summaryrefslogtreecommitdiff
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/PiSmmCpuDxeSmm.c
blob: c351875262b495728b795e96883a671fa9b83518 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
/** @file
Agent Module to load other modules to deploy SMM Entry Vector for X86 CPU.

Copyright (c) 2009 - 2015, Intel Corporation. All rights reserved.<BR>
This program and the accompanying materials
are licensed and made available under the terms and conditions of the BSD License
which accompanies this distribution.  The full text of the license may be found at
http://opensource.org/licenses/bsd-license.php

THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.

**/

#include "PiSmmCpuDxeSmm.h"

//
// SMM CPU Private Data structure that contains SMM Configuration Protocol
// along its supporting fields.
//
SMM_CPU_PRIVATE_DATA  mSmmCpuPrivateData = {
  SMM_CPU_PRIVATE_DATA_SIGNATURE,               // Signature
  NULL,                                         // SmmCpuHandle
  NULL,                                         // Pointer to ProcessorInfo array
  NULL,                                         // Pointer to Operation array
  NULL,                                         // Pointer to CpuSaveStateSize array
  NULL,                                         // Pointer to CpuSaveState array
  { {0} },                                      // SmmReservedSmramRegion
  {
    SmmStartupThisAp,                           // SmmCoreEntryContext.SmmStartupThisAp
    0,                                          // SmmCoreEntryContext.CurrentlyExecutingCpu
    0,                                          // SmmCoreEntryContext.NumberOfCpus
    NULL,                                       // SmmCoreEntryContext.CpuSaveStateSize
    NULL                                        // SmmCoreEntryContext.CpuSaveState
  },
  NULL,                                         // SmmCoreEntry
  {
    mSmmCpuPrivateData.SmmReservedSmramRegion,  // SmmConfiguration.SmramReservedRegions
    RegisterSmmEntry                            // SmmConfiguration.RegisterSmmEntry
  },
};

CPU_HOT_PLUG_DATA mCpuHotPlugData = {
  CPU_HOT_PLUG_DATA_REVISION_1,                 // Revision
  0,                                            // Array Length of SmBase and APIC ID
  NULL,                                         // Pointer to APIC ID array
  NULL,                                         // Pointer to SMBASE array
  0,                                            // Reserved
  0,                                            // SmrrBase
  0                                             // SmrrSize
};

//
// Global pointer used to access mSmmCpuPrivateData from outside and inside SMM
//
SMM_CPU_PRIVATE_DATA  *gSmmCpuPrivate = &mSmmCpuPrivateData;

//
// SMM Relocation variables
//
volatile BOOLEAN  *mRebased;
volatile BOOLEAN  mIsBsp;

///
/// Handle for the SMM CPU Protocol
///
EFI_HANDLE  mSmmCpuHandle = NULL;

///
/// SMM CPU Protocol instance
///
EFI_SMM_CPU_PROTOCOL  mSmmCpu  = {
  SmmReadSaveState,
  SmmWriteSaveState
};

EFI_CPU_INTERRUPT_HANDLER   mExternalVectorTable[EXCEPTION_VECTOR_NUMBER];

///
/// SMM CPU Save State Protocol instance
///
EFI_SMM_CPU_SAVE_STATE_PROTOCOL  mSmmCpuSaveState = {
  NULL
};

//
// SMM stack information
//
UINTN mSmmStackArrayBase;
UINTN mSmmStackArrayEnd;
UINTN mSmmStackSize;

//
// Pointer to structure used during S3 Resume
//
SMM_S3_RESUME_STATE *mSmmS3ResumeState = NULL;

UINTN mMaxNumberOfCpus = 1;
UINTN mNumberOfCpus = 1;

//
// SMM ready to lock flag
//
BOOLEAN mSmmReadyToLock = FALSE;

//
// Global used to cache PCD for SMM Code Access Check enable
//
BOOLEAN                  mSmmCodeAccessCheckEnable = FALSE;

//
// Spin lock used to serialize setting of SMM Code Access Check feature
//
SPIN_LOCK                mConfigSmmCodeAccessCheckLock;

/**
  Initialize IDT to setup exception handlers for SMM.

**/
VOID
InitializeSmmIdt (
  VOID
  )
{
  EFI_STATUS               Status;
  BOOLEAN                  InterruptState;
  IA32_DESCRIPTOR          DxeIdtr;
  //
  // Disable Interrupt and save DXE IDT table
  //
  InterruptState = SaveAndDisableInterrupts ();
  AsmReadIdtr (&DxeIdtr);
  //
  // Load SMM temporary IDT table
  //
  AsmWriteIdtr (&gcSmiIdtr);
  //
  // Setup SMM default exception handlers, SMM IDT table
  // will be updated and saved in gcSmiIdtr
  //
  Status = InitializeCpuExceptionHandlers (NULL);
  ASSERT_EFI_ERROR (Status);
  //
  // Restore DXE IDT table and CPU interrupt
  //
  AsmWriteIdtr ((IA32_DESCRIPTOR *) &DxeIdtr);
  SetInterruptState (InterruptState);
}

/**
  Search module name by input IP address and output it.

  @param CallerIpAddress   Caller instruction pointer.

**/
VOID
DumpModuleInfoByIp (
  IN  UINTN              CallerIpAddress
  )
{
  UINTN                                Pe32Data;
  EFI_IMAGE_DOS_HEADER                 *DosHdr;
  EFI_IMAGE_OPTIONAL_HEADER_PTR_UNION  Hdr;
  VOID                                 *PdbPointer;
  UINT64                               DumpIpAddress;

  //
  // Find Image Base
  //
  Pe32Data = CallerIpAddress & ~(SIZE_4KB - 1);
  while (Pe32Data != 0) {
    DosHdr = (EFI_IMAGE_DOS_HEADER *) Pe32Data;
    if (DosHdr->e_magic == EFI_IMAGE_DOS_SIGNATURE) {
      //
      // DOS image header is present, so read the PE header after the DOS image header.
      //
      Hdr.Pe32 = (EFI_IMAGE_NT_HEADERS32 *)(Pe32Data + (UINTN) ((DosHdr->e_lfanew) & 0x0ffff));
      //
      // Make sure PE header address does not overflow and is less than the initial address.
      //
      if (((UINTN)Hdr.Pe32 > Pe32Data) && ((UINTN)Hdr.Pe32 < CallerIpAddress)) {
        if (Hdr.Pe32->Signature == EFI_IMAGE_NT_SIGNATURE) {
          //
          // It's PE image.
          //
          break;
        }
      }
    }

    //
    // Not found the image base, check the previous aligned address
    //
    Pe32Data -= SIZE_4KB;
  }

  DumpIpAddress = CallerIpAddress;
  DEBUG ((EFI_D_ERROR, "It is invoked from the instruction before IP(0x%lx)", DumpIpAddress));

  if (Pe32Data != 0) {
    PdbPointer = PeCoffLoaderGetPdbPointer ((VOID *) Pe32Data);
    if (PdbPointer != NULL) {
      DEBUG ((EFI_D_ERROR, " in module (%a)", PdbPointer));
    }
  }
}

/**
  Read information from the CPU save state.

  @param  This      EFI_SMM_CPU_PROTOCOL instance
  @param  Width     The number of bytes to read from the CPU save state.
  @param  Register  Specifies the CPU register to read form the save state.
  @param  CpuIndex  Specifies the zero-based index of the CPU save state.
  @param  Buffer    Upon return, this holds the CPU register value read from the save state.

  @retval EFI_SUCCESS   The register was read from Save State
  @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
  @retval EFI_INVALID_PARAMTER   This or Buffer is NULL.

**/
EFI_STATUS
EFIAPI
SmmReadSaveState (
  IN CONST EFI_SMM_CPU_PROTOCOL         *This,
  IN UINTN                              Width,
  IN EFI_SMM_SAVE_STATE_REGISTER        Register,
  IN UINTN                              CpuIndex,
  OUT VOID                              *Buffer
  )
{
  EFI_STATUS  Status;

  //
  // Retrieve pointer to the specified CPU's SMM Save State buffer
  //
  if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Check for special EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
    //
    // The pseudo-register only supports the 64-bit size specified by Width.
    //
    if (Width != sizeof (UINT64)) {
      return EFI_INVALID_PARAMETER;
    }
    //
    // If the processor is in SMM at the time the SMI occurred,
    // the pseudo register value for EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID is returned in Buffer.
    // Otherwise, EFI_NOT_FOUND is returned.
    //
    if (mSmmMpSyncData->CpuData[CpuIndex].Present) {
      *(UINT64 *)Buffer = gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId;
      return EFI_SUCCESS;
    } else {
      return EFI_NOT_FOUND;
    }
  }

  if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
    return EFI_INVALID_PARAMETER;
  }

  Status = SmmCpuFeaturesReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
  if (Status == EFI_UNSUPPORTED) {
    Status = ReadSaveStateRegister (CpuIndex, Register, Width, Buffer);
  }
  return Status;
}

/**
  Write data to the CPU save state.

  @param  This      EFI_SMM_CPU_PROTOCOL instance
  @param  Width     The number of bytes to read from the CPU save state.
  @param  Register  Specifies the CPU register to write to the save state.
  @param  CpuIndex  Specifies the zero-based index of the CPU save state
  @param  Buffer    Upon entry, this holds the new CPU register value.

  @retval EFI_SUCCESS   The register was written from Save State
  @retval EFI_NOT_FOUND The register is not defined for the Save State of Processor
  @retval EFI_INVALID_PARAMTER   ProcessorIndex or Width is not correct

**/
EFI_STATUS
EFIAPI
SmmWriteSaveState (
  IN CONST EFI_SMM_CPU_PROTOCOL         *This,
  IN UINTN                              Width,
  IN EFI_SMM_SAVE_STATE_REGISTER        Register,
  IN UINTN                              CpuIndex,
  IN CONST VOID                         *Buffer
  )
{
  EFI_STATUS  Status;

  //
  // Retrieve pointer to the specified CPU's SMM Save State buffer
  //
  if ((CpuIndex >= gSmst->NumberOfCpus) || (Buffer == NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  //
  // Writes to EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID are ignored
  //
  if (Register == EFI_SMM_SAVE_STATE_REGISTER_PROCESSOR_ID) {
    return EFI_SUCCESS;
  }

  if (!mSmmMpSyncData->CpuData[CpuIndex].Present) {
    return EFI_INVALID_PARAMETER;
  }

  Status = SmmCpuFeaturesWriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
  if (Status == EFI_UNSUPPORTED) {
    Status = WriteSaveStateRegister (CpuIndex, Register, Width, Buffer);
  }
  return Status;
}


/**
  C function for SMI handler. To change all processor's SMMBase Register.

**/
VOID
EFIAPI
SmmInitHandler (
  VOID
  )
{
  UINT32                            ApicId;
  UINTN                             Index;

  //
  // Update SMM IDT entries' code segment and load IDT
  //
  AsmWriteIdtr (&gcSmiIdtr);
  ApicId = GetApicId ();

  ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

  for (Index = 0; Index < mNumberOfCpus; Index++) {
    if (ApicId == (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
      //
      // Initialize SMM specific features on the currently executing CPU
      //
      SmmCpuFeaturesInitializeProcessor (
        Index,
        mIsBsp,
        gSmmCpuPrivate->ProcessorInfo,
        &mCpuHotPlugData
        );

      if (mIsBsp) {
        //
        // BSP rebase is already done above.
        // Initialize private data during S3 resume
        //
        InitializeMpSyncData ();
      }

      //
      // Hook return after RSM to set SMM re-based flag
      //
      SemaphoreHook (Index, &mRebased[Index]);

      return;
    }
  }
  ASSERT (FALSE);
}

/**
  Relocate SmmBases for each processor.

  Execute on first boot and all S3 resumes

**/
VOID
EFIAPI
SmmRelocateBases (
  VOID
  )
{
  UINT8                 BakBuf[BACK_BUF_SIZE];
  SMRAM_SAVE_STATE_MAP  BakBuf2;
  SMRAM_SAVE_STATE_MAP  *CpuStatePtr;
  UINT8                 *U8Ptr;
  UINT32                ApicId;
  UINTN                 Index;
  UINTN                 BspIndex;

  //
  // Make sure the reserved size is large enough for procedure SmmInitTemplate.
  //
  ASSERT (sizeof (BakBuf) >= gcSmmInitSize);

  //
  // Patch ASM code template with current CR0, CR3, and CR4 values
  //
  gSmmCr0 = (UINT32)AsmReadCr0 ();
  gSmmCr3 = (UINT32)AsmReadCr3 ();
  gSmmCr4 = (UINT32)AsmReadCr4 ();

  //
  // Patch GDTR for SMM base relocation
  //
  gcSmiInitGdtr.Base  = gcSmiGdtr.Base;
  gcSmiInitGdtr.Limit = gcSmiGdtr.Limit;

  U8Ptr = (UINT8*)(UINTN)(SMM_DEFAULT_SMBASE + SMM_HANDLER_OFFSET);
  CpuStatePtr = (SMRAM_SAVE_STATE_MAP *)(UINTN)(SMM_DEFAULT_SMBASE + SMRAM_SAVE_STATE_MAP_OFFSET);

  //
  // Backup original contents at address 0x38000
  //
  CopyMem (BakBuf, U8Ptr, sizeof (BakBuf));
  CopyMem (&BakBuf2, CpuStatePtr, sizeof (BakBuf2));

  //
  // Load image for relocation
  //
  CopyMem (U8Ptr, gcSmmInitTemplate, gcSmmInitSize);

  //
  // Retrieve the local APIC ID of current processor
  //
  ApicId = GetApicId ();

  //
  // Relocate SM bases for all APs
  // This is APs' 1st SMI - rebase will be done here, and APs' default SMI handler will be overridden by gcSmmInitTemplate
  //
  mIsBsp   = FALSE;
  BspIndex = (UINTN)-1;
  for (Index = 0; Index < mNumberOfCpus; Index++) {
    mRebased[Index] = FALSE;
    if (ApicId != (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId) {
      SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
      //
      // Wait for this AP to finish its 1st SMI
      //
      while (!mRebased[Index]);
    } else {
      //
      // BSP will be Relocated later
      //
      BspIndex = Index;
    }
  }

  //
  // Relocate BSP's SMM base
  //
  ASSERT (BspIndex != (UINTN)-1);
  mIsBsp = TRUE;
  SendSmiIpi (ApicId);
  //
  // Wait for the BSP to finish its 1st SMI
  //
  while (!mRebased[BspIndex]);

  //
  // Restore contents at address 0x38000
  //
  CopyMem (CpuStatePtr, &BakBuf2, sizeof (BakBuf2));
  CopyMem (U8Ptr, BakBuf, sizeof (BakBuf));
}

/**
  Perform SMM initialization for all processors in the S3 boot path.

  For a native platform, MP initialization in the S3 boot path is also performed in this function.
**/
VOID
EFIAPI
SmmRestoreCpu (
  VOID
  )
{
  SMM_S3_RESUME_STATE           *SmmS3ResumeState;
  IA32_DESCRIPTOR               Ia32Idtr;
  IA32_DESCRIPTOR               X64Idtr;
  IA32_IDT_GATE_DESCRIPTOR      IdtEntryTable[EXCEPTION_VECTOR_NUMBER];
  EFI_STATUS                    Status;

  DEBUG ((EFI_D_INFO, "SmmRestoreCpu()\n"));

  //
  // See if there is enough context to resume PEI Phase
  //
  if (mSmmS3ResumeState == NULL) {
    DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
    CpuDeadLoop ();
  }

  SmmS3ResumeState = mSmmS3ResumeState;
  ASSERT (SmmS3ResumeState != NULL);

  if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
    //
    // Save the IA32 IDT Descriptor
    //
    AsmReadIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);

    //
    // Setup X64 IDT table
    //
    ZeroMem (IdtEntryTable, sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32);
    X64Idtr.Base = (UINTN) IdtEntryTable;
    X64Idtr.Limit = (UINT16) (sizeof (IA32_IDT_GATE_DESCRIPTOR) * 32 - 1);
    AsmWriteIdtr ((IA32_DESCRIPTOR *) &X64Idtr);

    //
    // Setup the default exception handler
    //
    Status = InitializeCpuExceptionHandlers (NULL);
    ASSERT_EFI_ERROR (Status);

    //
    // Initialize Debug Agent to support source level debug
    //
    InitializeDebugAgent (DEBUG_AGENT_INIT_THUNK_PEI_IA32TOX64, (VOID *)&Ia32Idtr, NULL);
  }

  //
  // Do below CPU things for native platform only
  //
  if (!FeaturePcdGet(PcdFrameworkCompatibilitySupport)) {
    //
    // Skip initialization if mAcpiCpuData is not valid
    //
    if (mAcpiCpuData.NumberOfCpus > 0) {
      //
      // First time microcode load and restore MTRRs
      //
      EarlyInitializeCpu ();
    }
  }

  //
  // Restore SMBASE for BSP and all APs
  //
  SmmRelocateBases ();

  //
  // Do below CPU things for native platform only
  //
  if (!FeaturePcdGet(PcdFrameworkCompatibilitySupport)) {
    //
    // Skip initialization if mAcpiCpuData is not valid
    //
    if (mAcpiCpuData.NumberOfCpus > 0) {
      //
      // Restore MSRs for BSP and all APs
      //
      InitializeCpu ();
    }
  }

  //
  // Set a flag to restore SMM configuration in S3 path.
  //
  mRestoreSmmConfigurationInS3 = TRUE;

  DEBUG (( EFI_D_INFO, "SMM S3 Return CS                = %x\n", SmmS3ResumeState->ReturnCs));
  DEBUG (( EFI_D_INFO, "SMM S3 Return Entry Point       = %x\n", SmmS3ResumeState->ReturnEntryPoint));
  DEBUG (( EFI_D_INFO, "SMM S3 Return Context1          = %x\n", SmmS3ResumeState->ReturnContext1));
  DEBUG (( EFI_D_INFO, "SMM S3 Return Context2          = %x\n", SmmS3ResumeState->ReturnContext2));
  DEBUG (( EFI_D_INFO, "SMM S3 Return Stack Pointer     = %x\n", SmmS3ResumeState->ReturnStackPointer));

  //
  // If SMM is in 32-bit mode, then use SwitchStack() to resume PEI Phase
  //
  if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_32) {
    DEBUG ((EFI_D_INFO, "Call SwitchStack() to return to S3 Resume in PEI Phase\n"));

    SwitchStack (
      (SWITCH_STACK_ENTRY_POINT)(UINTN)SmmS3ResumeState->ReturnEntryPoint,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnContext1,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnContext2,
      (VOID *)(UINTN)SmmS3ResumeState->ReturnStackPointer
      );
  }

  //
  // If SMM is in 64-bit mode, then use AsmDisablePaging64() to resume PEI Phase
  //
  if (SmmS3ResumeState->Signature == SMM_S3_RESUME_SMM_64) {
    DEBUG ((EFI_D_INFO, "Call AsmDisablePaging64() to return to S3 Resume in PEI Phase\n"));
    //
    // Disable interrupt of Debug timer, since new IDT table is for IA32 and will not work in long mode.
    //
    SaveAndSetDebugTimerInterrupt (FALSE);
    //
    // Restore IA32 IDT table
    //
    AsmWriteIdtr ((IA32_DESCRIPTOR *) &Ia32Idtr);
    AsmDisablePaging64 (
      SmmS3ResumeState->ReturnCs,
      (UINT32)SmmS3ResumeState->ReturnEntryPoint,
      (UINT32)SmmS3ResumeState->ReturnContext1,
      (UINT32)SmmS3ResumeState->ReturnContext2,
      (UINT32)SmmS3ResumeState->ReturnStackPointer
      );
  }

  //
  // Can not resume PEI Phase
  //
  DEBUG ((EFI_D_ERROR, "No context to return to PEI Phase\n"));
  CpuDeadLoop ();
}

/**
  Copy register table from ACPI NVS memory into SMRAM.

  @param[in] DestinationRegisterTableList  Points to destination register table.
  @param[in] SourceRegisterTableList       Points to source register table.
  @param[in] NumberOfCpus                  Number of CPUs.

**/
VOID
CopyRegisterTable (
  IN CPU_REGISTER_TABLE         *DestinationRegisterTableList,
  IN CPU_REGISTER_TABLE         *SourceRegisterTableList,
  IN UINT32                     NumberOfCpus
  )
{
  UINTN                      Index;
  UINTN                      Index1;
  CPU_REGISTER_TABLE_ENTRY   *RegisterTableEntry;

  CopyMem (DestinationRegisterTableList, SourceRegisterTableList, NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
  for (Index = 0; Index < NumberOfCpus; Index++) {
    DestinationRegisterTableList[Index].RegisterTableEntry = AllocatePool (DestinationRegisterTableList[Index].AllocatedSize);
    ASSERT (DestinationRegisterTableList[Index].RegisterTableEntry != NULL);
    CopyMem (DestinationRegisterTableList[Index].RegisterTableEntry, SourceRegisterTableList[Index].RegisterTableEntry, DestinationRegisterTableList[Index].AllocatedSize);
    //
    // Go though all MSRs in register table to initialize MSR spin lock
    //
    RegisterTableEntry = DestinationRegisterTableList[Index].RegisterTableEntry;
    for (Index1 = 0; Index1 < DestinationRegisterTableList[Index].TableLength; Index1++, RegisterTableEntry++) {
      if ((RegisterTableEntry->RegisterType == Msr) && (RegisterTableEntry->ValidBitLength < 64)) {
        //
        // Initialize MSR spin lock only for those MSRs need bit field writing
        //
        InitMsrSpinLockByIndex (RegisterTableEntry->Index);
      }
    }
  }
}

/**
  SMM Ready To Lock event notification handler.

  The CPU S3 data is copied to SMRAM for security and mSmmReadyToLock is set to
  perform additional lock actions that must be performed from SMM on the next SMI.

  @param[in] Protocol   Points to the protocol's unique identifier.
  @param[in] Interface  Points to the interface instance.
  @param[in] Handle     The handle on which the interface was installed.

  @retval EFI_SUCCESS   Notification handler runs successfully.
 **/
EFI_STATUS
EFIAPI
SmmReadyToLockEventNotify (
  IN CONST EFI_GUID  *Protocol,
  IN VOID            *Interface,
  IN EFI_HANDLE      Handle
  )
{
  ACPI_CPU_DATA              *AcpiCpuData;
  IA32_DESCRIPTOR            *Gdtr;
  IA32_DESCRIPTOR            *Idtr;

  //
  // Prevent use of mAcpiCpuData by initialize NumberOfCpus to 0
  //
  mAcpiCpuData.NumberOfCpus = 0;

  //
  // If FrameworkCompatibilitySspport is enabled, then do not copy CPU S3 Data into SMRAM
  //
  if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) {
    goto Done;
  }

  //
  // If PcdCpuS3DataAddress was never set, then do not copy CPU S3 Data into SMRAM
  //
  AcpiCpuData = (ACPI_CPU_DATA *)(UINTN)PcdGet64 (PcdCpuS3DataAddress);
  if (AcpiCpuData == 0) {
    goto Done;
  }

  //
  // For a native platform, copy the CPU S3 data into SMRAM for use on CPU S3 Resume.
  //
  CopyMem (&mAcpiCpuData, AcpiCpuData, sizeof (mAcpiCpuData));

  mAcpiCpuData.MtrrTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (MTRR_SETTINGS));
  ASSERT (mAcpiCpuData.MtrrTable != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.MtrrTable, (VOID *)(UINTN)AcpiCpuData->MtrrTable, sizeof (MTRR_SETTINGS));

  mAcpiCpuData.GdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
  ASSERT (mAcpiCpuData.GdtrProfile != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.GdtrProfile, (VOID *)(UINTN)AcpiCpuData->GdtrProfile, sizeof (IA32_DESCRIPTOR));

  mAcpiCpuData.IdtrProfile = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (sizeof (IA32_DESCRIPTOR));
  ASSERT (mAcpiCpuData.IdtrProfile != 0);

  CopyMem ((VOID *)(UINTN)mAcpiCpuData.IdtrProfile, (VOID *)(UINTN)AcpiCpuData->IdtrProfile, sizeof (IA32_DESCRIPTOR));

  mAcpiCpuData.PreSmmInitRegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
  ASSERT (mAcpiCpuData.PreSmmInitRegisterTable != 0);

  CopyRegisterTable (
    (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.PreSmmInitRegisterTable,
    (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->PreSmmInitRegisterTable,
    mAcpiCpuData.NumberOfCpus
    );

  mAcpiCpuData.RegisterTable = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePool (mAcpiCpuData.NumberOfCpus * sizeof (CPU_REGISTER_TABLE));
  ASSERT (mAcpiCpuData.RegisterTable != 0);

  CopyRegisterTable (
    (CPU_REGISTER_TABLE *)(UINTN)mAcpiCpuData.RegisterTable,
    (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->RegisterTable,
    mAcpiCpuData.NumberOfCpus
    );

  //
  // Copy AP's GDT, IDT and Machine Check handler into SMRAM.
  //
  Gdtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.GdtrProfile;
  Idtr = (IA32_DESCRIPTOR *)(UINTN)mAcpiCpuData.IdtrProfile;

  mGdtForAp = AllocatePool ((Gdtr->Limit + 1) + (Idtr->Limit + 1) +  mAcpiCpuData.ApMachineCheckHandlerSize);
  ASSERT (mGdtForAp != NULL);
  mIdtForAp = (VOID *) ((UINTN)mGdtForAp + (Gdtr->Limit + 1));
  mMachineCheckHandlerForAp = (VOID *) ((UINTN)mIdtForAp + (Idtr->Limit + 1));

  CopyMem (mGdtForAp, (VOID *)Gdtr->Base, Gdtr->Limit + 1);
  CopyMem (mIdtForAp, (VOID *)Idtr->Base, Idtr->Limit + 1);
  CopyMem (mMachineCheckHandlerForAp, (VOID *)(UINTN)mAcpiCpuData.ApMachineCheckHandlerBase, mAcpiCpuData.ApMachineCheckHandlerSize);

Done:
  //
  // Set SMM ready to lock flag and return
  //
  mSmmReadyToLock = TRUE;
  return EFI_SUCCESS;
}

/**
  The module Entry Point of the CPU SMM driver.

  @param  ImageHandle    The firmware allocated handle for the EFI image.
  @param  SystemTable    A pointer to the EFI System Table.

  @retval EFI_SUCCESS    The entry point is executed successfully.
  @retval Other          Some error occurs when executing this entry point.

**/
EFI_STATUS
EFIAPI
PiCpuSmmEntry (
  IN EFI_HANDLE        ImageHandle,
  IN EFI_SYSTEM_TABLE  *SystemTable
  )
{
  EFI_STATUS                 Status;
  EFI_MP_SERVICES_PROTOCOL   *MpServices;
  UINTN                      NumberOfEnabledProcessors;
  UINTN                      Index;
  VOID                       *Buffer;
  UINTN                      TileSize;
  VOID                       *GuidHob;
  EFI_SMRAM_DESCRIPTOR       *SmramDescriptor;
  SMM_S3_RESUME_STATE        *SmmS3ResumeState;
  UINT8                      *Stacks;
  VOID                       *Registration;
  UINT32                     RegEax;
  UINT32                     RegEdx;
  UINTN                      FamilyId;
  UINTN                      ModelId;
  UINT32                     Cr3;

  //
  // Initialize Debug Agent to support source level debug in SMM code
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_SMM, NULL, NULL);

  //
  // Report the start of CPU SMM initialization.
  //
  REPORT_STATUS_CODE (
    EFI_PROGRESS_CODE,
    EFI_COMPUTING_UNIT_HOST_PROCESSOR | EFI_CU_HP_PC_SMM_INIT
    );

  //
  // Fix segment address of the long-mode-switch jump
  //
  if (sizeof (UINTN) == sizeof (UINT64)) {
    gSmmJmpAddr.Segment = LONG_MODE_CODE_SEGMENT;
  }

  //
  // Find out SMRR Base and SMRR Size
  //
  FindSmramInfo (&mCpuHotPlugData.SmrrBase, &mCpuHotPlugData.SmrrSize);

  //
  // Get MP Services Protocol
  //
  Status = SystemTable->BootServices->LocateProtocol (&gEfiMpServiceProtocolGuid, NULL, (VOID **)&MpServices);
  ASSERT_EFI_ERROR (Status);

  //
  // Use MP Services Protocol to retrieve the number of processors and number of enabled processors
  //
  Status = MpServices->GetNumberOfProcessors (MpServices, &mNumberOfCpus, &NumberOfEnabledProcessors);
  ASSERT_EFI_ERROR (Status);
  ASSERT (mNumberOfCpus <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));

  //
  // If support CPU hot plug, PcdCpuSmmEnableBspElection should be set to TRUE.
  // A constant BSP index makes no sense because it may be hot removed.
  //
  DEBUG_CODE (
    if (FeaturePcdGet (PcdCpuHotPlugSupport)) {

      ASSERT (FeaturePcdGet (PcdCpuSmmEnableBspElection));
    }
  );

  //
  // Save the PcdCpuSmmCodeAccessCheckEnable value into a global variable.
  //
  mSmmCodeAccessCheckEnable = PcdGetBool (PcdCpuSmmCodeAccessCheckEnable);
  DEBUG ((EFI_D_INFO, "PcdCpuSmmCodeAccessCheckEnable = %d\n", mSmmCodeAccessCheckEnable));

  //
  // If support CPU hot plug, we need to allocate resources for possibly hot-added processors
  //
  if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
    mMaxNumberOfCpus = PcdGet32 (PcdCpuMaxLogicalProcessorNumber);
  } else {
    mMaxNumberOfCpus = mNumberOfCpus;
  }
  gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus = mMaxNumberOfCpus;

  //
  // The CPU save state and code for the SMI entry point are tiled within an SMRAM
  // allocated buffer.  The minimum size of this buffer for a uniprocessor system
  // is 32 KB, because the entry point is SMBASE + 32KB, and CPU save state area
  // just below SMBASE + 64KB.  If more than one CPU is present in the platform,
  // then the SMI entry point and the CPU save state areas can be tiles to minimize
  // the total amount SMRAM required for all the CPUs.  The tile size can be computed
  // by adding the   // CPU save state size, any extra CPU specific context, and
  // the size of code that must be placed at the SMI entry point to transfer
  // control to a C function in the native SMM execution mode.  This size is
  // rounded up to the nearest power of 2 to give the tile size for a each CPU.
  // The total amount of memory required is the maximum number of CPUs that
  // platform supports times the tile size.  The picture below shows the tiling,
  // where m is the number of tiles that fit in 32KB.
  //
  //  +-----------------------------+  <-- 2^n offset from Base of allocated buffer
  //  |   CPU m+1 Save State        |
  //  +-----------------------------+
  //  |   CPU m+1 Extra Data        |
  //  +-----------------------------+
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU 2m  SMI Entry         |
  //  +#############################+  <-- Base of allocated buffer + 64 KB
  //  |   CPU m-1 Save State        |
  //  +-----------------------------+
  //  |   CPU m-1 Extra Data        |
  //  +-----------------------------+
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU 2m-1 SMI Entry        |
  //  +=============================+  <-- 2^n offset from Base of allocated buffer
  //  |   . . . . . . . . . . . .   |
  //  +=============================+  <-- 2^n offset from Base of allocated buffer
  //  |   CPU 2 Save State          |
  //  +-----------------------------+
  //  |   CPU 2 Extra Data          |
  //  +-----------------------------+
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU m+1 SMI Entry         |
  //  +=============================+  <-- Base of allocated buffer + 32 KB
  //  |   CPU 1 Save State          |
  //  +-----------------------------+
  //  |   CPU 1 Extra Data          |
  //  +-----------------------------+
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU m SMI Entry           |
  //  +#############################+  <-- Base of allocated buffer + 32 KB == CPU 0 SMBASE + 64 KB
  //  |   CPU 0 Save State          |
  //  +-----------------------------+
  //  |   CPU 0 Extra Data          |
  //  +-----------------------------+
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU m-1 SMI Entry         |
  //  +=============================+  <-- 2^n offset from Base of allocated buffer
  //  |   . . . . . . . . . . . .   |
  //  +=============================+  <-- 2^n offset from Base of allocated buffer
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU 1 SMI Entry           |
  //  +=============================+  <-- 2^n offset from Base of allocated buffer
  //  |   Padding                   |
  //  +-----------------------------+
  //  |   CPU 0 SMI Entry           |
  //  +#############################+  <-- Base of allocated buffer == CPU 0 SMBASE + 32 KB
  //

  //
  // Retrieve CPU Family
  //
  AsmCpuid (CPUID_VERSION_INFO, &RegEax, NULL, NULL, &RegEdx);
  FamilyId = (RegEax >> 8) & 0xf;
  ModelId = (RegEax >> 4) & 0xf;
  if (FamilyId == 0x06 || FamilyId == 0x0f) {
    ModelId = ModelId | ((RegEax >> 12) & 0xf0);
  }

  //
  // Determine the mode of the CPU at the time an SMI occurs
  //   Intel(R) 64 and IA-32 Architectures Software Developer's Manual
  //   Volume 3C, Section 34.4.1.1
  //
  mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT;
  if ((RegEdx & BIT29) != 0) {
    mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
  }
  if (FamilyId == 0x06) {
    if (ModelId == 0x17 || ModelId == 0x0f || ModelId == 0x1c) {
      mSmmSaveStateRegisterLma = EFI_SMM_SAVE_STATE_REGISTER_LMA_64BIT;
    }
  }

  //
  // Compute tile size of buffer required to hold the CPU SMRAM Save State Map, extra CPU
  // specific context in a PROCESSOR_SMM_DESCRIPTOR, and the SMI entry point.  This size
  // is rounded up to nearest power of 2.
  //
  TileSize = sizeof (SMRAM_SAVE_STATE_MAP) + sizeof (PROCESSOR_SMM_DESCRIPTOR) + GetSmiHandlerSize () - 1;
  TileSize = 2 * GetPowerOfTwo32 ((UINT32)TileSize);
  DEBUG ((EFI_D_INFO, "SMRAM TileSize = %08x\n", TileSize));

  //
  // If the TileSize is larger than space available for the SMI Handler of CPU[i],
  // the PROCESSOR_SMM_DESCRIPTOR of CPU[i+1] and the SMRAM Save State Map of CPU[i+1],
  // the ASSERT().  If this ASSERT() is triggered, then the SMI Handler size must be
  // reduced.
  //
  ASSERT (TileSize <= (SMRAM_SAVE_STATE_MAP_OFFSET + sizeof (SMRAM_SAVE_STATE_MAP) - SMM_HANDLER_OFFSET));

  //
  // Allocate buffer for all of the tiles.
  //
  // Intel(R) 64 and IA-32 Architectures Software Developer's Manual
  // Volume 3C, Section 34.11 SMBASE Relocation
  //   For Pentium and Intel486 processors, the SMBASE values must be
  //   aligned on a 32-KByte boundary or the processor will enter shutdown
  //   state during the execution of a RSM instruction.
  //
  // Intel486 processors: FamilyId is 4
  // Pentium processors : FamilyId is 5
  //
  if ((FamilyId == 4) || (FamilyId == 5)) {
    Buffer = AllocateAlignedPages (EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1)), SIZE_32KB);
  } else {
    Buffer = AllocatePages (EFI_SIZE_TO_PAGES (SIZE_32KB + TileSize * (mMaxNumberOfCpus - 1)));
  }
  ASSERT (Buffer != NULL);

  //
  // Allocate buffer for pointers to array in  SMM_CPU_PRIVATE_DATA.
  //
  gSmmCpuPrivate->ProcessorInfo = (EFI_PROCESSOR_INFORMATION *)AllocatePool (sizeof (EFI_PROCESSOR_INFORMATION) * mMaxNumberOfCpus);
  ASSERT (gSmmCpuPrivate->ProcessorInfo != NULL);

  gSmmCpuPrivate->Operation = (SMM_CPU_OPERATION *)AllocatePool (sizeof (SMM_CPU_OPERATION) * mMaxNumberOfCpus);
  ASSERT (gSmmCpuPrivate->Operation != NULL);

  gSmmCpuPrivate->CpuSaveStateSize = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
  ASSERT (gSmmCpuPrivate->CpuSaveStateSize != NULL);

  gSmmCpuPrivate->CpuSaveState = (VOID **)AllocatePool (sizeof (VOID *) * mMaxNumberOfCpus);
  ASSERT (gSmmCpuPrivate->CpuSaveState != NULL);

  mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveStateSize = gSmmCpuPrivate->CpuSaveStateSize;
  mSmmCpuPrivateData.SmmCoreEntryContext.CpuSaveState     = gSmmCpuPrivate->CpuSaveState;
  mSmmCpuSaveState.CpuSaveState = (EFI_SMM_CPU_STATE **)gSmmCpuPrivate->CpuSaveState;

  //
  // Allocate buffer for pointers to array in CPU_HOT_PLUG_DATA.
  //
  mCpuHotPlugData.ApicId = (UINT64 *)AllocatePool (sizeof (UINT64) * mMaxNumberOfCpus);
  ASSERT (mCpuHotPlugData.ApicId != NULL);
  mCpuHotPlugData.SmBase = (UINTN *)AllocatePool (sizeof (UINTN) * mMaxNumberOfCpus);
  ASSERT (mCpuHotPlugData.SmBase != NULL);
  mCpuHotPlugData.ArrayLength = (UINT32)mMaxNumberOfCpus;

  //
  // Retrieve APIC ID of each enabled processor from the MP Services protocol.
  // Also compute the SMBASE address, CPU Save State address, and CPU Save state
  // size for each CPU in the platform
  //
  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    mCpuHotPlugData.SmBase[Index]          = (UINTN)Buffer + Index * TileSize - SMM_HANDLER_OFFSET;
    gSmmCpuPrivate->CpuSaveStateSize[Index] = sizeof(SMRAM_SAVE_STATE_MAP);
    gSmmCpuPrivate->CpuSaveState[Index]     = (VOID *)(mCpuHotPlugData.SmBase[Index] + SMRAM_SAVE_STATE_MAP_OFFSET);
    gSmmCpuPrivate->Operation[Index] = SmmCpuNone;

    if (Index < mNumberOfCpus) {
      Status = MpServices->GetProcessorInfo (MpServices, Index, &gSmmCpuPrivate->ProcessorInfo[Index]);
      ASSERT_EFI_ERROR (Status);
      mCpuHotPlugData.ApicId[Index] = gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId;

      DEBUG ((EFI_D_INFO, "CPU[%03x]  APIC ID=%04x  SMBASE=%08x  SaveState=%08x  Size=%08x\n",
        Index,
        (UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId,
        mCpuHotPlugData.SmBase[Index],
        gSmmCpuPrivate->CpuSaveState[Index],
        gSmmCpuPrivate->CpuSaveStateSize[Index]
        ));
    } else {
      gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId = INVALID_APIC_ID;
      mCpuHotPlugData.ApicId[Index] = INVALID_APIC_ID;
    }
  }

  //
  // Allocate SMI stacks for all processors.
  //
  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    //
    // 2 more pages is allocated for each processor.
    // one is guard page and the other is known good stack.
    //
    // +-------------------------------------------+-----+-------------------------------------------+
    // | Known Good Stack | Guard Page | SMM Stack | ... | Known Good Stack | Guard Page | SMM Stack |
    // +-------------------------------------------+-----+-------------------------------------------+
    // |                                           |     |                                           |
    // |<-------------- Processor 0 -------------->|     |<-------------- Processor n -------------->|
    //
    mSmmStackSize = EFI_PAGES_TO_SIZE (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2);
    Stacks = (UINT8 *) AllocatePages (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * (EFI_SIZE_TO_PAGES (PcdGet32 (PcdCpuSmmStackSize)) + 2));
    ASSERT (Stacks != NULL);
    mSmmStackArrayBase = (UINTN)Stacks;
    mSmmStackArrayEnd = mSmmStackArrayBase + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize - 1;
  } else {
    mSmmStackSize = PcdGet32 (PcdCpuSmmStackSize);
    Stacks = (UINT8 *) AllocatePages (EFI_SIZE_TO_PAGES (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus * mSmmStackSize));
    ASSERT (Stacks != NULL);
  }

  //
  // Set SMI stack for SMM base relocation
  //
  gSmmInitStack = (UINTN) (Stacks + mSmmStackSize - sizeof (UINTN));

  //
  // Initialize IDT
  //
  InitializeSmmIdt ();

  //
  // Relocate SMM Base addresses to the ones allocated from SMRAM
  //
  mRebased = (BOOLEAN *)AllocateZeroPool (sizeof (BOOLEAN) * mMaxNumberOfCpus);
  ASSERT (mRebased != NULL);
  SmmRelocateBases ();

  //
  // Call hook for BSP to perform extra actions in normal mode after all
  // SMM base addresses have been relocated on all CPUs
  //
  SmmCpuFeaturesSmmRelocationComplete ();

  //
  // SMM Time initialization
  //
  InitializeSmmTimer ();

  //
  // Initialize MP globals
  //
  Cr3 = InitializeMpServiceData (Stacks, mSmmStackSize);

  //
  // Fill in SMM Reserved Regions
  //
  gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedStart = 0;
  gSmmCpuPrivate->SmmReservedSmramRegion[0].SmramReservedSize  = 0;

  //
  // Install the SMM Configuration Protocol onto a new handle on the handle database.
  // The entire SMM Configuration Protocol is allocated from SMRAM, so only a pointer
  // to an SMRAM address will be present in the handle database
  //
  Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
                                        &gSmmCpuPrivate->SmmCpuHandle,
                                        &gEfiSmmConfigurationProtocolGuid, &gSmmCpuPrivate->SmmConfiguration,
                                        NULL
                                        );
  ASSERT_EFI_ERROR (Status);

  //
  // Install the SMM CPU Protocol into SMM protocol database
  //
  Status = gSmst->SmmInstallProtocolInterface (
                    &mSmmCpuHandle,
                    &gEfiSmmCpuProtocolGuid,
                    EFI_NATIVE_INTERFACE,
                    &mSmmCpu
                    );
  ASSERT_EFI_ERROR (Status);

  //
  // Expose address of CPU Hot Plug Data structure if CPU hot plug is supported.
  //
  if (FeaturePcdGet (PcdCpuHotPlugSupport)) {
    Status = PcdSet64S (PcdCpuHotPlugDataAddress, (UINT64)(UINTN)&mCpuHotPlugData);
    ASSERT_EFI_ERROR (Status);
  }

  //
  // Initialize SMM CPU Services Support
  //
  Status = InitializeSmmCpuServices (mSmmCpuHandle);
  ASSERT_EFI_ERROR (Status);

  if (FeaturePcdGet (PcdFrameworkCompatibilitySupport)) {
    //
    // Install Framework SMM Save State Protocol into UEFI protocol database for backward compatibility
    //
    Status = SystemTable->BootServices->InstallMultipleProtocolInterfaces (
                                          &gSmmCpuPrivate->SmmCpuHandle,
                                          &gEfiSmmCpuSaveStateProtocolGuid,
                                          &mSmmCpuSaveState,
                                          NULL
                                          );
    ASSERT_EFI_ERROR (Status);
    //
    // The SmmStartupThisAp service in Framework SMST should always be non-null.
    // Update SmmStartupThisAp pointer in PI SMST here so that PI/Framework SMM thunk
    // can have it ready when constructing Framework SMST.
    //
    gSmst->SmmStartupThisAp = SmmStartupThisAp;
  }

  //
  // register SMM Ready To Lock Protocol notification
  //
  Status = gSmst->SmmRegisterProtocolNotify (
                    &gEfiSmmReadyToLockProtocolGuid,
                    SmmReadyToLockEventNotify,
                    &Registration
                    );
  ASSERT_EFI_ERROR (Status);

  GuidHob = GetFirstGuidHob (&gEfiAcpiVariableGuid);
  if (GuidHob != NULL) {
    SmramDescriptor = (EFI_SMRAM_DESCRIPTOR *) GET_GUID_HOB_DATA (GuidHob);

    DEBUG ((EFI_D_INFO, "SMM S3 SMRAM Structure = %x\n", SmramDescriptor));
    DEBUG ((EFI_D_INFO, "SMM S3 Structure = %x\n", SmramDescriptor->CpuStart));

    SmmS3ResumeState = (SMM_S3_RESUME_STATE *)(UINTN)SmramDescriptor->CpuStart;
    ZeroMem (SmmS3ResumeState, sizeof (SMM_S3_RESUME_STATE));

    mSmmS3ResumeState = SmmS3ResumeState;
    SmmS3ResumeState->Smst = (EFI_PHYSICAL_ADDRESS)(UINTN)gSmst;

    SmmS3ResumeState->SmmS3ResumeEntryPoint = (EFI_PHYSICAL_ADDRESS)(UINTN)SmmRestoreCpu;

    SmmS3ResumeState->SmmS3StackSize = SIZE_32KB;
    SmmS3ResumeState->SmmS3StackBase = (EFI_PHYSICAL_ADDRESS)(UINTN)AllocatePages (EFI_SIZE_TO_PAGES ((UINTN)SmmS3ResumeState->SmmS3StackSize));
    if (SmmS3ResumeState->SmmS3StackBase == 0) {
      SmmS3ResumeState->SmmS3StackSize = 0;
    }

    SmmS3ResumeState->SmmS3Cr0 = gSmmCr0;
    SmmS3ResumeState->SmmS3Cr3 = Cr3;
    SmmS3ResumeState->SmmS3Cr4 = gSmmCr4;

    if (sizeof (UINTN) == sizeof (UINT64)) {
      SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_64;
    }
    if (sizeof (UINTN) == sizeof (UINT32)) {
      SmmS3ResumeState->Signature = SMM_S3_RESUME_SMM_32;
    }
  }

  //
  // Check XD and BTS features
  //
  CheckProcessorFeature ();

  //
  // Initialize SMM Profile feature
  //
  InitSmmProfile (Cr3);

  //
  // Patch SmmS3ResumeState->SmmS3Cr3
  //
  InitSmmS3Cr3 ();

  DEBUG ((EFI_D_INFO, "SMM CPU Module exit from SMRAM with EFI_SUCCESS\n"));

  return EFI_SUCCESS;
}

/**

  Find out SMRAM information including SMRR base and SMRR size.

  @param          SmrrBase          SMRR base
  @param          SmrrSize          SMRR size

**/
VOID
FindSmramInfo (
  OUT UINT32   *SmrrBase,
  OUT UINT32   *SmrrSize
  )
{
  EFI_STATUS                        Status;
  UINTN                             Size;
  EFI_SMM_ACCESS2_PROTOCOL          *SmmAccess;
  EFI_SMRAM_DESCRIPTOR              *CurrentSmramRange;
  EFI_SMRAM_DESCRIPTOR              *SmramRanges;
  UINTN                             SmramRangeCount;
  UINTN                             Index;
  UINT64                            MaxSize;
  BOOLEAN                           Found;

  //
  // Get SMM Access Protocol
  //
  Status = gBS->LocateProtocol (&gEfiSmmAccess2ProtocolGuid, NULL, (VOID **)&SmmAccess);
  ASSERT_EFI_ERROR (Status);

  //
  // Get SMRAM information
  //
  Size = 0;
  Status = SmmAccess->GetCapabilities (SmmAccess, &Size, NULL);
  ASSERT (Status == EFI_BUFFER_TOO_SMALL);

  SmramRanges = (EFI_SMRAM_DESCRIPTOR *)AllocatePool (Size);
  ASSERT (SmramRanges != NULL);

  Status = SmmAccess->GetCapabilities (SmmAccess, &Size, SmramRanges);
  ASSERT_EFI_ERROR (Status);

  SmramRangeCount = Size / sizeof (EFI_SMRAM_DESCRIPTOR);

  //
  // Find the largest SMRAM range between 1MB and 4GB that is at least 256K - 4K in size
  //
  CurrentSmramRange = NULL;
  for (Index = 0, MaxSize = SIZE_256KB - EFI_PAGE_SIZE; Index < SmramRangeCount; Index++) {
    //
    // Skip any SMRAM region that is already allocated, needs testing, or needs ECC initialization
    //
    if ((SmramRanges[Index].RegionState & (EFI_ALLOCATED | EFI_NEEDS_TESTING | EFI_NEEDS_ECC_INITIALIZATION)) != 0) {
      continue;
    }

    if (SmramRanges[Index].CpuStart >= BASE_1MB) {
      if ((SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize) <= BASE_4GB) {
        if (SmramRanges[Index].PhysicalSize >= MaxSize) {
          MaxSize = SmramRanges[Index].PhysicalSize;
          CurrentSmramRange = &SmramRanges[Index];
        }
      }
    }
  }

  ASSERT (CurrentSmramRange != NULL);

  *SmrrBase = (UINT32)CurrentSmramRange->CpuStart;
  *SmrrSize = (UINT32)CurrentSmramRange->PhysicalSize;

  do {
    Found = FALSE;
    for (Index = 0; Index < SmramRangeCount; Index++) {
      if (SmramRanges[Index].CpuStart < *SmrrBase && *SmrrBase == (SmramRanges[Index].CpuStart + SmramRanges[Index].PhysicalSize)) {
        *SmrrBase = (UINT32)SmramRanges[Index].CpuStart;
        *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
        Found = TRUE;
      } else if ((*SmrrBase + *SmrrSize) == SmramRanges[Index].CpuStart && SmramRanges[Index].PhysicalSize > 0) {
        *SmrrSize = (UINT32)(*SmrrSize + SmramRanges[Index].PhysicalSize);
        Found = TRUE;
      }
    }
  } while (Found);

  DEBUG ((EFI_D_INFO, "SMRR Base: 0x%x, SMRR Size: 0x%x\n", *SmrrBase, *SmrrSize));
}

/**
Configure SMM Code Access Check feature on an AP.
SMM Feature Control MSR will be locked after configuration.

@param[in,out] Buffer  Pointer to private data buffer.
**/
VOID
EFIAPI
ConfigSmmCodeAccessCheckOnCurrentProcessor (
  IN OUT VOID  *Buffer
  )
{
  UINTN   CpuIndex;
  UINT64  SmmFeatureControlMsr;
  UINT64  NewSmmFeatureControlMsr;

  //
  // Retrieve the CPU Index from the context passed in
  //
  CpuIndex = *(UINTN *)Buffer;

  //
  // Get the current SMM Feature Control MSR value
  //
  SmmFeatureControlMsr = SmmCpuFeaturesGetSmmRegister (CpuIndex, SmmRegFeatureControl);

  //
  // Compute the new SMM Feature Control MSR value
  //
  NewSmmFeatureControlMsr = SmmFeatureControlMsr;
  if (mSmmCodeAccessCheckEnable) {
    NewSmmFeatureControlMsr |= SMM_CODE_CHK_EN_BIT;
  }
  if (FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
    NewSmmFeatureControlMsr |= SMM_FEATURE_CONTROL_LOCK_BIT;
  }

  //
  // Only set the SMM Feature Control MSR value if the new value is different than the current value
  //
  if (NewSmmFeatureControlMsr != SmmFeatureControlMsr) {
    SmmCpuFeaturesSetSmmRegister (CpuIndex, SmmRegFeatureControl, NewSmmFeatureControlMsr);
  }

  //
  // Release the spin lock user to serialize the updates to the SMM Feature Control MSR
  //
  ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
}

/**
Configure SMM Code Access Check feature for all processors.
SMM Feature Control MSR will be locked after configuration.
**/
VOID
ConfigSmmCodeAccessCheck (
  VOID
  )
{
  UINTN       Index;
  EFI_STATUS  Status;

  //
  // Check to see if the Feature Control MSR is supported on this CPU
  //
  Index = gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu;
  if (!SmmCpuFeaturesIsSmmRegisterSupported (Index, SmmRegFeatureControl)) {
    mSmmCodeAccessCheckEnable = FALSE;
    return;
  }

  //
  // Check to see if the CPU supports the SMM Code Access Check feature
  // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
  //
  if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
    mSmmCodeAccessCheckEnable = FALSE;
  }

  //
  // If the SMM Code Access Check feature is disabled and the Feature Control MSR
  // is not being locked, then no additional work is required
  //
  if (!mSmmCodeAccessCheckEnable && !FeaturePcdGet (PcdCpuSmmFeatureControlMsrLock)) {
    return;
  }

  //
  // Initialize the lock used to serialize the MSR programming in BSP and all APs
  //
  InitializeSpinLock (&mConfigSmmCodeAccessCheckLock);

  //
  // Acquire Config SMM Code Access Check spin lock.  The BSP will release the
  // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
  //
  AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);

  //
  // Enable SMM Code Access Check feature on the BSP.
  //
  ConfigSmmCodeAccessCheckOnCurrentProcessor (&Index);

  //
  // Enable SMM Code Access Check feature for the APs.
  //
  for (Index = 0; Index < gSmst->NumberOfCpus; Index++) {
    if (Index != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {

      //
      // Acquire Config SMM Code Access Check spin lock.  The AP will release the
      // spin lock when it is done executing ConfigSmmCodeAccessCheckOnCurrentProcessor().
      //
      AcquireSpinLock (&mConfigSmmCodeAccessCheckLock);

      //
      // Call SmmStartupThisAp() to enable SMM Code Access Check on an AP.
      //
      Status = gSmst->SmmStartupThisAp (ConfigSmmCodeAccessCheckOnCurrentProcessor, Index, &Index);
      ASSERT_EFI_ERROR (Status);

      //
      // Wait for the AP to release the Config SMM Code Access Check spin lock.
      //
      while (!AcquireSpinLockOrFail (&mConfigSmmCodeAccessCheckLock)) {
        CpuPause ();
      }

      //
      // Release the Config SMM Code Access Check spin lock.
      //
      ReleaseSpinLock (&mConfigSmmCodeAccessCheckLock);
    }
  }
}

/**
  Perform the remaining tasks.

**/
VOID
PerformRemainingTasks (
  VOID
  )
{
  if (mSmmReadyToLock) {
    //
    // Start SMM Profile feature
    //
    if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
      SmmProfileStart ();
    }
    //
    // Create a mix of 2MB and 4KB page table. Update some memory ranges absent and execute-disable.
    //
    InitPaging ();
    //
    // Configure SMM Code Access Check feature if available.
    //
    ConfigSmmCodeAccessCheck ();

    //
    // Clean SMM ready to lock flag
    //
    mSmmReadyToLock = FALSE;
  }
}