summaryrefslogtreecommitdiff
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
blob: add770ff3cbfe0f29c2bee0017fedf093e760d17 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
/** @file
SMM MP service implementation

Copyright (c) 2009 - 2016, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "PiSmmCpuDxeSmm.h"

//
// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)
//
UINT64                                      gSmiMtrrs[MTRR_NUMBER_OF_FIXED_MTRR + 2 * MTRR_NUMBER_OF_VARIABLE_MTRR + 1];
UINT64                                      gPhyMask;
SMM_DISPATCHER_MP_SYNC_DATA                 *mSmmMpSyncData = NULL;
UINTN                                       mSmmMpSyncDataSize;
SMM_CPU_SEMAPHORES                          mSmmCpuSemaphores;
UINTN                                       mSemaphoreSize;
SPIN_LOCK                                   *mPFLock = NULL;

/**
  Performs an atomic compare exchange operation to get semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: original integer - 1
  @return     Original integer - 1

**/
UINT32
WaitForSemaphore (
  IN OUT  volatile UINT32           *Sem
  )
{
  UINT32                            Value;

  do {
    Value = *Sem;
  } while (Value == 0 ||
           InterlockedCompareExchange32 (
             (UINT32*)Sem,
             Value,
             Value - 1
             ) != Value);
  return Value - 1;
}


/**
  Performs an atomic compare exchange operation to release semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: original integer + 1
  @return     Original integer + 1

**/
UINT32
ReleaseSemaphore (
  IN OUT  volatile UINT32           *Sem
  )
{
  UINT32                            Value;

  do {
    Value = *Sem;
  } while (Value + 1 != 0 &&
           InterlockedCompareExchange32 (
             (UINT32*)Sem,
             Value,
             Value + 1
             ) != Value);
  return Value + 1;
}

/**
  Performs an atomic compare exchange operation to lock semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: -1
  @return     Original integer

**/
UINT32
LockdownSemaphore (
  IN OUT  volatile UINT32           *Sem
  )
{
  UINT32                            Value;

  do {
    Value = *Sem;
  } while (InterlockedCompareExchange32 (
             (UINT32*)Sem,
             Value, (UINT32)-1
             ) != Value);
  return Value;
}

/**
  Wait all APs to performs an atomic compare exchange operation to release semaphore.

  @param   NumberOfAPs      AP number

**/
VOID
WaitForAllAPs (
  IN      UINTN                     NumberOfAPs
  )
{
  UINTN                             BspIndex;

  BspIndex = mSmmMpSyncData->BspIndex;
  while (NumberOfAPs-- > 0) {
    WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }
}

/**
  Performs an atomic compare exchange operation to release semaphore
  for each AP.

**/
VOID
ReleaseAllAPs (
  VOID
  )
{
  UINTN                             Index;
  UINTN                             BspIndex;

  BspIndex = mSmmMpSyncData->BspIndex;
  for (Index = mMaxNumberOfCpus; Index-- > 0;) {
    if (Index != BspIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {
      ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);
    }
  }
}

/**
  Checks if all CPUs (with certain exceptions) have checked in for this SMI run

  @param   Exceptions     CPU Arrival exception flags.

  @retval   TRUE  if all CPUs the have checked in.
  @retval   FALSE  if at least one Normal AP hasn't checked in.

**/
BOOLEAN
AllCpusInSmmWithExceptions (
  SMM_CPU_ARRIVAL_EXCEPTIONS  Exceptions
  )
{
  UINTN                             Index;
  SMM_CPU_DATA_BLOCK                *CpuData;
  EFI_PROCESSOR_INFORMATION         *ProcessorInfo;

  ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);

  if (*mSmmMpSyncData->Counter == mNumberOfCpus) {
    return TRUE;
  }

  CpuData = mSmmMpSyncData->CpuData;
  ProcessorInfo = gSmmCpuPrivate->ProcessorInfo;
  for (Index = mMaxNumberOfCpus; Index-- > 0;) {
    if (!(*(CpuData[Index].Present)) && ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
      if (((Exceptions & ARRIVAL_EXCEPTION_DELAYED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed) != 0) {
        continue;
      }
      if (((Exceptions & ARRIVAL_EXCEPTION_BLOCKED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked) != 0) {
        continue;
      }
      if (((Exceptions & ARRIVAL_EXCEPTION_SMI_DISABLED) != 0) && SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable) != 0) {
        continue;
      }
      return FALSE;
    }
  }


  return TRUE;
}


/**
  Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before
  entering SMM, except SMI disabled APs.

**/
VOID
SmmWaitForApArrival (
  VOID
  )
{
  UINT64                            Timer;
  UINTN                             Index;

  ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);

  //
  // Platform implementor should choose a timeout value appropriately:
  // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note
  //   the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.
  // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI
  //   and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will
  //   be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the
  //   SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.
  // - The timeout value must be longer than longest possible IO operation in the system
  //

  //
  // Sync with APs 1st timeout
  //
  for (Timer = StartSyncTimer ();
       !IsSyncTimerTimeout (Timer) &&
       !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
       ) {
    CpuPause ();
  }

  //
  // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,
  // because:
  // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running
  //    normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they
  //    enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode
  //    work while SMI handling is on-going.
  // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.
  // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state
  //    will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal
  //    mode work while SMI handling is on-going.
  // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:
  //    - In traditional flow, SMI disabling is discouraged.
  //    - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.
  //    In both cases, adding SMI-disabling checking code increases overhead.
  //
  if (*mSmmMpSyncData->Counter < mNumberOfCpus) {
    //
    // Send SMI IPIs to bring outside processors in
    //
    for (Index = mMaxNumberOfCpus; Index-- > 0;) {
      if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID) {
        SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
      }
    }

    //
    // Sync with APs 2nd timeout.
    //
    for (Timer = StartSyncTimer ();
         !IsSyncTimerTimeout (Timer) &&
         !AllCpusInSmmWithExceptions (ARRIVAL_EXCEPTION_BLOCKED | ARRIVAL_EXCEPTION_SMI_DISABLED );
         ) {
      CpuPause ();
    }
  }

  return;
}


/**
  Replace OS MTRR's with SMI MTRR's.

  @param    CpuIndex             Processor Index

**/
VOID
ReplaceOSMtrrs (
  IN      UINTN                     CpuIndex
  )
{
  PROCESSOR_SMM_DESCRIPTOR       *Psd;
  UINT64                         *SmiMtrrs;
  MTRR_SETTINGS                  *BiosMtrr;

  Psd = (PROCESSOR_SMM_DESCRIPTOR*)(mCpuHotPlugData.SmBase[CpuIndex] + SMM_PSD_OFFSET);
  SmiMtrrs = (UINT64*)(UINTN)Psd->MtrrBaseMaskPtr;

  SmmCpuFeaturesDisableSmrr ();

  //
  // Replace all MTRRs registers
  //
  BiosMtrr  = (MTRR_SETTINGS*)SmiMtrrs;
  MtrrSetAllMtrrs(BiosMtrr);
}

/**
  SMI handler for BSP.

  @param     CpuIndex         BSP processor Index
  @param     SyncMode         SMM MP sync mode

**/
VOID
BSPHandler (
  IN      UINTN                     CpuIndex,
  IN      SMM_CPU_SYNC_MODE         SyncMode
  )
{
  UINTN                             Index;
  MTRR_SETTINGS                     Mtrrs;
  UINTN                             ApCount;
  BOOLEAN                           ClearTopLevelSmiResult;
  UINTN                             PresentCount;

  ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);
  ApCount = 0;

  //
  // Flag BSP's presence
  //
  *mSmmMpSyncData->InsideSmm = TRUE;

  //
  // Initialize Debug Agent to start source level debug in BSP handler
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);

  //
  // Mark this processor's presence
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;

  //
  // Clear platform top level SMI status bit before calling SMI handlers. If
  // we cleared it after SMI handlers are run, we would miss the SMI that
  // occurs after SMI handlers are done and before SMI status bit is cleared.
  //
  ClearTopLevelSmiResult = ClearTopLevelSmiStatus();
  ASSERT (ClearTopLevelSmiResult == TRUE);

  //
  // Set running processor index
  //
  gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;

  //
  // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.
  //
  if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {

    //
    // Wait for APs to arrive
    //
    SmmWaitForApArrival();

    //
    // Lock the counter down and retrieve the number of APs
    //
    *mSmmMpSyncData->AllCpusInSync = TRUE;
    ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;

    //
    // Wait for all APs to get ready for programming MTRRs
    //
    WaitForAllAPs (ApCount);

    if (SmmCpuFeaturesNeedConfigureMtrrs()) {
      //
      // Signal all APs it's time for backup MTRRs
      //
      ReleaseAllAPs ();

      //
      // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
      // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
      // to a large enough value to avoid this situation.
      // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.
      // We do the backup first and then set MTRR to avoid race condition for threads
      // in the same core.
      //
      MtrrGetAllMtrrs(&Mtrrs);

      //
      // Wait for all APs to complete their MTRR saving
      //
      WaitForAllAPs (ApCount);

      //
      // Let all processors program SMM MTRRs together
      //
      ReleaseAllAPs ();

      //
      // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
      // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
      // to a large enough value to avoid this situation.
      //
      ReplaceOSMtrrs (CpuIndex);

      //
      // Wait for all APs to complete their MTRR programming
      //
      WaitForAllAPs (ApCount);
    }
  }

  //
  // The BUSY lock is initialized to Acquired state
  //
  AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy);

  //
  // Perform the pre tasks
  //
  PerformPreTasks ();

  //
  // Invoke SMM Foundation EntryPoint with the processor information context.
  //
  gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);

  //
  // Make sure all APs have completed their pending none-block tasks
  //
  for (Index = mMaxNumberOfCpus; Index-- > 0;) {
    if (Index != CpuIndex && *(mSmmMpSyncData->CpuData[Index].Present)) {
      AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
      ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
    }
  }

  //
  // Perform the remaining tasks
  //
  PerformRemainingTasks ();

  //
  // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and
  // make those APs to exit SMI synchronously. APs which arrive later will be excluded and
  // will run through freely.
  //
  if (SyncMode != SmmCpuSyncModeTradition && !SmmCpuFeaturesNeedConfigureMtrrs()) {

    //
    // Lock the counter down and retrieve the number of APs
    //
    *mSmmMpSyncData->AllCpusInSync = TRUE;
    ApCount = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
    //
    // Make sure all APs have their Present flag set
    //
    while (TRUE) {
      PresentCount = 0;
      for (Index = mMaxNumberOfCpus; Index-- > 0;) {
        if (*(mSmmMpSyncData->CpuData[Index].Present)) {
          PresentCount ++;
        }
      }
      if (PresentCount > ApCount) {
        break;
      }
    }
  }

  //
  // Notify all APs to exit
  //
  *mSmmMpSyncData->InsideSmm = FALSE;
  ReleaseAllAPs ();

  //
  // Wait for all APs to complete their pending tasks
  //
  WaitForAllAPs (ApCount);

  if (SmmCpuFeaturesNeedConfigureMtrrs()) {
    //
    // Signal APs to restore MTRRs
    //
    ReleaseAllAPs ();

    //
    // Restore OS MTRRs
    //
    SmmCpuFeaturesReenableSmrr ();
    MtrrSetAllMtrrs(&Mtrrs);

    //
    // Wait for all APs to complete MTRR programming
    //
    WaitForAllAPs (ApCount);
  }

  //
  // Stop source level debug in BSP handler, the code below will not be
  // debugged.
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);

  //
  // Signal APs to Reset states/semaphore for this processor
  //
  ReleaseAllAPs ();

  //
  // Perform pending operations for hot-plug
  //
  SmmCpuUpdate ();

  //
  // Clear the Present flag of BSP
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;

  //
  // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but
  // WaitForAllAps does not depend on the Present flag.
  //
  WaitForAllAPs (ApCount);

  //
  // Reset BspIndex to -1, meaning BSP has not been elected.
  //
  if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
    mSmmMpSyncData->BspIndex = (UINT32)-1;
  }

  //
  // Allow APs to check in from this point on
  //
  *mSmmMpSyncData->Counter = 0;
  *mSmmMpSyncData->AllCpusInSync = FALSE;
}

/**
  SMI handler for AP.

  @param     CpuIndex         AP processor Index.
  @param     ValidSmi         Indicates that current SMI is a valid SMI or not.
  @param     SyncMode         SMM MP sync mode.

**/
VOID
APHandler (
  IN      UINTN                     CpuIndex,
  IN      BOOLEAN                   ValidSmi,
  IN      SMM_CPU_SYNC_MODE         SyncMode
  )
{
  UINT64                            Timer;
  UINTN                             BspIndex;
  MTRR_SETTINGS                     Mtrrs;

  //
  // Timeout BSP
  //
  for (Timer = StartSyncTimer ();
       !IsSyncTimerTimeout (Timer) &&
       !(*mSmmMpSyncData->InsideSmm);
       ) {
    CpuPause ();
  }

  if (!(*mSmmMpSyncData->InsideSmm)) {
    //
    // BSP timeout in the first round
    //
    if (mSmmMpSyncData->BspIndex != -1) {
      //
      // BSP Index is known
      //
      BspIndex = mSmmMpSyncData->BspIndex;
      ASSERT (CpuIndex != BspIndex);

      //
      // Send SMI IPI to bring BSP in
      //
      SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);

      //
      // Now clock BSP for the 2nd time
      //
      for (Timer = StartSyncTimer ();
           !IsSyncTimerTimeout (Timer) &&
           !(*mSmmMpSyncData->InsideSmm);
           ) {
        CpuPause ();
      }

      if (!(*mSmmMpSyncData->InsideSmm)) {
        //
        // Give up since BSP is unable to enter SMM
        // and signal the completion of this AP
        WaitForSemaphore (mSmmMpSyncData->Counter);
        return;
      }
    } else {
      //
      // Don't know BSP index. Give up without sending IPI to BSP.
      //
      WaitForSemaphore (mSmmMpSyncData->Counter);
      return;
    }
  }

  //
  // BSP is available
  //
  BspIndex = mSmmMpSyncData->BspIndex;
  ASSERT (CpuIndex != BspIndex);

  //
  // Mark this processor's presence
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;

  if (SyncMode == SmmCpuSyncModeTradition || SmmCpuFeaturesNeedConfigureMtrrs()) {
    //
    // Notify BSP of arrival at this point
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }

  if (SmmCpuFeaturesNeedConfigureMtrrs()) {
    //
    // Wait for the signal from BSP to backup MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Backup OS MTRRs
    //
    MtrrGetAllMtrrs(&Mtrrs);

    //
    // Signal BSP the completion of this AP
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

    //
    // Wait for BSP's signal to program MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Replace OS MTRRs with SMI MTRRs
    //
    ReplaceOSMtrrs (CpuIndex);

    //
    // Signal BSP the completion of this AP
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }

  while (TRUE) {
    //
    // Wait for something to happen
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Check if BSP wants to exit SMM
    //
    if (!(*mSmmMpSyncData->InsideSmm)) {
      break;
    }

    //
    // BUSY should be acquired by SmmStartupThisAp()
    //
    ASSERT (
      !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)
      );

    //
    // Invoke the scheduled procedure
    //
    (*mSmmMpSyncData->CpuData[CpuIndex].Procedure) (
      (VOID*)mSmmMpSyncData->CpuData[CpuIndex].Parameter
      );

    //
    // Release BUSY
    //
    ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
  }

  if (SmmCpuFeaturesNeedConfigureMtrrs()) {
    //
    // Notify BSP the readiness of this AP to program MTRRs
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

    //
    // Wait for the signal from BSP to program MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Restore OS MTRRs
    //
    SmmCpuFeaturesReenableSmrr ();
    MtrrSetAllMtrrs(&Mtrrs);
  }

  //
  // Notify BSP the readiness of this AP to Reset states/semaphore for this processor
  //
  ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

  //
  // Wait for the signal from BSP to Reset states/semaphore for this processor
  //
  WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

  //
  // Reset states/semaphore for this processor
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;

  //
  // Notify BSP the readiness of this AP to exit SMM
  //
  ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

}

/**
  Create 4G PageTable in SMRAM.

  @param          ExtraPages       Additional page numbers besides for 4G memory
  @param          Is32BitPageTable Whether the page table is 32-bit PAE
  @return         PageTable Address

**/
UINT32
Gen4GPageTable (
  IN      UINTN                     ExtraPages,
  IN      BOOLEAN                   Is32BitPageTable
  )
{
  VOID    *PageTable;
  UINTN   Index;
  UINT64  *Pte;
  UINTN   PagesNeeded;
  UINTN   Low2MBoundary;
  UINTN   High2MBoundary;
  UINTN   Pages;
  UINTN   GuardPage;
  UINT64  *Pdpte;
  UINTN   PageIndex;
  UINTN   PageAddress;

  Low2MBoundary = 0;
  High2MBoundary = 0;
  PagesNeeded = 0;
  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    //
    // Add one more page for known good stack, then find the lower 2MB aligned address.
    //
    Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);
    //
    // Add two more pages for known good stack and stack guard page,
    // then find the lower 2MB aligned address.
    //
    High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);
    PagesNeeded = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;
  }
  //
  // Allocate the page table
  //
  PageTable = AllocatePageTableMemory (ExtraPages + 5 + PagesNeeded);
  ASSERT (PageTable != NULL);

  PageTable = (VOID *)((UINTN)PageTable + EFI_PAGES_TO_SIZE (ExtraPages));
  Pte = (UINT64*)PageTable;

  //
  // Zero out all page table entries first
  //
  ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));

  //
  // Set Page Directory Pointers
  //
  for (Index = 0; Index < 4; Index++) {
    Pte[Index] = (UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1) + (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);
  }
  Pte += EFI_PAGE_SIZE / sizeof (*Pte);

  //
  // Fill in Page Directory Entries
  //
  for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {
    Pte[Index] = (Index << 21) | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
  }

  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    Pages = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);
    GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;
    Pdpte = (UINT64*)PageTable;
    for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {
      Pte = (UINT64*)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~(EFI_PAGE_SIZE - 1));
      Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | PAGE_ATTRIBUTE_BITS;
      //
      // Fill in Page Table Entries
      //
      Pte = (UINT64*)Pages;
      PageAddress = PageIndex;
      for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
        if (PageAddress == GuardPage) {
          //
          // Mark the guard page as non-present
          //
          Pte[Index] = PageAddress;
          GuardPage += mSmmStackSize;
          if (GuardPage > mSmmStackArrayEnd) {
            GuardPage = 0;
          }
        } else {
          Pte[Index] = PageAddress | PAGE_ATTRIBUTE_BITS;
        }
        PageAddress+= EFI_PAGE_SIZE;
      }
      Pages += EFI_PAGE_SIZE;
    }
  }

  return (UINT32)(UINTN)PageTable;
}

/**
  Set memory cache ability.

  @param    PageTable              PageTable Address
  @param    Address                Memory Address to change cache ability
  @param    Cacheability           Cache ability to set

**/
VOID
SetCacheability (
  IN      UINT64                    *PageTable,
  IN      UINTN                     Address,
  IN      UINT8                     Cacheability
  )
{
  UINTN   PTIndex;
  VOID    *NewPageTableAddress;
  UINT64  *NewPageTable;
  UINTN   Index;

  ASSERT ((Address & EFI_PAGE_MASK) == 0);

  if (sizeof (UINTN) == sizeof (UINT64)) {
    PTIndex = (UINTN)RShiftU64 (Address, 39) & 0x1ff;
    ASSERT (PageTable[PTIndex] & IA32_PG_P);
    PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);
  }

  PTIndex = (UINTN)RShiftU64 (Address, 30) & 0x1ff;
  ASSERT (PageTable[PTIndex] & IA32_PG_P);
  PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);

  //
  // A perfect implementation should check the original cacheability with the
  // one being set, and break a 2M page entry into pieces only when they
  // disagreed.
  //
  PTIndex = (UINTN)RShiftU64 (Address, 21) & 0x1ff;
  if ((PageTable[PTIndex] & IA32_PG_PS) != 0) {
    //
    // Allocate a page from SMRAM
    //
    NewPageTableAddress = AllocatePageTableMemory (1);
    ASSERT (NewPageTableAddress != NULL);

    NewPageTable = (UINT64 *)NewPageTableAddress;

    for (Index = 0; Index < 0x200; Index++) {
      NewPageTable[Index] = PageTable[PTIndex];
      if ((NewPageTable[Index] & IA32_PG_PAT_2M) != 0) {
        NewPageTable[Index] &= ~((UINT64)IA32_PG_PAT_2M);
        NewPageTable[Index] |= (UINT64)IA32_PG_PAT_4K;
      }
      NewPageTable[Index] |= (UINT64)(Index << EFI_PAGE_SHIFT);
    }

    PageTable[PTIndex] = ((UINTN)NewPageTableAddress & gPhyMask) | PAGE_ATTRIBUTE_BITS;
  }

  ASSERT (PageTable[PTIndex] & IA32_PG_P);
  PageTable = (UINT64*)(UINTN)(PageTable[PTIndex] & gPhyMask);

  PTIndex = (UINTN)RShiftU64 (Address, 12) & 0x1ff;
  ASSERT (PageTable[PTIndex] & IA32_PG_P);
  PageTable[PTIndex] &= ~((UINT64)((IA32_PG_PAT_4K | IA32_PG_CD | IA32_PG_WT)));
  PageTable[PTIndex] |= (UINT64)Cacheability;
}


/**
  Schedule a procedure to run on the specified CPU.

  @param  Procedure                The address of the procedure to run
  @param  CpuIndex                 Target CPU Index
  @param  ProcArguments            The parameter to pass to the procedure

  @retval EFI_INVALID_PARAMETER    CpuNumber not valid
  @retval EFI_INVALID_PARAMETER    CpuNumber specifying BSP
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber did not enter SMM
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber is busy
  @retval EFI_SUCCESS              The procedure has been successfully scheduled

**/
EFI_STATUS
EFIAPI
SmmStartupThisAp (
  IN      EFI_AP_PROCEDURE          Procedure,
  IN      UINTN                     CpuIndex,
  IN OUT  VOID                      *ProcArguments OPTIONAL
  )
{
  if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus ||
      CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu ||
      !(*(mSmmMpSyncData->CpuData[CpuIndex].Present)) ||
      gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove ||
      !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)) {
    return EFI_INVALID_PARAMETER;
  }

  mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;
  mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;
  ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

  if (FeaturePcdGet (PcdCpuSmmBlockStartupThisAp)) {
    AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
    ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
  }
  return EFI_SUCCESS;
}

/**
  This function sets DR6 & DR7 according to SMM save state, before running SMM C code.
  They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.

  NOTE: It might not be appreciated in runtime since it might
        conflict with OS debugging facilities. Turn them off in RELEASE.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
CpuSmmDebugEntry (
  IN UINTN  CpuIndex
  )
{
  SMRAM_SAVE_STATE_MAP *CpuSaveState;
  
  if (FeaturePcdGet (PcdCpuSmmDebug)) {
    CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
    if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
      AsmWriteDr6 (CpuSaveState->x86._DR6);
      AsmWriteDr7 (CpuSaveState->x86._DR7);
    } else {
      AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);
      AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);
    }
  }
}

/**
  This function restores DR6 & DR7 to SMM save state.

  NOTE: It might not be appreciated in runtime since it might
        conflict with OS debugging facilities. Turn them off in RELEASE.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
CpuSmmDebugExit (
  IN UINTN  CpuIndex
  )
{
  SMRAM_SAVE_STATE_MAP *CpuSaveState;

  if (FeaturePcdGet (PcdCpuSmmDebug)) {
    CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
    if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
      CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();
      CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();
    } else {
      CpuSaveState->x64._DR7 = AsmReadDr7 ();
      CpuSaveState->x64._DR6 = AsmReadDr6 ();
    }
  }
}

/**
  C function for SMI entry, each processor comes here upon SMI trigger.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
SmiRendezvous (
  IN      UINTN                     CpuIndex
  )
{
  EFI_STATUS                     Status;
  BOOLEAN                        ValidSmi;
  BOOLEAN                        IsBsp;
  BOOLEAN                        BspInProgress;
  UINTN                          Index;
  UINTN                          Cr2;
  BOOLEAN                        XdDisableFlag;
  MSR_IA32_MISC_ENABLE_REGISTER  MiscEnableMsr;

  //
  // Save Cr2 because Page Fault exception in SMM may override its value
  //
  Cr2 = AsmReadCr2 ();

  //
  // Perform CPU specific entry hooks
  //
  SmmCpuFeaturesRendezvousEntry (CpuIndex);

  //
  // Determine if this is a valid SMI
  //
  ValidSmi = PlatformValidSmi();

  //
  // Determine if BSP has been already in progress. Note this must be checked after
  // ValidSmi because BSP may clear a valid SMI source after checking in.
  //
  BspInProgress = *mSmmMpSyncData->InsideSmm;

  if (!BspInProgress && !ValidSmi) {
    //
    // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not
    // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI
    // status had been cleared by BSP and an existing SMI run has almost ended. (Note
    // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there
    // is nothing we need to do.
    //
    goto Exit;
  } else {
    //
    // Signal presence of this processor
    //
    if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {
      //
      // BSP has already ended the synchronization, so QUIT!!!
      //

      //
      // Wait for BSP's signal to finish SMI
      //
      while (*mSmmMpSyncData->AllCpusInSync) {
        CpuPause ();
      }
      goto Exit;
    } else {

      //
      // The BUSY lock is initialized to Released state.
      // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.
      // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately
      // after AP's present flag is detected.
      //
      InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
    }

    //
    // Try to enable XD
    //
    XdDisableFlag = FALSE;
    if (mXdSupported) {
      MiscEnableMsr.Uint64 = AsmReadMsr64 (MSR_IA32_MISC_ENABLE);
      if (MiscEnableMsr.Bits.XD == 1) {
        XdDisableFlag = TRUE;
        MiscEnableMsr.Bits.XD = 0;
        AsmWriteMsr64 (MSR_IA32_MISC_ENABLE, MiscEnableMsr.Uint64);
      }
      ActivateXd ();
    }

    if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
      ActivateSmmProfile (CpuIndex);
    }

    if (BspInProgress) {
      //
      // BSP has been elected. Follow AP path, regardless of ValidSmi flag
      // as BSP may have cleared the SMI status
      //
      APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
    } else {
      //
      // We have a valid SMI
      //

      //
      // Elect BSP
      //
      IsBsp = FALSE;
      if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
        if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {
          //
          // Call platform hook to do BSP election
          //
          Status = PlatformSmmBspElection (&IsBsp);
          if (EFI_SUCCESS == Status) {
            //
            // Platform hook determines successfully
            //
            if (IsBsp) {
              mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;
            }
          } else {
            //
            // Platform hook fails to determine, use default BSP election method
            //
            InterlockedCompareExchange32 (
              (UINT32*)&mSmmMpSyncData->BspIndex,
              (UINT32)-1,
              (UINT32)CpuIndex
              );
          }
        }
      }

      //
      // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP
      //
      if (mSmmMpSyncData->BspIndex == CpuIndex) {

        //
        // Clear last request for SwitchBsp.
        //
        if (mSmmMpSyncData->SwitchBsp) {
          mSmmMpSyncData->SwitchBsp = FALSE;
          for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
            mSmmMpSyncData->CandidateBsp[Index] = FALSE;
          }
        }

        if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
          SmmProfileRecordSmiNum ();
        }

        //
        // BSP Handler is always called with a ValidSmi == TRUE
        //
        BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);
      } else {
        APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
      }
    }

    ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);

    //
    // Wait for BSP's signal to exit SMI
    //
    while (*mSmmMpSyncData->AllCpusInSync) {
      CpuPause ();
     }

    //
    // Restore XD
    //
    if (XdDisableFlag) {
      MiscEnableMsr.Uint64 = AsmReadMsr64 (MSR_IA32_MISC_ENABLE);
      MiscEnableMsr.Bits.XD = 1;
      AsmWriteMsr64 (MSR_IA32_MISC_ENABLE, MiscEnableMsr.Uint64);
    }
  }

Exit:
  SmmCpuFeaturesRendezvousExit (CpuIndex);
  //
  // Restore Cr2
  //
  AsmWriteCr2 (Cr2);
}

/**
  Allocate buffer for all semaphores and spin locks.

**/
VOID
InitializeSmmCpuSemaphores (
  VOID
  )
{
  UINTN                      CpuIndex;
  UINTN                      ProcessorCount;
  UINTN                      TotalSize;
  UINTN                      GlobalSemaphoresSize;
  UINTN                      CpuSemaphoresSize;
  UINTN                      MsrSemahporeSize;
  UINTN                      SemaphoreSize;
  UINTN                      Pages;
  UINTN                      *SemaphoreBlock;
  UINTN                      SemaphoreAddr;

  SemaphoreSize   = GetSpinLockProperties ();
  ProcessorCount = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
  GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;
  CpuSemaphoresSize    = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;
  MsrSemahporeSize     = MSR_SPIN_LOCK_INIT_NUM * SemaphoreSize;
  TotalSize = GlobalSemaphoresSize + CpuSemaphoresSize + MsrSemahporeSize;
  DEBUG((EFI_D_INFO, "One Semaphore Size    = 0x%x\n", SemaphoreSize));
  DEBUG((EFI_D_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));
  Pages = EFI_SIZE_TO_PAGES (TotalSize);
  SemaphoreBlock = AllocatePages (Pages);
  ASSERT (SemaphoreBlock != NULL);
  ZeroMem (SemaphoreBlock, TotalSize);

  SemaphoreAddr = (UINTN)SemaphoreBlock;
  mSmmCpuSemaphores.SemaphoreGlobal.Counter       = (UINT32 *)SemaphoreAddr;
  SemaphoreAddr += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm     = (BOOLEAN *)SemaphoreAddr;
  SemaphoreAddr += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;
  SemaphoreAddr += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.PFLock        = (SPIN_LOCK *)SemaphoreAddr;
  SemaphoreAddr += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock
                                                  = (SPIN_LOCK *)SemaphoreAddr;

  SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;
  mSmmCpuSemaphores.SemaphoreCpu.Busy    = (SPIN_LOCK *)SemaphoreAddr;
  SemaphoreAddr += ProcessorCount * SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreCpu.Run     = (UINT32 *)SemaphoreAddr;
  SemaphoreAddr += ProcessorCount * SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;

  SemaphoreAddr = (UINTN)SemaphoreBlock + GlobalSemaphoresSize + CpuSemaphoresSize;
  mSmmCpuSemaphores.SemaphoreMsr.Msr              = (SPIN_LOCK *)SemaphoreAddr;
  mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter =
        ((UINTN)SemaphoreBlock + Pages * SIZE_4KB - SemaphoreAddr) / SemaphoreSize;
  ASSERT (mSmmCpuSemaphores.SemaphoreMsr.AvailableCounter >= MSR_SPIN_LOCK_INIT_NUM);

  mSmmMpSyncData->Counter       = mSmmCpuSemaphores.SemaphoreGlobal.Counter;
  mSmmMpSyncData->InsideSmm     = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;
  mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;
  mPFLock                       = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;
  mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;

  for (CpuIndex = 0; CpuIndex < ProcessorCount; CpuIndex ++) {
    mSmmMpSyncData->CpuData[CpuIndex].Busy    =
      (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + SemaphoreSize * CpuIndex);
    mSmmMpSyncData->CpuData[CpuIndex].Run     =
      (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + SemaphoreSize * CpuIndex);
    mSmmMpSyncData->CpuData[CpuIndex].Present =
      (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + SemaphoreSize * CpuIndex);
  }

  mSemaphoreSize = SemaphoreSize;
}

/**
  Initialize un-cacheable data.

**/
VOID
EFIAPI
InitializeMpSyncData (
  VOID
  )
{
  if (mSmmMpSyncData != NULL) {
    ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);
    mSmmMpSyncData->CpuData = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));
    mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
    if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
      //
      // Enable BSP election by setting BspIndex to -1
      //
      mSmmMpSyncData->BspIndex = (UINT32)-1;
    }
    mSmmMpSyncData->EffectiveSyncMode = (SMM_CPU_SYNC_MODE) PcdGet8 (PcdCpuSmmSyncMode);

    InitializeSmmCpuSemaphores ();
  }
}

/**
  Initialize global data for MP synchronization.

  @param Stacks       Base address of SMI stack buffer for all processors.
  @param StackSize    Stack size for each processor in SMM.

**/
UINT32
InitializeMpServiceData (
  IN VOID        *Stacks,
  IN UINTN       StackSize
  )
{
  UINT32                    Cr3;
  UINTN                     Index;
  MTRR_SETTINGS             *Mtrr;
  PROCESSOR_SMM_DESCRIPTOR  *Psd;
  UINT8                     *GdtTssTables;
  UINTN                     GdtTableStepSize;

  //
  // Initialize mSmmMpSyncData
  //
  mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +
                       (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
  mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA*) AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));
  ASSERT (mSmmMpSyncData != NULL);
  InitializeMpSyncData ();

  //
  // Initialize physical address mask
  // NOTE: Physical memory above virtual address limit is not supported !!!
  //
  AsmCpuid (0x80000008, (UINT32*)&Index, NULL, NULL, NULL);
  gPhyMask = LShiftU64 (1, (UINT8)Index) - 1;
  gPhyMask &= (1ull << 48) - EFI_PAGE_SIZE;

  //
  // Create page tables
  //
  Cr3 = SmmInitPageTable ();

  GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);

  //
  // Initialize PROCESSOR_SMM_DESCRIPTOR for each CPU
  //
  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    Psd = (PROCESSOR_SMM_DESCRIPTOR *)(VOID *)(UINTN)(mCpuHotPlugData.SmBase[Index] + SMM_PSD_OFFSET);
    CopyMem (Psd, &gcPsd, sizeof (gcPsd));
    Psd->SmmGdtPtr = (UINT64)(UINTN)(GdtTssTables + GdtTableStepSize * Index);
    Psd->SmmGdtSize = gcSmiGdtr.Limit + 1;

    //
    // Install SMI handler
    //
    InstallSmiHandler (
      Index,
      (UINT32)mCpuHotPlugData.SmBase[Index],
      (VOID*)((UINTN)Stacks + (StackSize * Index)),
      StackSize,
      (UINTN)Psd->SmmGdtPtr,
      Psd->SmmGdtSize,
      gcSmiIdtr.Base,
      gcSmiIdtr.Limit + 1,
      Cr3
      );
  }

  //
  // Record current MTRR settings
  //
  ZeroMem(gSmiMtrrs, sizeof (gSmiMtrrs));
  Mtrr =  (MTRR_SETTINGS*)gSmiMtrrs;
  MtrrGetAllMtrrs (Mtrr);

  return Cr3;
}

/**

  Register the SMM Foundation entry point.

  @param          This              Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance
  @param          SmmEntryPoint     SMM Foundation EntryPoint

  @retval         EFI_SUCCESS       Successfully to register SMM foundation entry point

**/
EFI_STATUS
EFIAPI
RegisterSmmEntry (
  IN CONST EFI_SMM_CONFIGURATION_PROTOCOL  *This,
  IN EFI_SMM_ENTRY_POINT                   SmmEntryPoint
  )
{
  //
  // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.
  //
  gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;
  return EFI_SUCCESS;
}