summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorNathan Binkert <nate@binkert.org>2009-09-23 18:28:29 -0700
committerNathan Binkert <nate@binkert.org>2009-09-23 18:28:29 -0700
commitbaca1f0566b51a24fda506dc95e3baa6265280d4 (patch)
tree04cd2eec55745a915fae490c0d4f08447b347b6a
parentbae6a4a4d9ab3953051fb9d1b866172ecfcbccdb (diff)
downloadgem5-baca1f0566b51a24fda506dc95e3baa6265280d4.tar.xz
isa_parser: Turn the ISA Parser into a subclass of Grammar.
This is to prepare for future cleanup where we allow SCons to create a separate grammar class for each ISA
-rwxr-xr-xsrc/arch/isa_parser.py1376
1 files changed, 691 insertions, 685 deletions
diff --git a/src/arch/isa_parser.py b/src/arch/isa_parser.py
index 23260ca48..f001eff41 100755
--- a/src/arch/isa_parser.py
+++ b/src/arch/isa_parser.py
@@ -34,697 +34,699 @@ import traceback
# get type names
from types import *
-from ply import lex
-from ply import yacc
-
-#####################################################################
-#
-# Lexer
-#
-# The PLY lexer module takes two things as input:
-# - A list of token names (the string list 'tokens')
-# - A regular expression describing a match for each token. The
-# regexp for token FOO can be provided in two ways:
-# - as a string variable named t_FOO
-# - as the doc string for a function named t_FOO. In this case,
-# the function is also executed, allowing an action to be
-# associated with each token match.
-#
-#####################################################################
-
-# Reserved words. These are listed separately as they are matched
-# using the same regexp as generic IDs, but distinguished in the
-# t_ID() function. The PLY documentation suggests this approach.
-reserved = (
- 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
- 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
- 'OUTPUT', 'SIGNED', 'TEMPLATE'
+from m5.util.grammar import Grammar
+
+class ISAParser(Grammar):
+ def __init__(self, *args, **kwargs):
+ super(ISAParser, self).__init__(*args, **kwargs)
+ self.templateMap = {}
+
+ #####################################################################
+ #
+ # Lexer
+ #
+ # The PLY lexer module takes two things as input:
+ # - A list of token names (the string list 'tokens')
+ # - A regular expression describing a match for each token. The
+ # regexp for token FOO can be provided in two ways:
+ # - as a string variable named t_FOO
+ # - as the doc string for a function named t_FOO. In this case,
+ # the function is also executed, allowing an action to be
+ # associated with each token match.
+ #
+ #####################################################################
+
+ # Reserved words. These are listed separately as they are matched
+ # using the same regexp as generic IDs, but distinguished in the
+ # t_ID() function. The PLY documentation suggests this approach.
+ reserved = (
+ 'BITFIELD', 'DECODE', 'DECODER', 'DEFAULT', 'DEF', 'EXEC', 'FORMAT',
+ 'HEADER', 'LET', 'NAMESPACE', 'OPERAND_TYPES', 'OPERANDS',
+ 'OUTPUT', 'SIGNED', 'TEMPLATE'
+ )
+
+ # List of tokens. The lex module requires this.
+ tokens = reserved + (
+ # identifier
+ 'ID',
+
+ # integer literal
+ 'INTLIT',
+
+ # string literal
+ 'STRLIT',
+
+ # code literal
+ 'CODELIT',
+
+ # ( ) [ ] { } < > , ; . : :: *
+ 'LPAREN', 'RPAREN',
+ 'LBRACKET', 'RBRACKET',
+ 'LBRACE', 'RBRACE',
+ 'LESS', 'GREATER', 'EQUALS',
+ 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
+ 'ASTERISK',
+
+ # C preprocessor directives
+ 'CPPDIRECTIVE'
+
+ # The following are matched but never returned. commented out to
+ # suppress PLY warning
+ # newfile directive
+ # 'NEWFILE',
+
+ # endfile directive
+ # 'ENDFILE'
)
-# List of tokens. The lex module requires this.
-tokens = reserved + (
- # identifier
- 'ID',
-
- # integer literal
- 'INTLIT',
-
- # string literal
- 'STRLIT',
-
- # code literal
- 'CODELIT',
-
- # ( ) [ ] { } < > , ; . : :: *
- 'LPAREN', 'RPAREN',
- 'LBRACKET', 'RBRACKET',
- 'LBRACE', 'RBRACE',
- 'LESS', 'GREATER', 'EQUALS',
- 'COMMA', 'SEMI', 'DOT', 'COLON', 'DBLCOLON',
- 'ASTERISK',
-
- # C preprocessor directives
- 'CPPDIRECTIVE'
-
-# The following are matched but never returned. commented out to
-# suppress PLY warning
- # newfile directive
-# 'NEWFILE',
-
- # endfile directive
-# 'ENDFILE'
-)
-
-# Regular expressions for token matching
-t_LPAREN = r'\('
-t_RPAREN = r'\)'
-t_LBRACKET = r'\['
-t_RBRACKET = r'\]'
-t_LBRACE = r'\{'
-t_RBRACE = r'\}'
-t_LESS = r'\<'
-t_GREATER = r'\>'
-t_EQUALS = r'='
-t_COMMA = r','
-t_SEMI = r';'
-t_DOT = r'\.'
-t_COLON = r':'
-t_DBLCOLON = r'::'
-t_ASTERISK = r'\*'
-
-# Identifiers and reserved words
-reserved_map = { }
-for r in reserved:
- reserved_map[r.lower()] = r
-
-def t_ID(t):
- r'[A-Za-z_]\w*'
- t.type = reserved_map.get(t.value,'ID')
- return t
-
-# Integer literal
-def t_INTLIT(t):
- r'(0x[\da-fA-F]+)|\d+'
- try:
- t.value = int(t.value,0)
- except ValueError:
- error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
- t.value = 0
- return t
-
-# String literal. Note that these use only single quotes, and
-# can span multiple lines.
-def t_STRLIT(t):
- r"(?m)'([^'])+'"
- # strip off quotes
- t.value = t.value[1:-1]
- t.lexer.lineno += t.value.count('\n')
- return t
-
-
-# "Code literal"... like a string literal, but delimiters are
-# '{{' and '}}' so they get formatted nicely under emacs c-mode
-def t_CODELIT(t):
- r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
- # strip off {{ & }}
- t.value = t.value[2:-2]
- t.lexer.lineno += t.value.count('\n')
- return t
-
-def t_CPPDIRECTIVE(t):
- r'^\#[^\#].*\n'
- t.lexer.lineno += t.value.count('\n')
- return t
-
-def t_NEWFILE(t):
- r'^\#\#newfile\s+"[\w/.-]*"'
- fileNameStack.push((t.value[11:-1], t.lexer.lineno))
- t.lexer.lineno = 0
-
-def t_ENDFILE(t):
- r'^\#\#endfile'
- (old_filename, t.lexer.lineno) = fileNameStack.pop()
-
-#
-# The functions t_NEWLINE, t_ignore, and t_error are
-# special for the lex module.
-#
-
-# Newlines
-def t_NEWLINE(t):
- r'\n+'
- t.lexer.lineno += t.value.count('\n')
-
-# Comments
-def t_comment(t):
- r'//.*'
-
-# Completely ignored characters
-t_ignore = ' \t\x0c'
-
-# Error handler
-def t_error(t):
- error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
- t.skip(1)
-
-# Build the lexer
-lexer = lex.lex()
-
-#####################################################################
-#
-# Parser
-#
-# Every function whose name starts with 'p_' defines a grammar rule.
-# The rule is encoded in the function's doc string, while the
-# function body provides the action taken when the rule is matched.
-# The argument to each function is a list of the values of the
-# rule's symbols: t[0] for the LHS, and t[1..n] for the symbols
-# on the RHS. For tokens, the value is copied from the t.value
-# attribute provided by the lexer. For non-terminals, the value
-# is assigned by the producing rule; i.e., the job of the grammar
-# rule function is to set the value for the non-terminal on the LHS
-# (by assigning to t[0]).
-#####################################################################
-
-# The LHS of the first grammar rule is used as the start symbol
-# (in this case, 'specification'). Note that this rule enforces
-# that there will be exactly one namespace declaration, with 0 or more
-# global defs/decls before and after it. The defs & decls before
-# the namespace decl will be outside the namespace; those after
-# will be inside. The decoder function is always inside the namespace.
-def p_specification(t):
- 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
- global_code = t[1]
- isa_name = t[2]
- namespace = isa_name + "Inst"
- # wrap the decode block as a function definition
- t[4].wrap_decode_block('''
+ # Regular expressions for token matching
+ t_LPAREN = r'\('
+ t_RPAREN = r'\)'
+ t_LBRACKET = r'\['
+ t_RBRACKET = r'\]'
+ t_LBRACE = r'\{'
+ t_RBRACE = r'\}'
+ t_LESS = r'\<'
+ t_GREATER = r'\>'
+ t_EQUALS = r'='
+ t_COMMA = r','
+ t_SEMI = r';'
+ t_DOT = r'\.'
+ t_COLON = r':'
+ t_DBLCOLON = r'::'
+ t_ASTERISK = r'\*'
+
+ # Identifiers and reserved words
+ reserved_map = { }
+ for r in reserved:
+ reserved_map[r.lower()] = r
+
+ def t_ID(self, t):
+ r'[A-Za-z_]\w*'
+ t.type = self.reserved_map.get(t.value, 'ID')
+ return t
+
+ # Integer literal
+ def t_INTLIT(self, t):
+ r'(0x[\da-fA-F]+)|\d+'
+ try:
+ t.value = int(t.value,0)
+ except ValueError:
+ error(t.lexer.lineno, 'Integer value "%s" too large' % t.value)
+ t.value = 0
+ return t
+
+ # String literal. Note that these use only single quotes, and
+ # can span multiple lines.
+ def t_STRLIT(self, t):
+ r"(?m)'([^'])+'"
+ # strip off quotes
+ t.value = t.value[1:-1]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+
+ # "Code literal"... like a string literal, but delimiters are
+ # '{{' and '}}' so they get formatted nicely under emacs c-mode
+ def t_CODELIT(self, t):
+ r"(?m)\{\{([^\}]|}(?!\}))+\}\}"
+ # strip off {{ & }}
+ t.value = t.value[2:-2]
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_CPPDIRECTIVE(self, t):
+ r'^\#[^\#].*\n'
+ t.lexer.lineno += t.value.count('\n')
+ return t
+
+ def t_NEWFILE(self, t):
+ r'^\#\#newfile\s+"[\w/.-]*"'
+ fileNameStack.push((t.value[11:-1], t.lexer.lineno))
+ t.lexer.lineno = 0
+
+ def t_ENDFILE(self, t):
+ r'^\#\#endfile'
+ (old_filename, t.lexer.lineno) = fileNameStack.pop()
+
+ #
+ # The functions t_NEWLINE, t_ignore, and t_error are
+ # special for the lex module.
+ #
+
+ # Newlines
+ def t_NEWLINE(self, t):
+ r'\n+'
+ t.lexer.lineno += t.value.count('\n')
+
+ # Comments
+ def t_comment(self, t):
+ r'//.*'
+
+ # Completely ignored characters
+ t_ignore = ' \t\x0c'
+
+ # Error handler
+ def t_error(self, t):
+ error(t.lexer.lineno, "illegal character '%s'" % t.value[0])
+ t.skip(1)
+
+ #####################################################################
+ #
+ # Parser
+ #
+ # Every function whose name starts with 'p_' defines a grammar
+ # rule. The rule is encoded in the function's doc string, while
+ # the function body provides the action taken when the rule is
+ # matched. The argument to each function is a list of the values
+ # of the rule's symbols: t[0] for the LHS, and t[1..n] for the
+ # symbols on the RHS. For tokens, the value is copied from the
+ # t.value attribute provided by the lexer. For non-terminals, the
+ # value is assigned by the producing rule; i.e., the job of the
+ # grammar rule function is to set the value for the non-terminal
+ # on the LHS (by assigning to t[0]).
+ #####################################################################
+
+ # The LHS of the first grammar rule is used as the start symbol
+ # (in this case, 'specification'). Note that this rule enforces
+ # that there will be exactly one namespace declaration, with 0 or
+ # more global defs/decls before and after it. The defs & decls
+ # before the namespace decl will be outside the namespace; those
+ # after will be inside. The decoder function is always inside the
+ # namespace.
+ def p_specification(self, t):
+ 'specification : opt_defs_and_outputs name_decl opt_defs_and_outputs decode_block'
+ global_code = t[1]
+ isa_name = t[2]
+ namespace = isa_name + "Inst"
+ # wrap the decode block as a function definition
+ t[4].wrap_decode_block('''
StaticInstPtr
%(isa_name)s::decodeInst(%(isa_name)s::ExtMachInst machInst)
{
using namespace %(namespace)s;
''' % vars(), '}')
- # both the latter output blocks and the decode block are in the namespace
- namespace_code = t[3] + t[4]
- # pass it all back to the caller of yacc.parse()
- t[0] = (isa_name, namespace, global_code, namespace_code)
-
-# ISA name declaration looks like "namespace <foo>;"
-def p_name_decl(t):
- 'name_decl : NAMESPACE ID SEMI'
- t[0] = t[2]
-
-# 'opt_defs_and_outputs' is a possibly empty sequence of
-# def and/or output statements.
-def p_opt_defs_and_outputs_0(t):
- 'opt_defs_and_outputs : empty'
- t[0] = GenCode()
-
-def p_opt_defs_and_outputs_1(t):
- 'opt_defs_and_outputs : defs_and_outputs'
- t[0] = t[1]
-
-def p_defs_and_outputs_0(t):
- 'defs_and_outputs : def_or_output'
- t[0] = t[1]
-
-def p_defs_and_outputs_1(t):
- 'defs_and_outputs : defs_and_outputs def_or_output'
- t[0] = t[1] + t[2]
-
-# The list of possible definition/output statements.
-def p_def_or_output(t):
- '''def_or_output : def_format
- | def_bitfield
- | def_bitfield_struct
- | def_template
- | def_operand_types
- | def_operands
- | output_header
- | output_decoder
- | output_exec
- | global_let'''
- t[0] = t[1]
-
-# Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
-# directly to the appropriate output section.
-
-
-# Protect any non-dict-substitution '%'s in a format string
-# (i.e. those not followed by '(')
-def protect_non_subst_percents(s):
- return re.sub(r'%(?!\()', '%%', s)
-
-# Massage output block by substituting in template definitions and bit
-# operators. We handle '%'s embedded in the string that don't
-# indicate template substitutions (or CPU-specific symbols, which get
-# handled in GenCode) by doubling them first so that the format
-# operation will reduce them back to single '%'s.
-def process_output(s):
- s = protect_non_subst_percents(s)
- # protects cpu-specific symbols too
- s = protect_cpu_symbols(s)
- return substBitOps(s % templateMap)
-
-def p_output_header(t):
- 'output_header : OUTPUT HEADER CODELIT SEMI'
- t[0] = GenCode(header_output = process_output(t[3]))
-
-def p_output_decoder(t):
- 'output_decoder : OUTPUT DECODER CODELIT SEMI'
- t[0] = GenCode(decoder_output = process_output(t[3]))
-
-def p_output_exec(t):
- 'output_exec : OUTPUT EXEC CODELIT SEMI'
- t[0] = GenCode(exec_output = process_output(t[3]))
-
-# global let blocks 'let {{...}}' (Python code blocks) are executed
-# directly when seen. Note that these execute in a special variable
-# context 'exportContext' to prevent the code from polluting this
-# script's namespace.
-def p_global_let(t):
- 'global_let : LET CODELIT SEMI'
- updateExportContext()
- exportContext["header_output"] = ''
- exportContext["decoder_output"] = ''
- exportContext["exec_output"] = ''
- exportContext["decode_block"] = ''
- try:
- exec fixPythonIndentation(t[2]) in exportContext
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in global let block "%s".' % (exc, t[2]))
- t[0] = GenCode(header_output = exportContext["header_output"],
- decoder_output = exportContext["decoder_output"],
- exec_output = exportContext["exec_output"],
- decode_block = exportContext["decode_block"])
-
-# Define the mapping from operand type extensions to C++ types and bit
-# widths (stored in operandTypeMap).
-def p_def_operand_types(t):
- 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
- try:
- userDict = eval('{' + t[3] + '}')
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operand_types block "%s".' % (exc, t[3]))
- buildOperandTypeMap(userDict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
-
-# Define the mapping from operand names to operand classes and other
-# traits. Stored in operandNameMap.
-def p_def_operands(t):
- 'def_operands : DEF OPERANDS CODELIT SEMI'
- if not globals().has_key('operandTypeMap'):
- error(t.lexer.lineno,
- 'error: operand types must be defined before operands')
- try:
- userDict = eval('{' + t[3] + '}', exportContext)
- except Exception, exc:
- error(t.lexer.lineno,
- 'error: %s in def operands block "%s".' % (exc, t[3]))
- buildOperandNameMap(userDict, t.lexer.lineno)
- t[0] = GenCode() # contributes nothing to the output C++ file
-
-# A bitfield definition looks like:
-# 'def [signed] bitfield <ID> [<first>:<last>]'
-# This generates a preprocessor macro in the output file.
-def p_def_bitfield_0(t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
-# alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
-def p_def_bitfield_1(t):
- 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
- expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
- if (t[2] == 'signed'):
- expr = 'sext<%d>(%s)' % (1, expr)
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
-# alternate form for structure member: 'def bitfield <ID> <ID>'
-def p_def_bitfield_struct(t):
- 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
- if (t[2] != ''):
- error(t.lexer.lineno, 'error: structure bitfields are always unsigned.')
- expr = 'machInst.%s' % t[5]
- hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
- t[0] = GenCode(header_output = hash_define)
-
-def p_id_with_dot_0(t):
- 'id_with_dot : ID'
- t[0] = t[1]
-
-def p_id_with_dot_1(t):
- 'id_with_dot : ID DOT id_with_dot'
- t[0] = t[1] + t[2] + t[3]
-
-def p_opt_signed_0(t):
- 'opt_signed : SIGNED'
- t[0] = t[1]
-
-def p_opt_signed_1(t):
- 'opt_signed : empty'
- t[0] = ''
-
-# Global map variable to hold templates
-templateMap = {}
-
-def p_def_template(t):
- 'def_template : DEF TEMPLATE ID CODELIT SEMI'
- templateMap[t[3]] = Template(t[4])
- t[0] = GenCode()
-
-# An instruction format definition looks like
-# "def format <fmt>(<params>) {{...}};"
-def p_def_format(t):
- 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
- (id, params, code) = (t[3], t[5], t[7])
- defFormat(id, params, code, t.lexer.lineno)
- t[0] = GenCode()
-
-# The formal parameter list for an instruction format is a possibly
-# empty list of comma-separated parameters. Positional (standard,
-# non-keyword) parameters must come first, followed by keyword
-# parameters, followed by a '*foo' parameter that gets excess
-# positional arguments (as in Python). Each of these three parameter
-# categories is optional.
-#
-# Note that we do not support the '**foo' parameter for collecting
-# otherwise undefined keyword args. Otherwise the parameter list is
-# (I believe) identical to what is supported in Python.
-#
-# The param list generates a tuple, where the first element is a list of
-# the positional params and the second element is a dict containing the
-# keyword params.
-def p_param_list_0(t):
- 'param_list : positional_param_list COMMA nonpositional_param_list'
- t[0] = t[1] + t[3]
-
-def p_param_list_1(t):
- '''param_list : positional_param_list
- | nonpositional_param_list'''
- t[0] = t[1]
-
-def p_positional_param_list_0(t):
- 'positional_param_list : empty'
- t[0] = []
-
-def p_positional_param_list_1(t):
- 'positional_param_list : ID'
- t[0] = [t[1]]
-
-def p_positional_param_list_2(t):
- 'positional_param_list : positional_param_list COMMA ID'
- t[0] = t[1] + [t[3]]
-
-def p_nonpositional_param_list_0(t):
- 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
- t[0] = t[1] + t[3]
-
-def p_nonpositional_param_list_1(t):
- '''nonpositional_param_list : keyword_param_list
- | excess_args_param'''
- t[0] = t[1]
-
-def p_keyword_param_list_0(t):
- 'keyword_param_list : keyword_param'
- t[0] = [t[1]]
-
-def p_keyword_param_list_1(t):
- 'keyword_param_list : keyword_param_list COMMA keyword_param'
- t[0] = t[1] + [t[3]]
-
-def p_keyword_param(t):
- 'keyword_param : ID EQUALS expr'
- t[0] = t[1] + ' = ' + t[3].__repr__()
-
-def p_excess_args_param(t):
- 'excess_args_param : ASTERISK ID'
- # Just concatenate them: '*ID'. Wrap in list to be consistent
- # with positional_param_list and keyword_param_list.
- t[0] = [t[1] + t[2]]
-
-# End of format definition-related rules.
-##############
-
-#
-# A decode block looks like:
-# decode <field1> [, <field2>]* [default <inst>] { ... }
-#
-def p_decode_block(t):
- 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
- default_defaults = defaultStack.pop()
- codeObj = t[5]
- # use the "default defaults" only if there was no explicit
- # default statement in decode_stmt_list
- if not codeObj.has_decode_default:
- codeObj += default_defaults
- codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
- t[0] = codeObj
-
-# The opt_default statement serves only to push the "default defaults"
-# onto defaultStack. This value will be used by nested decode blocks,
-# and used and popped off when the current decode_block is processed
-# (in p_decode_block() above).
-def p_opt_default_0(t):
- 'opt_default : empty'
- # no default specified: reuse the one currently at the top of the stack
- defaultStack.push(defaultStack.top())
- # no meaningful value returned
- t[0] = None
-
-def p_opt_default_1(t):
- 'opt_default : DEFAULT inst'
- # push the new default
- codeObj = t[2]
- codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
- defaultStack.push(codeObj)
- # no meaningful value returned
- t[0] = None
-
-def p_decode_stmt_list_0(t):
- 'decode_stmt_list : decode_stmt'
- t[0] = t[1]
-
-def p_decode_stmt_list_1(t):
- 'decode_stmt_list : decode_stmt decode_stmt_list'
- if (t[1].has_decode_default and t[2].has_decode_default):
- error(t.lexer.lineno, 'Two default cases in decode block')
- t[0] = t[1] + t[2]
-
-#
-# Decode statement rules
-#
-# There are four types of statements allowed in a decode block:
-# 1. Format blocks 'format <foo> { ... }'
-# 2. Nested decode blocks
-# 3. Instruction definitions.
-# 4. C preprocessor directives.
-
-
-# Preprocessor directives found in a decode statement list are passed
-# through to the output, replicated to all of the output code
-# streams. This works well for ifdefs, so we can ifdef out both the
-# declarations and the decode cases generated by an instruction
-# definition. Handling them as part of the grammar makes it easy to
-# keep them in the right place with respect to the code generated by
-# the other statements.
-def p_decode_stmt_cpp(t):
- 'decode_stmt : CPPDIRECTIVE'
- t[0] = GenCode(t[1], t[1], t[1], t[1])
-
-# A format block 'format <foo> { ... }' sets the default instruction
-# format used to handle instruction definitions inside the block.
-# This format can be overridden by using an explicit format on the
-# instruction definition or with a nested format block.
-def p_decode_stmt_format(t):
- 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
- # The format will be pushed on the stack when 'push_format_id' is
- # processed (see below). Once the parser has recognized the full
- # production (though the right brace), we're done with the format,
- # so now we can pop it.
- formatStack.pop()
- t[0] = t[4]
-
-# This rule exists so we can set the current format (& push the stack)
-# when we recognize the format name part of the format block.
-def p_push_format_id(t):
- 'push_format_id : ID'
- try:
- formatStack.push(formatMap[t[1]])
- t[0] = ('', '// format %s' % t[1])
- except KeyError:
- error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
-
-# Nested decode block: if the value of the current field matches the
-# specified constant, do a nested decode on some other field.
-def p_decode_stmt_decode(t):
- 'decode_stmt : case_label COLON decode_block'
- label = t[1]
- codeObj = t[3]
- # just wrap the decoding code from the block as a case in the
- # outer switch statement.
- codeObj.wrap_decode_block('\n%s:\n' % label)
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
-# Instruction definition (finally!).
-def p_decode_stmt_inst(t):
- 'decode_stmt : case_label COLON inst SEMI'
- label = t[1]
- codeObj = t[3]
- codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
- codeObj.has_decode_default = (label == 'default')
- t[0] = codeObj
-
-# The case label is either a list of one or more constants or 'default'
-def p_case_label_0(t):
- 'case_label : intlit_list'
- t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
-
-def p_case_label_1(t):
- 'case_label : DEFAULT'
- t[0] = 'default'
-
-#
-# The constant list for a decode case label must be non-empty, but may have
-# one or more comma-separated integer literals in it.
-#
-def p_intlit_list_0(t):
- 'intlit_list : INTLIT'
- t[0] = [t[1]]
-
-def p_intlit_list_1(t):
- 'intlit_list : intlit_list COMMA INTLIT'
- t[0] = t[1]
- t[0].append(t[3])
-
-# Define an instruction using the current instruction format (specified
-# by an enclosing format block).
-# "<mnemonic>(<args>)"
-def p_inst_0(t):
- 'inst : ID LPAREN arg_list RPAREN'
- # Pass the ID and arg list to the current format class to deal with.
- currentFormat = formatStack.top()
- codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
- args = ','.join(map(str, t[3]))
- args = re.sub('(?m)^', '//', args)
- args = re.sub('^//', '', args)
- comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
-# Define an instruction using an explicitly specified format:
-# "<fmt>::<mnemonic>(<args>)"
-def p_inst_1(t):
- 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
- try:
- format = formatMap[t[1]]
- except KeyError:
- error(t.lexer.lineno, 'instruction format "%s" not defined.' % t[1])
- codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
- comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
- codeObj.prepend_all(comment)
- t[0] = codeObj
-
-# The arg list generates a tuple, where the first element is a list of
-# the positional args and the second element is a dict containing the
-# keyword args.
-def p_arg_list_0(t):
- 'arg_list : positional_arg_list COMMA keyword_arg_list'
- t[0] = ( t[1], t[3] )
-
-def p_arg_list_1(t):
- 'arg_list : positional_arg_list'
- t[0] = ( t[1], {} )
-
-def p_arg_list_2(t):
- 'arg_list : keyword_arg_list'
- t[0] = ( [], t[1] )
-
-def p_positional_arg_list_0(t):
- 'positional_arg_list : empty'
- t[0] = []
-
-def p_positional_arg_list_1(t):
- 'positional_arg_list : expr'
- t[0] = [t[1]]
-
-def p_positional_arg_list_2(t):
- 'positional_arg_list : positional_arg_list COMMA expr'
- t[0] = t[1] + [t[3]]
-
-def p_keyword_arg_list_0(t):
- 'keyword_arg_list : keyword_arg'
- t[0] = t[1]
-
-def p_keyword_arg_list_1(t):
- 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
- t[0] = t[1]
- t[0].update(t[3])
-
-def p_keyword_arg(t):
- 'keyword_arg : ID EQUALS expr'
- t[0] = { t[1] : t[3] }
-
-#
-# Basic expressions. These constitute the argument values of
-# "function calls" (i.e. instruction definitions in the decode block)
-# and default values for formal parameters of format functions.
-#
-# Right now, these are either strings, integers, or (recursively)
-# lists of exprs (using Python square-bracket list syntax). Note that
-# bare identifiers are trated as string constants here (since there
-# isn't really a variable namespace to refer to).
-#
-def p_expr_0(t):
- '''expr : ID
- | INTLIT
- | STRLIT
- | CODELIT'''
- t[0] = t[1]
-
-def p_expr_1(t):
- '''expr : LBRACKET list_expr RBRACKET'''
- t[0] = t[2]
-
-def p_list_expr_0(t):
- 'list_expr : expr'
- t[0] = [t[1]]
-
-def p_list_expr_1(t):
- 'list_expr : list_expr COMMA expr'
- t[0] = t[1] + [t[3]]
-
-def p_list_expr_2(t):
- 'list_expr : empty'
- t[0] = []
+ # both the latter output blocks and the decode block are in
+ # the namespace
+ namespace_code = t[3] + t[4]
+ # pass it all back to the caller of yacc.parse()
+ t[0] = (isa_name, namespace, global_code, namespace_code)
+
+ # ISA name declaration looks like "namespace <foo>;"
+ def p_name_decl(self, t):
+ 'name_decl : NAMESPACE ID SEMI'
+ t[0] = t[2]
+
+ # 'opt_defs_and_outputs' is a possibly empty sequence of
+ # def and/or output statements.
+ def p_opt_defs_and_outputs_0(self, t):
+ 'opt_defs_and_outputs : empty'
+ t[0] = GenCode()
+
+ def p_opt_defs_and_outputs_1(self, t):
+ 'opt_defs_and_outputs : defs_and_outputs'
+ t[0] = t[1]
+
+ def p_defs_and_outputs_0(self, t):
+ 'defs_and_outputs : def_or_output'
+ t[0] = t[1]
+
+ def p_defs_and_outputs_1(self, t):
+ 'defs_and_outputs : defs_and_outputs def_or_output'
+ t[0] = t[1] + t[2]
+
+ # The list of possible definition/output statements.
+ def p_def_or_output(self, t):
+ '''def_or_output : def_format
+ | def_bitfield
+ | def_bitfield_struct
+ | def_template
+ | def_operand_types
+ | def_operands
+ | output_header
+ | output_decoder
+ | output_exec
+ | global_let'''
+ t[0] = t[1]
+
+ # Output blocks 'output <foo> {{...}}' (C++ code blocks) are copied
+ # directly to the appropriate output section.
+
+ # Massage output block by substituting in template definitions and
+ # bit operators. We handle '%'s embedded in the string that don't
+ # indicate template substitutions (or CPU-specific symbols, which
+ # get handled in GenCode) by doubling them first so that the
+ # format operation will reduce them back to single '%'s.
+ def process_output(self, s):
+ s = protect_non_subst_percents(s)
+ # protects cpu-specific symbols too
+ s = protect_cpu_symbols(s)
+ return substBitOps(s % self.templateMap)
+
+ def p_output_header(self, t):
+ 'output_header : OUTPUT HEADER CODELIT SEMI'
+ t[0] = GenCode(header_output = self.process_output(t[3]))
+
+ def p_output_decoder(self, t):
+ 'output_decoder : OUTPUT DECODER CODELIT SEMI'
+ t[0] = GenCode(decoder_output = self.process_output(t[3]))
+
+ def p_output_exec(self, t):
+ 'output_exec : OUTPUT EXEC CODELIT SEMI'
+ t[0] = GenCode(exec_output = self.process_output(t[3]))
+
+ # global let blocks 'let {{...}}' (Python code blocks) are
+ # executed directly when seen. Note that these execute in a
+ # special variable context 'exportContext' to prevent the code
+ # from polluting this script's namespace.
+ def p_global_let(self, t):
+ 'global_let : LET CODELIT SEMI'
+ updateExportContext()
+ exportContext["header_output"] = ''
+ exportContext["decoder_output"] = ''
+ exportContext["exec_output"] = ''
+ exportContext["decode_block"] = ''
+ try:
+ exec fixPythonIndentation(t[2]) in exportContext
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in global let block "%s".' % (exc, t[2]))
+ t[0] = GenCode(header_output = exportContext["header_output"],
+ decoder_output = exportContext["decoder_output"],
+ exec_output = exportContext["exec_output"],
+ decode_block = exportContext["decode_block"])
+
+ # Define the mapping from operand type extensions to C++ types and
+ # bit widths (stored in operandTypeMap).
+ def p_def_operand_types(self, t):
+ 'def_operand_types : DEF OPERAND_TYPES CODELIT SEMI'
+ try:
+ userDict = eval('{' + t[3] + '}')
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operand_types block "%s".' % (exc, t[3]))
+ buildOperandTypeMap(userDict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+ # Define the mapping from operand names to operand classes and
+ # other traits. Stored in operandNameMap.
+ def p_def_operands(self, t):
+ 'def_operands : DEF OPERANDS CODELIT SEMI'
+ if not globals().has_key('operandTypeMap'):
+ error(t.lexer.lineno,
+ 'error: operand types must be defined before operands')
+ try:
+ userDict = eval('{' + t[3] + '}', exportContext)
+ except Exception, exc:
+ error(t.lexer.lineno,
+ 'error: %s in def operands block "%s".' % (exc, t[3]))
+ buildOperandNameMap(userDict, t.lexer.lineno)
+ t[0] = GenCode() # contributes nothing to the output C++ file
+
+ # A bitfield definition looks like:
+ # 'def [signed] bitfield <ID> [<first>:<last>]'
+ # This generates a preprocessor macro in the output file.
+ def p_def_bitfield_0(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT COLON INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[8])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (t[6] - t[8] + 1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ # alternate form for single bit: 'def [signed] bitfield <ID> [<bit>]'
+ def p_def_bitfield_1(self, t):
+ 'def_bitfield : DEF opt_signed BITFIELD ID LESS INTLIT GREATER SEMI'
+ expr = 'bits(machInst, %2d, %2d)' % (t[6], t[6])
+ if (t[2] == 'signed'):
+ expr = 'sext<%d>(%s)' % (1, expr)
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ # alternate form for structure member: 'def bitfield <ID> <ID>'
+ def p_def_bitfield_struct(self, t):
+ 'def_bitfield_struct : DEF opt_signed BITFIELD ID id_with_dot SEMI'
+ if (t[2] != ''):
+ error(t.lexer.lineno,
+ 'error: structure bitfields are always unsigned.')
+ expr = 'machInst.%s' % t[5]
+ hash_define = '#undef %s\n#define %s\t%s\n' % (t[4], t[4], expr)
+ t[0] = GenCode(header_output = hash_define)
+
+ def p_id_with_dot_0(self, t):
+ 'id_with_dot : ID'
+ t[0] = t[1]
+
+ def p_id_with_dot_1(self, t):
+ 'id_with_dot : ID DOT id_with_dot'
+ t[0] = t[1] + t[2] + t[3]
+
+ def p_opt_signed_0(self, t):
+ 'opt_signed : SIGNED'
+ t[0] = t[1]
+
+ def p_opt_signed_1(self, t):
+ 'opt_signed : empty'
+ t[0] = ''
+
+ def p_def_template(self, t):
+ 'def_template : DEF TEMPLATE ID CODELIT SEMI'
+ self.templateMap[t[3]] = Template(t[4])
+ t[0] = GenCode()
+
+ # An instruction format definition looks like
+ # "def format <fmt>(<params>) {{...}};"
+ def p_def_format(self, t):
+ 'def_format : DEF FORMAT ID LPAREN param_list RPAREN CODELIT SEMI'
+ (id, params, code) = (t[3], t[5], t[7])
+ defFormat(id, params, code, t.lexer.lineno)
+ t[0] = GenCode()
+
+ # The formal parameter list for an instruction format is a
+ # possibly empty list of comma-separated parameters. Positional
+ # (standard, non-keyword) parameters must come first, followed by
+ # keyword parameters, followed by a '*foo' parameter that gets
+ # excess positional arguments (as in Python). Each of these three
+ # parameter categories is optional.
+ #
+ # Note that we do not support the '**foo' parameter for collecting
+ # otherwise undefined keyword args. Otherwise the parameter list
+ # is (I believe) identical to what is supported in Python.
+ #
+ # The param list generates a tuple, where the first element is a
+ # list of the positional params and the second element is a dict
+ # containing the keyword params.
+ def p_param_list_0(self, t):
+ 'param_list : positional_param_list COMMA nonpositional_param_list'
+ t[0] = t[1] + t[3]
+
+ def p_param_list_1(self, t):
+ '''param_list : positional_param_list
+ | nonpositional_param_list'''
+ t[0] = t[1]
+
+ def p_positional_param_list_0(self, t):
+ 'positional_param_list : empty'
+ t[0] = []
+
+ def p_positional_param_list_1(self, t):
+ 'positional_param_list : ID'
+ t[0] = [t[1]]
+
+ def p_positional_param_list_2(self, t):
+ 'positional_param_list : positional_param_list COMMA ID'
+ t[0] = t[1] + [t[3]]
+
+ def p_nonpositional_param_list_0(self, t):
+ 'nonpositional_param_list : keyword_param_list COMMA excess_args_param'
+ t[0] = t[1] + t[3]
+
+ def p_nonpositional_param_list_1(self, t):
+ '''nonpositional_param_list : keyword_param_list
+ | excess_args_param'''
+ t[0] = t[1]
+
+ def p_keyword_param_list_0(self, t):
+ 'keyword_param_list : keyword_param'
+ t[0] = [t[1]]
+
+ def p_keyword_param_list_1(self, t):
+ 'keyword_param_list : keyword_param_list COMMA keyword_param'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_param(self, t):
+ 'keyword_param : ID EQUALS expr'
+ t[0] = t[1] + ' = ' + t[3].__repr__()
+
+ def p_excess_args_param(self, t):
+ 'excess_args_param : ASTERISK ID'
+ # Just concatenate them: '*ID'. Wrap in list to be consistent
+ # with positional_param_list and keyword_param_list.
+ t[0] = [t[1] + t[2]]
+
+ # End of format definition-related rules.
+ ##############
+
+ #
+ # A decode block looks like:
+ # decode <field1> [, <field2>]* [default <inst>] { ... }
+ #
+ def p_decode_block(self, t):
+ 'decode_block : DECODE ID opt_default LBRACE decode_stmt_list RBRACE'
+ default_defaults = defaultStack.pop()
+ codeObj = t[5]
+ # use the "default defaults" only if there was no explicit
+ # default statement in decode_stmt_list
+ if not codeObj.has_decode_default:
+ codeObj += default_defaults
+ codeObj.wrap_decode_block('switch (%s) {\n' % t[2], '}\n')
+ t[0] = codeObj
+
+ # The opt_default statement serves only to push the "default
+ # defaults" onto defaultStack. This value will be used by nested
+ # decode blocks, and used and popped off when the current
+ # decode_block is processed (in p_decode_block() above).
+ def p_opt_default_0(self, t):
+ 'opt_default : empty'
+ # no default specified: reuse the one currently at the top of
+ # the stack
+ defaultStack.push(defaultStack.top())
+ # no meaningful value returned
+ t[0] = None
+
+ def p_opt_default_1(self, t):
+ 'opt_default : DEFAULT inst'
+ # push the new default
+ codeObj = t[2]
+ codeObj.wrap_decode_block('\ndefault:\n', 'break;\n')
+ defaultStack.push(codeObj)
+ # no meaningful value returned
+ t[0] = None
+
+ def p_decode_stmt_list_0(self, t):
+ 'decode_stmt_list : decode_stmt'
+ t[0] = t[1]
+
+ def p_decode_stmt_list_1(self, t):
+ 'decode_stmt_list : decode_stmt decode_stmt_list'
+ if (t[1].has_decode_default and t[2].has_decode_default):
+ error(t.lexer.lineno, 'Two default cases in decode block')
+ t[0] = t[1] + t[2]
+
+ #
+ # Decode statement rules
+ #
+ # There are four types of statements allowed in a decode block:
+ # 1. Format blocks 'format <foo> { ... }'
+ # 2. Nested decode blocks
+ # 3. Instruction definitions.
+ # 4. C preprocessor directives.
+
+
+ # Preprocessor directives found in a decode statement list are
+ # passed through to the output, replicated to all of the output
+ # code streams. This works well for ifdefs, so we can ifdef out
+ # both the declarations and the decode cases generated by an
+ # instruction definition. Handling them as part of the grammar
+ # makes it easy to keep them in the right place with respect to
+ # the code generated by the other statements.
+ def p_decode_stmt_cpp(self, t):
+ 'decode_stmt : CPPDIRECTIVE'
+ t[0] = GenCode(t[1], t[1], t[1], t[1])
+
+ # A format block 'format <foo> { ... }' sets the default
+ # instruction format used to handle instruction definitions inside
+ # the block. This format can be overridden by using an explicit
+ # format on the instruction definition or with a nested format
+ # block.
+ def p_decode_stmt_format(self, t):
+ 'decode_stmt : FORMAT push_format_id LBRACE decode_stmt_list RBRACE'
+ # The format will be pushed on the stack when 'push_format_id'
+ # is processed (see below). Once the parser has recognized
+ # the full production (though the right brace), we're done
+ # with the format, so now we can pop it.
+ formatStack.pop()
+ t[0] = t[4]
+
+ # This rule exists so we can set the current format (& push the
+ # stack) when we recognize the format name part of the format
+ # block.
+ def p_push_format_id(self, t):
+ 'push_format_id : ID'
+ try:
+ formatStack.push(formatMap[t[1]])
+ t[0] = ('', '// format %s' % t[1])
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
+
+ # Nested decode block: if the value of the current field matches
+ # the specified constant, do a nested decode on some other field.
+ def p_decode_stmt_decode(self, t):
+ 'decode_stmt : case_label COLON decode_block'
+ label = t[1]
+ codeObj = t[3]
+ # just wrap the decoding code from the block as a case in the
+ # outer switch statement.
+ codeObj.wrap_decode_block('\n%s:\n' % label)
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+ # Instruction definition (finally!).
+ def p_decode_stmt_inst(self, t):
+ 'decode_stmt : case_label COLON inst SEMI'
+ label = t[1]
+ codeObj = t[3]
+ codeObj.wrap_decode_block('\n%s:' % label, 'break;\n')
+ codeObj.has_decode_default = (label == 'default')
+ t[0] = codeObj
+
+ # The case label is either a list of one or more constants or
+ # 'default'
+ def p_case_label_0(self, t):
+ 'case_label : intlit_list'
+ t[0] = ': '.join(map(lambda a: 'case %#x' % a, t[1]))
+
+ def p_case_label_1(self, t):
+ 'case_label : DEFAULT'
+ t[0] = 'default'
+
+ #
+ # The constant list for a decode case label must be non-empty, but
+ # may have one or more comma-separated integer literals in it.
+ #
+ def p_intlit_list_0(self, t):
+ 'intlit_list : INTLIT'
+ t[0] = [t[1]]
+
+ def p_intlit_list_1(self, t):
+ 'intlit_list : intlit_list COMMA INTLIT'
+ t[0] = t[1]
+ t[0].append(t[3])
+
+ # Define an instruction using the current instruction format
+ # (specified by an enclosing format block).
+ # "<mnemonic>(<args>)"
+ def p_inst_0(self, t):
+ 'inst : ID LPAREN arg_list RPAREN'
+ # Pass the ID and arg list to the current format class to deal with.
+ currentFormat = formatStack.top()
+ codeObj = currentFormat.defineInst(t[1], t[3], t.lexer.lineno)
+ args = ','.join(map(str, t[3]))
+ args = re.sub('(?m)^', '//', args)
+ args = re.sub('^//', '', args)
+ comment = '\n// %s::%s(%s)\n' % (currentFormat.id, t[1], args)
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # Define an instruction using an explicitly specified format:
+ # "<fmt>::<mnemonic>(<args>)"
+ def p_inst_1(self, t):
+ 'inst : ID DBLCOLON ID LPAREN arg_list RPAREN'
+ try:
+ format = formatMap[t[1]]
+ except KeyError:
+ error(t.lexer.lineno,
+ 'instruction format "%s" not defined.' % t[1])
+ codeObj = format.defineInst(t[3], t[5], t.lexer.lineno)
+ comment = '\n// %s::%s(%s)\n' % (t[1], t[3], t[5])
+ codeObj.prepend_all(comment)
+ t[0] = codeObj
+
+ # The arg list generates a tuple, where the first element is a
+ # list of the positional args and the second element is a dict
+ # containing the keyword args.
+ def p_arg_list_0(self, t):
+ 'arg_list : positional_arg_list COMMA keyword_arg_list'
+ t[0] = ( t[1], t[3] )
+
+ def p_arg_list_1(self, t):
+ 'arg_list : positional_arg_list'
+ t[0] = ( t[1], {} )
+
+ def p_arg_list_2(self, t):
+ 'arg_list : keyword_arg_list'
+ t[0] = ( [], t[1] )
+
+ def p_positional_arg_list_0(self, t):
+ 'positional_arg_list : empty'
+ t[0] = []
+
+ def p_positional_arg_list_1(self, t):
+ 'positional_arg_list : expr'
+ t[0] = [t[1]]
+
+ def p_positional_arg_list_2(self, t):
+ 'positional_arg_list : positional_arg_list COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_keyword_arg_list_0(self, t):
+ 'keyword_arg_list : keyword_arg'
+ t[0] = t[1]
+
+ def p_keyword_arg_list_1(self, t):
+ 'keyword_arg_list : keyword_arg_list COMMA keyword_arg'
+ t[0] = t[1]
+ t[0].update(t[3])
+
+ def p_keyword_arg(self, t):
+ 'keyword_arg : ID EQUALS expr'
+ t[0] = { t[1] : t[3] }
+
+ #
+ # Basic expressions. These constitute the argument values of
+ # "function calls" (i.e. instruction definitions in the decode
+ # block) and default values for formal parameters of format
+ # functions.
+ #
+ # Right now, these are either strings, integers, or (recursively)
+ # lists of exprs (using Python square-bracket list syntax). Note
+ # that bare identifiers are trated as string constants here (since
+ # there isn't really a variable namespace to refer to).
+ #
+ def p_expr_0(self, t):
+ '''expr : ID
+ | INTLIT
+ | STRLIT
+ | CODELIT'''
+ t[0] = t[1]
+
+ def p_expr_1(self, t):
+ '''expr : LBRACKET list_expr RBRACKET'''
+ t[0] = t[2]
+
+ def p_list_expr_0(self, t):
+ 'list_expr : expr'
+ t[0] = [t[1]]
+
+ def p_list_expr_1(self, t):
+ 'list_expr : list_expr COMMA expr'
+ t[0] = t[1] + [t[3]]
+
+ def p_list_expr_2(self, t):
+ 'list_expr : empty'
+ t[0] = []
+
+ #
+ # Empty production... use in other rules for readability.
+ #
+ def p_empty(self, t):
+ 'empty :'
+ pass
+
+ # Parse error handler. Note that the argument here is the
+ # offending *token*, not a grammar symbol (hence the need to use
+ # t.value)
+ def p_error(self, t):
+ if t:
+ error(t.lexer.lineno, "syntax error at '%s'" % t.value)
+ else:
+ error(0, "unknown syntax error", True)
-#
-# Empty production... use in other rules for readability.
-#
-def p_empty(t):
- 'empty :'
- pass
-
-# Parse error handler. Note that the argument here is the offending
-# *token*, not a grammar symbol (hence the need to use t.value)
-def p_error(t):
- if t:
- error(t.lexer.lineno, "syntax error at '%s'" % t.value)
- else:
- error(0, "unknown syntax error", True)
+ # END OF GRAMMAR RULES
-# END OF GRAMMAR RULES
-#
# Now build the parser.
-parser = yacc.yacc()
-
+parser = ISAParser()
#####################################################################
#
@@ -761,6 +763,11 @@ def expand_cpu_symbols_to_string(template):
def protect_cpu_symbols(template):
return re.sub(r'%(?=\(CPU_)', '%%', template)
+# Protect any non-dict-substitution '%'s in a format string
+# (i.e. those not followed by '(')
+def protect_non_subst_percents(s):
+ return re.sub(r'%(?!\()', '%%', s)
+
###############
# GenCode class
#
@@ -834,7 +841,7 @@ exportContext = {}
def updateExportContext():
exportContext.update(exportDict(*exportContextSymbols))
- exportContext.update(templateMap)
+ exportContext.update(parser.templateMap)
def exportDict(*symNames):
return dict([(s, eval(s)) for s in symNames])
@@ -1044,7 +1051,7 @@ class Template:
# Build a dict ('myDict') to use for the template substitution.
# Start with the template namespace. Make a copy since we're
# going to modify it.
- myDict = templateMap.copy()
+ myDict = parser.templateMap.copy()
if isinstance(d, InstObjParams):
# If we're dealing with an InstObjParams object, we need
@@ -1970,8 +1977,7 @@ def parse_isa_desc(isa_desc_file, output_dir):
fileNameStack.push((isa_desc_file, 0))
# Parse it.
- (isa_name, namespace, global_code, namespace_code) = \
- parser.parse(isa_desc, lexer=lexer)
+ (isa_name, namespace, global_code, namespace_code) = parser.parse(isa_desc)
# grab the last three path components of isa_desc_file to put in
# the output