (NeedRetry) {
RetryCount = RETRY_LIMIT;
} else {
RetryCount = 1;
}
//
// Perform a single call to RDRAND, or enter a loop call until RDRAND succeeds.
//
for (Index = 0; Index < RetryCount; Index++) {
if (RdRand32Step (Rand)) {
return EFI_SUCCESS;
}
}
return EFI_NOT_READY;
}
/**
Calls RDRAND to obtain a 64-bit random number.
@param[out] Rand Buffer pointer to store the random result.
@param[in] NeedRetry Determine whether or not to loop retry.
@retval EFI_SUCCESS RDRAND call was successful.
@retval EFI_NOT_READY Failed attempts to call RDRAND.
**/
EFI_STATUS
EFIAPI
RdRand64 (
OUT UINT64 *Rand,
IN BOOLEAN NeedRetry
)
{
UINT32 Index;
UINT32 RetryCount;
if (NeedRetry) {
RetryCount = RETRY_LIMIT;
} else {
RetryCount = 1;
}
//
// Perform a single call to RDRAND, or enter a loop call until RDRAND succeeds.
//
for (Index = 0; Index < RetryCount; Index++) {
if (RdRand64Step (Rand)) {
return EFI_SUCCESS;
}
}
return EFI_NOT_READY;
}
/**
Calls RDRAND to fill a buffer of arbitrary size with random bytes.
@param[in] Length Size of the buffer, in bytes, to fill with.
@param[out] RandBuffer Pointer to the buffer to store the random result.
@retval EFI_SUCCESS Random bytes generation succeeded.
@retval EFI_NOT_READY Failed to request random bytes.
**/
EFI_STATUS
EFIAPI
RdRandGetBytes (
IN UINTN Length,
OUT UINT8 *RandBuffer
)
{
EFI_STATUS Status;
UINT8 *Start;
UINT8 *ResidualStart;
UINTN *BlockStart;
UINTN TempRand;
UINTN Count;
UINTN Residual;
UINTN StartLen;
UINTN BlockNum;
UINTN Index;
ResidualStart = NULL;
TempRand = 0;
//
// Compute the address of the first word aligned (32/64-bit) block in the
// destination buffer, depending on whether we are in 32- or 64-bit mode.
//
Start = RandBuffer;
if (((UINT32)(UINTN)Start % (UINT32)sizeof(UINTN)) == 0) {
BlockStart = (UINTN *)Start;
Count = Length;
StartLen = 0;
} else {
BlockStart = (UINTN *)(((UINTN)Start & ~(UINTN)(sizeof(UINTN) - 1)) + (UINTN)sizeof(UINTN));
Count = Length - (sizeof (UINTN) - (UINT32)((UINTN)Start % sizeof (UINTN)));
StartLen = (UINT32)((UINTN)BlockStart - (UINTN)Start);
}
//
// Compute the number of word blocks and the remaining number of bytes.
//
Residual = Count % sizeof (UINTN);
BlockNum = Count / sizeof (UINTN);
if (Residual != 0) {
ResidualStart = (UINT8 *) (BlockStart + BlockNum);
}
//
// Obtain a temporary random number for use in the residuals. Failout if retry fails.
//
if (StartLen > 0) {
Status = RdRandWord ((UINTN *) &TempRand, TRUE);
if (EFI_ERROR (Status)) {
return Status;
}
}
//
// Populate the starting mis-aligned block.
//
for (Index = 0; Index < StartLen; Index++) {
Start[Index] = (UINT8)(TempRand & 0xff);
TempRand = TempRand >> 8;
}
//
// Populate the central aligned block. Fail out if retry fails.
//
Status = RdRandGetWords (BlockNum, (UINTN *)(BlockStart));
if (EFI_ERROR (Status)) {
return Status;
}
//
// Populate the final mis-aligned block.
//
if (Residual > 0) {
Status = RdRandWord ((UINTN *)&TempRand, TRUE);
if (EFI_ERROR (Status)) {
return Status;
}
for (Index = 0; Index < Residual; Index++) {
ResidualStart[Index] = (UINT8)(TempRand & 0xff);
TempRand = TempRand >> 8;
}
}
return EFI_SUCCESS;
}
/**
Creates a 128bit random value that is fully forward and backward prediction resistant,
suitable for seeding a NIST SP800-90 Compliant, FIPS 1402-2 certifiable SW DRBG.
This function takes multiple random numbers through RDRAND without intervening
delays to ensure reseeding and performs AES-CBC-MAC over the data to compute the
seed value.
@param[out] SeedBuffer Pointer to a 128bit buffer to store the random seed.
@retval EFI_SUCCESS Random seed generation succeeded.
@retval EFI_NOT_READY Failed to request random bytes.
**/
EFI_STATUS
EFIAPI
RdRandGetSeed128 (
OUT UINT8 *SeedBuffer
)
{
EFI_STATUS Status;
UINT8 RandByte[16];
UINT8 Key[16];
UINT8 Ffv[16];
UINT8 Xored[16];
UINT32 Index;
UINT32 Index2;
//
// Chose an arbitary key and zero the feed_forward_value (FFV)
//
for (Index = 0; Index < 16; Index++) {
Key[Index] = (UINT8) Index;
Ffv[Index] = 0;
}
//
// Perform CBC_MAC over 32 * 128 bit values, with 10us gaps between 128 bit value
// The 10us gaps will ensure multiple reseeds within the HW RNG with a large design margin.
//
for (Index = 0; Index < 32; Index++) {
MicroSecondDelay (10);
Status = RdRandGetBytes (16, RandByte);
if (EFI_ERROR (Status)) {
return Status;
}
//
// Perform XOR operations on two 128-bit value.
//
for (Index2 = 0; Index2 < 16; Index2++) {
Xored[Index2] = RandByte[Index2] ^ Ffv[Index2];
}
AesEncrypt (Key, Xored, Ffv);
}
for (Index = 0; Index < 16; Index++) {
SeedBuffer[Index] = Ffv[Index];
}
return EFI_SUCCESS;
}
/**
Generate high-quality entropy source through RDRAND.
@param[in] Length Size of the buffer, in bytes, to fill with.
@param[out] Entropy Pointer to the buffer to store the entropy data.
@retval EFI_SUCCESS Entropy generation succeeded.
@retval EFI_NOT_READY Failed to request random data.
**/
EFI_STATUS
EFIAPI
RdRandGenerateEntropy (
IN UINTN Length,
OUT UINT8 *Entropy
)
{
EFI_STATUS Status;
UINTN BlockCount;
UINT8 Seed[16];
UINT8 *Ptr;
Status = EFI_NOT_READY;
BlockCount = Length / 16;
Ptr = (UINT8 *)Entropy;
//
// Generate high-quality seed for DRBG Entropy
//
while (BlockCount > 0) {
Status = RdRandGetSeed128 (Seed);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (Ptr, Seed, 16);
BlockCount--;
Ptr = Ptr + 16;
}
//
// Populate the remained data as request.
//
Status = RdRandGetSeed128 (Seed);
if (EFI_ERROR (Status)) {
return Status;
}
CopyMem (Ptr, Seed, (Length % 16));
return Status;
}
|