1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
|
/** @file
CPU MP Initialize Library common functions.
Copyright (c) 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution. The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php
THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
**/
#include "MpLib.h"
EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
/**
The function will check if BSP Execute Disable is enabled.
DxeIpl may have enabled Execute Disable for BSP,
APs need to get the status and sync up the settings.
@retval TRUE BSP Execute Disable is enabled.
@retval FALSE BSP Execute Disable is not enabled.
**/
BOOLEAN
IsBspExecuteDisableEnabled (
VOID
)
{
UINT32 Eax;
CPUID_EXTENDED_CPU_SIG_EDX Edx;
MSR_IA32_EFER_REGISTER EferMsr;
BOOLEAN Enabled;
Enabled = FALSE;
AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
if (Eax >= CPUID_EXTENDED_CPU_SIG) {
AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
//
// CPUID 0x80000001
// Bit 20: Execute Disable Bit available.
//
if (Edx.Bits.NX != 0) {
EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
//
// MSR 0xC0000080
// Bit 11: Execute Disable Bit enable.
//
if (EferMsr.Bits.NXE != 0) {
Enabled = TRUE;
}
}
}
return Enabled;
}
/**
Get the Application Processors state.
@param[in] CpuData The pointer to CPU_AP_DATA of specified AP
@return The AP status
**/
CPU_STATE
GetApState (
IN CPU_AP_DATA *CpuData
)
{
return CpuData->State;
}
/**
Set the Application Processors state.
@param[in] CpuData The pointer to CPU_AP_DATA of specified AP
@param[in] State The AP status
**/
VOID
SetApState (
IN CPU_AP_DATA *CpuData,
IN CPU_STATE State
)
{
AcquireSpinLock (&CpuData->ApLock);
CpuData->State = State;
ReleaseSpinLock (&CpuData->ApLock);
}
/**
Save the volatile registers required to be restored following INIT IPI.
@param[out] VolatileRegisters Returns buffer saved the volatile resisters
**/
VOID
SaveVolatileRegisters (
OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
)
{
CPUID_VERSION_INFO_EDX VersionInfoEdx;
VolatileRegisters->Cr0 = AsmReadCr0 ();
VolatileRegisters->Cr3 = AsmReadCr3 ();
VolatileRegisters->Cr4 = AsmReadCr4 ();
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
if (VersionInfoEdx.Bits.DE != 0) {
//
// If processor supports Debugging Extensions feature
// by CPUID.[EAX=01H]:EDX.BIT2
//
VolatileRegisters->Dr0 = AsmReadDr0 ();
VolatileRegisters->Dr1 = AsmReadDr1 ();
VolatileRegisters->Dr2 = AsmReadDr2 ();
VolatileRegisters->Dr3 = AsmReadDr3 ();
VolatileRegisters->Dr6 = AsmReadDr6 ();
VolatileRegisters->Dr7 = AsmReadDr7 ();
}
}
/**
Restore the volatile registers following INIT IPI.
@param[in] VolatileRegisters Pointer to volatile resisters
@param[in] IsRestoreDr TRUE: Restore DRx if supported
FALSE: Do not restore DRx
**/
VOID
RestoreVolatileRegisters (
IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
IN BOOLEAN IsRestoreDr
)
{
CPUID_VERSION_INFO_EDX VersionInfoEdx;
AsmWriteCr0 (VolatileRegisters->Cr0);
AsmWriteCr3 (VolatileRegisters->Cr3);
AsmWriteCr4 (VolatileRegisters->Cr4);
if (IsRestoreDr) {
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
if (VersionInfoEdx.Bits.DE != 0) {
//
// If processor supports Debugging Extensions feature
// by CPUID.[EAX=01H]:EDX.BIT2
//
AsmWriteDr0 (VolatileRegisters->Dr0);
AsmWriteDr1 (VolatileRegisters->Dr1);
AsmWriteDr2 (VolatileRegisters->Dr2);
AsmWriteDr3 (VolatileRegisters->Dr3);
AsmWriteDr6 (VolatileRegisters->Dr6);
AsmWriteDr7 (VolatileRegisters->Dr7);
}
}
}
/**
Detect whether Mwait-monitor feature is supported.
@retval TRUE Mwait-monitor feature is supported.
@retval FALSE Mwait-monitor feature is not supported.
**/
BOOLEAN
IsMwaitSupport (
VOID
)
{
CPUID_VERSION_INFO_ECX VersionInfoEcx;
AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
}
/**
Get AP loop mode.
@param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
@return The AP loop mode.
**/
UINT8
GetApLoopMode (
OUT UINT32 *MonitorFilterSize
)
{
UINT8 ApLoopMode;
CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
ASSERT (MonitorFilterSize != NULL);
ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
if (ApLoopMode == ApInMwaitLoop) {
if (!IsMwaitSupport ()) {
//
// If processor does not support MONITOR/MWAIT feature,
// force AP in Hlt-loop mode
//
ApLoopMode = ApInHltLoop;
}
}
if (ApLoopMode != ApInMwaitLoop) {
*MonitorFilterSize = sizeof (UINT32);
} else {
//
// CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
// CPUID.[EAX=05H].EDX: C-states supported using MWAIT
//
AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
*MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
}
return ApLoopMode;
}
/**
Sort the APIC ID of all processors.
This function sorts the APIC ID of all processors so that processor number is
assigned in the ascending order of APIC ID which eases MP debugging.
@param[in] CpuMpData Pointer to PEI CPU MP Data
**/
VOID
SortApicId (
IN CPU_MP_DATA *CpuMpData
)
{
UINTN Index1;
UINTN Index2;
UINTN Index3;
UINT32 ApicId;
CPU_AP_DATA CpuData;
UINT32 ApCount;
CPU_INFO_IN_HOB *CpuInfoInHob;
ApCount = CpuMpData->CpuCount - 1;
if (ApCount != 0) {
for (Index1 = 0; Index1 < ApCount; Index1++) {
Index3 = Index1;
//
// Sort key is the hardware default APIC ID
//
ApicId = CpuMpData->CpuData[Index1].ApicId;
for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
if (ApicId > CpuMpData->CpuData[Index2].ApicId) {
Index3 = Index2;
ApicId = CpuMpData->CpuData[Index2].ApicId;
}
}
if (Index3 != Index1) {
CopyMem (&CpuData, &CpuMpData->CpuData[Index3], sizeof (CPU_AP_DATA));
CopyMem (
&CpuMpData->CpuData[Index3],
&CpuMpData->CpuData[Index1],
sizeof (CPU_AP_DATA)
);
CopyMem (&CpuMpData->CpuData[Index1], &CpuData, sizeof (CPU_AP_DATA));
}
}
//
// Get the processor number for the BSP
//
ApicId = GetInitialApicId ();
for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
if (CpuMpData->CpuData[Index1].ApicId == ApicId) {
CpuMpData->BspNumber = (UINT32) Index1;
break;
}
}
CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
CpuInfoInHob[Index1].InitialApicId = CpuMpData->CpuData[Index1].InitialApicId;
CpuInfoInHob[Index1].ApicId = CpuMpData->CpuData[Index1].ApicId;
CpuInfoInHob[Index1].Health = CpuMpData->CpuData[Index1].Health;
}
}
}
/**
Enable x2APIC mode on APs.
@param[in, out] Buffer Pointer to private data buffer.
**/
VOID
EFIAPI
ApFuncEnableX2Apic (
IN OUT VOID *Buffer
)
{
SetApicMode (LOCAL_APIC_MODE_X2APIC);
}
/**
Do sync on APs.
@param[in, out] Buffer Pointer to private data buffer.
**/
VOID
EFIAPI
ApInitializeSync (
IN OUT VOID *Buffer
)
{
CPU_MP_DATA *CpuMpData;
CpuMpData = (CPU_MP_DATA *) Buffer;
//
// Sync BSP's MTRR table to AP
//
MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
//
// Load microcode on AP
//
MicrocodeDetect (CpuMpData);
}
/**
Find the current Processor number by APIC ID.
@param[in] CpuMpData Pointer to PEI CPU MP Data
@param[in] ProcessorNumber Return the pocessor number found
@retval EFI_SUCCESS ProcessorNumber is found and returned.
@retval EFI_NOT_FOUND ProcessorNumber is not found.
**/
EFI_STATUS
GetProcessorNumber (
IN CPU_MP_DATA *CpuMpData,
OUT UINTN *ProcessorNumber
)
{
UINTN TotalProcessorNumber;
UINTN Index;
TotalProcessorNumber = CpuMpData->CpuCount;
for (Index = 0; Index < TotalProcessorNumber; Index ++) {
if (CpuMpData->CpuData[Index].ApicId == GetApicId ()) {
*ProcessorNumber = Index;
return EFI_SUCCESS;
}
}
return EFI_NOT_FOUND;
}
/**
This function will get CPU count in the system.
@param[in] CpuMpData Pointer to PEI CPU MP Data
@return CPU count detected
**/
UINTN
CollectProcessorCount (
IN CPU_MP_DATA *CpuMpData
)
{
//
// Send 1st broadcast IPI to APs to wakeup APs
//
CpuMpData->InitFlag = ApInitConfig;
CpuMpData->X2ApicEnable = FALSE;
WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL);
//
// Wait for AP task to complete and then exit.
//
MicroSecondDelay (PcdGet32(PcdCpuApInitTimeOutInMicroSeconds));
CpuMpData->InitFlag = ApInitDone;
ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
//
// Wait for all APs finished the initialization
//
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
CpuPause ();
}
if (CpuMpData->X2ApicEnable) {
DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
//
// Wakeup all APs to enable x2APIC mode
//
WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL);
//
// Wait for all known APs finished
//
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
CpuPause ();
}
//
// Enable x2APIC on BSP
//
SetApicMode (LOCAL_APIC_MODE_X2APIC);
}
DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
//
// Sort BSP/Aps by CPU APIC ID in ascending order
//
SortApicId (CpuMpData);
DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
return CpuMpData->CpuCount;
}
/*
Initialize CPU AP Data when AP is wakeup at the first time.
@param[in, out] CpuMpData Pointer to PEI CPU MP Data
@param[in] ProcessorNumber The handle number of processor
@param[in] BistData Processor BIST data
**/
VOID
InitializeApData (
IN OUT CPU_MP_DATA *CpuMpData,
IN UINTN ProcessorNumber,
IN UINT32 BistData
)
{
CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
CpuMpData->CpuData[ProcessorNumber].Health = BistData;
CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();
CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();
if (CpuMpData->CpuData[ProcessorNumber].InitialApicId >= 0xFF) {
//
// Set x2APIC mode if there are any logical processor reporting
// an Initial APIC ID of 255 or greater.
//
AcquireSpinLock(&CpuMpData->MpLock);
CpuMpData->X2ApicEnable = TRUE;
ReleaseSpinLock(&CpuMpData->MpLock);
}
InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
}
/**
This function will be called from AP reset code if BSP uses WakeUpAP.
@param[in] ExchangeInfo Pointer to the MP exchange info buffer
@param[in] NumApsExecuting Number of current executing AP
**/
VOID
EFIAPI
ApWakeupFunction (
IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
IN UINTN NumApsExecuting
)
{
CPU_MP_DATA *CpuMpData;
UINTN ProcessorNumber;
EFI_AP_PROCEDURE Procedure;
VOID *Parameter;
UINT32 BistData;
volatile UINT32 *ApStartupSignalBuffer;
//
// AP finished assembly code and begin to execute C code
//
CpuMpData = ExchangeInfo->CpuMpData;
ProgramVirtualWireMode ();
while (TRUE) {
if (CpuMpData->InitFlag == ApInitConfig) {
//
// Add CPU number
//
InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
ProcessorNumber = NumApsExecuting;
//
// This is first time AP wakeup, get BIST information from AP stack
//
BistData = *(UINT32 *) (CpuMpData->Buffer + ProcessorNumber * CpuMpData->CpuApStackSize - sizeof (UINTN));
//
// Do some AP initialize sync
//
ApInitializeSync (CpuMpData);
//
// Sync BSP's Control registers to APs
//
RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
InitializeApData (CpuMpData, ProcessorNumber, BistData);
ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
} else {
//
// Execute AP function if AP is ready
//
GetProcessorNumber (CpuMpData, &ProcessorNumber);
//
// Clear AP start-up signal when AP waken up
//
ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
InterlockedCompareExchange32 (
(UINT32 *) ApStartupSignalBuffer,
WAKEUP_AP_SIGNAL,
0
);
if (CpuMpData->ApLoopMode == ApInHltLoop) {
//
// Restore AP's volatile registers saved
//
RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
}
if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
if (Procedure != NULL) {
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
//
// Invoke AP function here
//
Procedure (Parameter);
//
// Re-get the CPU APICID and Initial APICID
//
CpuMpData->CpuData[ProcessorNumber].ApicId = GetApicId ();
CpuMpData->CpuData[ProcessorNumber].InitialApicId = GetInitialApicId ();
}
SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateFinished);
}
}
//
// AP finished executing C code
//
InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
//
// Place AP is specified loop mode
//
if (CpuMpData->ApLoopMode == ApInHltLoop) {
//
// Save AP volatile registers
//
SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
//
// Place AP in HLT-loop
//
while (TRUE) {
DisableInterrupts ();
CpuSleep ();
CpuPause ();
}
}
while (TRUE) {
DisableInterrupts ();
if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
//
// Place AP in MWAIT-loop
//
AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
//
// Check AP start-up signal again.
// If AP start-up signal is not set, place AP into
// the specified C-state
//
AsmMwait (CpuMpData->ApTargetCState << 4, 0);
}
} else if (CpuMpData->ApLoopMode == ApInRunLoop) {
//
// Place AP in Run-loop
//
CpuPause ();
} else {
ASSERT (FALSE);
}
//
// If AP start-up signal is written, AP is waken up
// otherwise place AP in loop again
//
if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
break;
}
}
}
}
/**
Wait for AP wakeup and write AP start-up signal till AP is waken up.
@param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
**/
VOID
WaitApWakeup (
IN volatile UINT32 *ApStartupSignalBuffer
)
{
//
// If AP is waken up, StartupApSignal should be cleared.
// Otherwise, write StartupApSignal again till AP waken up.
//
while (InterlockedCompareExchange32 (
(UINT32 *) ApStartupSignalBuffer,
WAKEUP_AP_SIGNAL,
WAKEUP_AP_SIGNAL
) != 0) {
CpuPause ();
}
}
/**
This function will fill the exchange info structure.
@param[in] CpuMpData Pointer to CPU MP Data
**/
VOID
FillExchangeInfoData (
IN CPU_MP_DATA *CpuMpData
)
{
volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
ExchangeInfo->Lock = 0;
ExchangeInfo->StackStart = CpuMpData->Buffer;
ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
ExchangeInfo->CodeSegment = AsmReadCs ();
ExchangeInfo->DataSegment = AsmReadDs ();
ExchangeInfo->Cr3 = AsmReadCr3 ();
ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
ExchangeInfo->NumApsExecuting = 0;
ExchangeInfo->CpuMpData = CpuMpData;
ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
//
// Get the BSP's data of GDT and IDT
//
AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
}
/**
This function will be called by BSP to wakeup AP.
@param[in] CpuMpData Pointer to CPU MP Data
@param[in] Broadcast TRUE: Send broadcast IPI to all APs
FALSE: Send IPI to AP by ApicId
@param[in] ProcessorNumber The handle number of specified processor
@param[in] Procedure The function to be invoked by AP
@param[in] ProcedureArgument The argument to be passed into AP function
**/
VOID
WakeUpAP (
IN CPU_MP_DATA *CpuMpData,
IN BOOLEAN Broadcast,
IN UINTN ProcessorNumber,
IN EFI_AP_PROCEDURE Procedure, OPTIONAL
IN VOID *ProcedureArgument OPTIONAL
)
{
volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
UINTN Index;
CPU_AP_DATA *CpuData;
BOOLEAN ResetVectorRequired;
CpuMpData->FinishedCount = 0;
ResetVectorRequired = FALSE;
if (CpuMpData->ApLoopMode == ApInHltLoop ||
CpuMpData->InitFlag != ApInitDone) {
ResetVectorRequired = TRUE;
AllocateResetVector (CpuMpData);
FillExchangeInfoData (CpuMpData);
} else if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
//
// Get AP target C-state each time when waking up AP,
// for it maybe updated by platform again
//
CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
}
ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
if (Broadcast) {
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
if (Index != CpuMpData->BspNumber) {
CpuData = &CpuMpData->CpuData[Index];
CpuData->ApFunction = (UINTN) Procedure;
CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
SetApState (CpuData, CpuStateReady);
if (CpuMpData->InitFlag != ApInitConfig) {
*(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
}
}
}
if (ResetVectorRequired) {
//
// Wakeup all APs
//
SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
}
if (CpuMpData->InitFlag != ApInitConfig) {
//
// Wait all APs waken up if this is not the 1st broadcast of SIPI
//
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
CpuData = &CpuMpData->CpuData[Index];
if (Index != CpuMpData->BspNumber) {
WaitApWakeup (CpuData->StartupApSignal);
}
}
}
} else {
CpuData = &CpuMpData->CpuData[ProcessorNumber];
CpuData->ApFunction = (UINTN) Procedure;
CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
SetApState (CpuData, CpuStateReady);
//
// Wakeup specified AP
//
ASSERT (CpuMpData->InitFlag != ApInitConfig);
*(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
if (ResetVectorRequired) {
SendInitSipiSipi (
CpuData->ApicId,
(UINT32) ExchangeInfo->BufferStart
);
}
//
// Wait specified AP waken up
//
WaitApWakeup (CpuData->StartupApSignal);
}
if (ResetVectorRequired) {
FreeResetVector (CpuMpData);
}
}
/**
MP Initialize Library initialization.
This service will allocate AP reset vector and wakeup all APs to do APs
initialization.
This service must be invoked before all other MP Initialize Library
service are invoked.
@retval EFI_SUCCESS MP initialization succeeds.
@retval Others MP initialization fails.
**/
EFI_STATUS
EFIAPI
MpInitLibInitialize (
VOID
)
{
CPU_MP_DATA *OldCpuMpData;
CPU_INFO_IN_HOB *CpuInfoInHob;
UINT32 MaxLogicalProcessorNumber;
UINT32 ApStackSize;
MP_ASSEMBLY_ADDRESS_MAP AddressMap;
UINTN BufferSize;
UINT32 MonitorFilterSize;
VOID *MpBuffer;
UINTN Buffer;
CPU_MP_DATA *CpuMpData;
UINT8 ApLoopMode;
UINT8 *MonitorBuffer;
UINTN Index;
UINTN ApResetVectorSize;
UINTN BackupBufferAddr;
OldCpuMpData = GetCpuMpDataFromGuidedHob ();
if (OldCpuMpData == NULL) {
MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
} else {
MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
}
AsmGetAddressMap (&AddressMap);
ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
ApStackSize = PcdGet32(PcdCpuApStackSize);
ApLoopMode = GetApLoopMode (&MonitorFilterSize);
BufferSize = ApStackSize * MaxLogicalProcessorNumber;
BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
BufferSize += sizeof (CPU_MP_DATA);
BufferSize += ApResetVectorSize;
BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
ASSERT (MpBuffer != NULL);
ZeroMem (MpBuffer, BufferSize);
Buffer = (UINTN) MpBuffer;
MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
CpuMpData = (CPU_MP_DATA *) (BackupBufferAddr + ApResetVectorSize);
CpuMpData->Buffer = Buffer;
CpuMpData->CpuApStackSize = ApStackSize;
CpuMpData->BackupBuffer = BackupBufferAddr;
CpuMpData->BackupBufferSize = ApResetVectorSize;
CpuMpData->EndOfPeiFlag = FALSE;
CpuMpData->WakeupBuffer = (UINTN) -1;
CpuMpData->CpuCount = 1;
CpuMpData->BspNumber = 0;
CpuMpData->WaitEvent = NULL;
CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
InitializeSpinLock(&CpuMpData->MpLock);
//
// Save BSP's Control registers to APs
//
SaveVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters);
//
// Set BSP basic information
//
InitializeApData (CpuMpData, 0, 0);
//
// Save assembly code information
//
CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
//
// Finally set AP loop mode
//
CpuMpData->ApLoopMode = ApLoopMode;
DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
//
// Set up APs wakeup signal buffer
//
for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
CpuMpData->CpuData[Index].StartupApSignal =
(UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
}
//
// Load Microcode on BSP
//
MicrocodeDetect (CpuMpData);
//
// Store BSP's MTRR setting
//
MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
if (OldCpuMpData == NULL) {
//
// Wakeup all APs and calculate the processor count in system
//
CollectProcessorCount (CpuMpData);
} else {
//
// APs have been wakeup before, just get the CPU Information
// from HOB
//
CpuMpData->CpuCount = OldCpuMpData->CpuCount;
CpuMpData->BspNumber = OldCpuMpData->BspNumber;
CpuMpData->InitFlag = ApInitReconfig;
CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) OldCpuMpData->CpuInfoInHob;
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
CpuMpData->CpuData[Index].ApicId = CpuInfoInHob[Index].ApicId;
CpuMpData->CpuData[Index].InitialApicId = CpuInfoInHob[Index].InitialApicId;
if (CpuMpData->CpuData[Index].InitialApicId >= 255) {
CpuMpData->X2ApicEnable = TRUE;
}
CpuMpData->CpuData[Index].Health = CpuInfoInHob[Index].Health;
CpuMpData->CpuData[Index].CpuHealthy = (CpuMpData->CpuData[Index].Health == 0)? TRUE:FALSE;
CpuMpData->CpuData[Index].ApFunction = 0;
CopyMem (
&CpuMpData->CpuData[Index].VolatileRegisters,
&CpuMpData->CpuData[0].VolatileRegisters,
sizeof (CPU_VOLATILE_REGISTERS)
);
}
//
// Wakeup APs to do some AP initialize sync
//
WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData);
//
// Wait for all APs finished initialization
//
while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
CpuPause ();
}
CpuMpData->InitFlag = ApInitDone;
for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
}
}
//
// Initialize global data for MP support
//
InitMpGlobalData (CpuMpData);
return EFI_SUCCESS;
}
/**
Gets detailed MP-related information on the requested processor at the
instant this call is made. This service may only be called from the BSP.
@param[in] ProcessorNumber The handle number of processor.
@param[out] ProcessorInfoBuffer A pointer to the buffer where information for
the requested processor is deposited.
@param[out] HealthData Return processor health data.
@retval EFI_SUCCESS Processor information was returned.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist in the platform.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibGetProcessorInfo (
IN UINTN ProcessorNumber,
OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
)
{
return EFI_UNSUPPORTED;
}
/**
This return the handle number for the calling processor. This service may be
called from the BSP and APs.
@param[out] ProcessorNumber Pointer to the handle number of AP.
The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@retval EFI_SUCCESS The current processor handle number was returned
in ProcessorNumber.
@retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibWhoAmI (
OUT UINTN *ProcessorNumber
)
{
return EFI_UNSUPPORTED;
}
/**
Retrieves the number of logical processor in the platform and the number of
those logical processors that are enabled on this boot. This service may only
be called from the BSP.
@param[out] NumberOfProcessors Pointer to the total number of logical
processors in the system, including the BSP
and disabled APs.
@param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
processors that exist in system, including
the BSP.
@retval EFI_SUCCESS The number of logical processors and enabled
logical processors was retrieved.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
is NULL.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibGetNumberOfProcessors (
OUT UINTN *NumberOfProcessors, OPTIONAL
OUT UINTN *NumberOfEnabledProcessors OPTIONAL
)
{
return EFI_UNSUPPORTED;
}
/**
Get pointer to CPU MP Data structure from GUIDed HOB.
@return The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpDataFromGuidedHob (
VOID
)
{
EFI_HOB_GUID_TYPE *GuidHob;
VOID *DataInHob;
CPU_MP_DATA *CpuMpData;
CpuMpData = NULL;
GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
if (GuidHob != NULL) {
DataInHob = GET_GUID_HOB_DATA (GuidHob);
CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
}
return CpuMpData;
}
|