diff options
author | Steve Reinhardt <stever@eecs.umich.edu> | 2006-02-09 23:02:38 -0500 |
---|---|---|
committer | Steve Reinhardt <stever@eecs.umich.edu> | 2006-02-09 23:02:38 -0500 |
commit | dd473ecd578a1bb21d2b6420f3944065a3539ffa (patch) | |
tree | 5ee60b5348d1e4347533541ee72af1616b3257be /arch/alpha/isa/decoder.isa | |
parent | fb90b1dd13fb6c0090bfe2731ca9ccee56479761 (diff) | |
download | gem5-dd473ecd578a1bb21d2b6420f3944065a3539ffa.tar.xz |
Split Alpha ISA description into multiple files
(thanks to Gabe's include feature!).
arch/alpha/isa/main.isa:
Split out into multiple .isa files.
--HG--
extra : convert_revision : 30d8edf74ea194d4a208febf1e66edc72a7dbd5d
Diffstat (limited to 'arch/alpha/isa/decoder.isa')
-rw-r--r-- | arch/alpha/isa/decoder.isa | 799 |
1 files changed, 799 insertions, 0 deletions
diff --git a/arch/alpha/isa/decoder.isa b/arch/alpha/isa/decoder.isa new file mode 100644 index 000000000..6a35fa229 --- /dev/null +++ b/arch/alpha/isa/decoder.isa @@ -0,0 +1,799 @@ +// -*- mode:c++ -*- + +// Copyright (c) 2003-2005 The Regents of The University of Michigan +// All rights reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer; +// redistributions in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the distribution; +// neither the name of the copyright holders nor the names of its +// contributors may be used to endorse or promote products derived from +// this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +decode OPCODE default Unknown::unknown() { + + format LoadAddress { + 0x08: lda({{ Ra = Rb + disp; }}); + 0x09: ldah({{ Ra = Rb + (disp << 16); }}); + } + + format LoadOrNop { + 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); + 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); + 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); + 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); + 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); + 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); + 0x20: copy_load({{EA = Ra;}}, + {{fault = xc->copySrcTranslate(EA);}}, + IsMemRef, IsLoad, IsCopy); + } + + format LoadOrPrefetch { + 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); + 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); + // IsFloating flag on lds gets the prefetch to disassemble + // using f31 instead of r31... funcitonally it's unnecessary + 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, + PF_EXCLUSIVE, IsFloating); + } + + format Store { + 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); + 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); + 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); + 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); + 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); + 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); + 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); + 0x24: copy_store({{EA = Rb;}}, + {{fault = xc->copy(EA);}}, + IsMemRef, IsStore, IsCopy); + } + + format StoreCond { + 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, + {{ + uint64_t tmp = Mem_write_result; + // see stq_c + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, + {{ + uint64_t tmp = Mem_write_result; + // If the write operation returns 0 or 1, then + // this was a conventional store conditional, + // and the value indicates the success/failure + // of the operation. If another value is + // returned, then this was a Turbolaser + // mailbox access, and we don't update the + // result register at all. + Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; + }}, LOCKED); + } + + format IntegerOperate { + + 0x10: decode INTFUNC { // integer arithmetic operations + + 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); + 0x40: addlv({{ + uint32_t tmp = Ra.sl + Rb_or_imm.sl; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); + 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); + + 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); + 0x60: addqv({{ + uint64_t tmp = Ra + Rb_or_imm; + // signed overflow occurs when operands have same sign + // and sign of result does not match. + if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); + 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); + + 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); + 0x49: sublv({{ + uint32_t tmp = Ra.sl - Rb_or_imm.sl; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) + fault = Integer_Overflow_Fault; + Rc.sl = tmp; + }}); + 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); + 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); + + 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); + 0x69: subqv({{ + uint64_t tmp = Ra - Rb_or_imm; + // signed overflow detection is same as for add, + // except we need to look at the *complemented* + // sign bit of the subtrahend (Rb), i.e., if the initial + // signs are the *same* then no overflow can occur + if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) + fault = Integer_Overflow_Fault; + Rc = tmp; + }}); + 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); + 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); + + 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); + 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); + 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); + 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); + 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); + + 0x0f: cmpbge({{ + int hi = 7; + int lo = 0; + uint64_t tmp = 0; + for (int i = 0; i < 8; ++i) { + tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; + hi += 8; + lo += 8; + } + Rc = tmp; + }}); + } + + 0x11: decode INTFUNC { // integer logical operations + + 0x00: and({{ Rc = Ra & Rb_or_imm; }}); + 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); + 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); + 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); + 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); + 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); + + // conditional moves + 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); + 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); + 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); + 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); + 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); + 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); + 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); + 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); + + // For AMASK, RA must be R31. + 0x61: decode RA { + 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); + } + + // For IMPLVER, RA must be R31 and the B operand + // must be the immediate value 1. + 0x6c: decode RA { + 31: decode IMM { + 1: decode INTIMM { + // return EV5 for FULL_SYSTEM and EV6 otherwise + 1: implver({{ +#if FULL_SYSTEM + Rc = 1; +#else + Rc = 2; +#endif + }}); + } + } + } + +#if FULL_SYSTEM + // The mysterious 11.25... + 0x25: WarnUnimpl::eleven25(); +#endif + } + + 0x12: decode INTFUNC { + 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); + 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); + 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); + + 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); + 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); + 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); + 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); + + 0x52: mskwh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; + }}); + 0x62: msklh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; + }}); + 0x72: mskqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; + }}); + + 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); + 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); + 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); + 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); + + 0x5a: extwh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); + 0x6a: extlh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); + 0x7a: extqh({{ + Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); + + 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); + 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); + 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); + 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); + + 0x57: inswh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; + }}); + 0x67: inslh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; + }}); + 0x77: insqh({{ + int bv = Rb_or_imm<2:0>; + Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; + }}); + + 0x30: zap({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + 0x31: zapnot({{ + uint64_t zapmask = 0; + for (int i = 0; i < 8; ++i) { + if (!Rb_or_imm<i:>) + zapmask |= (mask(8) << (i * 8)); + } + Rc = Ra & ~zapmask; + }}); + } + + 0x13: decode INTFUNC { // integer multiplies + 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); + 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); + 0x30: umulh({{ + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + Rc = hi; + }}, IntMultOp); + 0x40: mullv({{ + // 32-bit multiply with trap on overflow + int64_t Rax = Ra.sl; // sign extended version of Ra.sl + int64_t Rbx = Rb_or_imm.sl; + int64_t tmp = Rax * Rbx; + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = tmp<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Rc.sl = tmp<31:0>; + }}, IntMultOp); + 0x60: mulqv({{ + // 64-bit multiply with trap on overflow + uint64_t hi, lo; + mul128(Ra, Rb_or_imm, hi, lo); + // all the upper 64 bits must match the sign bit of + // the lower 64 + if (!((hi == 0 && lo<63:> == 0) || + (hi == mask(64) && lo<63:> == 1))) + fault = Integer_Overflow_Fault; + Rc = lo; + }}, IntMultOp); + } + + 0x1c: decode INTFUNC { + 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } + 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } + 0x32: ctlz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (temp<63:32>) temp >>= 32; else count += 32; + if (temp<31:16>) temp >>= 16; else count += 16; + if (temp<15:8>) temp >>= 8; else count += 8; + if (temp<7:4>) temp >>= 4; else count += 4; + if (temp<3:2>) temp >>= 2; else count += 2; + if (temp<1:1>) temp >>= 1; else count += 1; + if ((temp<0:0>) != 0x1) count += 1; + Rc = count; + }}, IntAluOp); + + 0x33: cttz({{ + uint64_t count = 0; + uint64_t temp = Rb; + if (!(temp<31:0>)) { temp >>= 32; count += 32; } + if (!(temp<15:0>)) { temp >>= 16; count += 16; } + if (!(temp<7:0>)) { temp >>= 8; count += 8; } + if (!(temp<3:0>)) { temp >>= 4; count += 4; } + if (!(temp<1:0>)) { temp >>= 2; count += 2; } + if (!(temp<0:0> & ULL(0x1))) count += 1; + Rc = count; + }}, IntAluOp); + + format FailUnimpl { + 0x30: ctpop(); + 0x31: perr(); + 0x34: unpkbw(); + 0x35: unpkbl(); + 0x36: pkwb(); + 0x37: pklb(); + 0x38: minsb8(); + 0x39: minsw4(); + 0x3a: minub8(); + 0x3b: minuw4(); + 0x3c: maxub8(); + 0x3d: maxuw4(); + 0x3e: maxsb8(); + 0x3f: maxsw4(); + } + + format BasicOperateWithNopCheck { + 0x70: decode RB { + 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); + } + 0x78: decode RB { + 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, + FloatCvtOp); + } + } + } + } + + // Conditional branches. + format CondBranch { + 0x39: beq({{ cond = (Ra == 0); }}); + 0x3d: bne({{ cond = (Ra != 0); }}); + 0x3e: bge({{ cond = (Ra.sq >= 0); }}); + 0x3f: bgt({{ cond = (Ra.sq > 0); }}); + 0x3b: ble({{ cond = (Ra.sq <= 0); }}); + 0x3a: blt({{ cond = (Ra.sq < 0); }}); + 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); + 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); + + 0x31: fbeq({{ cond = (Fa == 0); }}); + 0x35: fbne({{ cond = (Fa != 0); }}); + 0x36: fbge({{ cond = (Fa >= 0); }}); + 0x37: fbgt({{ cond = (Fa > 0); }}); + 0x33: fble({{ cond = (Fa <= 0); }}); + 0x32: fblt({{ cond = (Fa < 0); }}); + } + + // unconditional branches + format UncondBranch { + 0x30: br(); + 0x34: bsr(IsCall); + } + + // indirect branches + 0x1a: decode JMPFUNC { + format Jump { + 0: jmp(); + 1: jsr(IsCall); + 2: ret(IsReturn); + 3: jsr_coroutine(IsCall, IsReturn); + } + } + + // Square root and integer-to-FP moves + 0x14: decode FP_SHORTFUNC { + // Integer to FP register moves must have RB == 31 + 0x4: decode RB { + 31: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); + 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); + 0x014: FailUnimpl::itoff(); // VAX-format conversion + } + } + } + + // Square root instructions must have FA == 31 + 0xb: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x0b: sqrts({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); +#else + 0x0b: sqrts({{ + if (Fb.sf < 0.0) + fault = Arithmetic_Fault; + Fc.sf = sqrt(Fb.sf); + }}, FloatSqrtOp); +#endif + 0x2b: sqrtt({{ + if (Fb < 0.0) + fault = Arithmetic_Fault; + Fc = sqrt(Fb); + }}, FloatSqrtOp); + } + } + } + + // VAX-format sqrtf and sqrtg are not implemented + 0xa: FailUnimpl::sqrtfg(); + } + + // IEEE floating point + 0x16: decode FP_SHORTFUNC_TOP2 { + // The top two bits of the short function code break this + // space into four groups: binary ops, compares, reserved, and + // conversions. See Table 4-12 of AHB. There are different + // special cases in these different groups, so we decode on + // these top two bits first just to select a decode strategy. + // Most of these instructions may have various trapping and + // rounding mode flags set; these are decoded in the + // FloatingPointDecode template used by the + // FloatingPointOperate format. + + // add/sub/mul/div: just decode on the short function code + // and source type. All valid trapping and rounding modes apply. + 0: decode FP_TRAPMODE { + // check for valid trapping modes here + 0,1,5,7: decode FP_TYPEFUNC { + format FloatingPointOperate { +#if SS_COMPATIBLE_FP + 0x00: adds({{ Fc = Fa + Fb; }}); + 0x01: subs({{ Fc = Fa - Fb; }}); + 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); +#else + 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); + 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); + 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); + 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); +#endif + + 0x20: addt({{ Fc = Fa + Fb; }}); + 0x21: subt({{ Fc = Fa - Fb; }}); + 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); + 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); + } + } + } + + // Floating-point compare instructions must have the default + // rounding mode, and may use the default trapping mode or + // /SU. Both trapping modes are treated the same by M5; the + // only difference on the real hardware (as far a I can tell) + // is that without /SU you'd get an imprecise trap if you + // tried to compare a NaN with something else (instead of an + // "unordered" result). + 1: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, + FloatCmpOp); + 0x0a4, 0x5a4: cmptun({{ // unordered + Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; + }}, FloatCmpOp); + } + } + + // The FP-to-integer and integer-to-FP conversion insts + // require that FA be 31. + 3: decode FA { + 31: decode FP_TYPEFUNC { + format FloatingPointOperate { + 0x2f: decode FP_ROUNDMODE { + format FPFixedRounding { + // "chopped" i.e. round toward zero + 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, + Chopped); + // round to minus infinity + 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, + MinusInfinity); + } + default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); + } + + // The cvtts opcode is overloaded to be cvtst if the trap + // mode is 2 or 6 (which are not valid otherwise) + 0x2c: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + // trap on denorm version "cvtst/s" is + // simulated same as cvtst + 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); + } + default: cvtts({{ Fc.sf = Fb; }}); + } + + // The trapping mode for integer-to-FP conversions + // must be /SUI or nothing; /U and /SU are not + // allowed. The full set of rounding modes are + // supported though. + 0x3c: decode FP_TRAPMODE { + 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); + } + 0x3e: decode FP_TRAPMODE { + 0,7: cvtqt({{ Fc = Fb.sq; }}); + } + } + } + } + } + + // misc FP operate + 0x17: decode FP_FULLFUNC { + format BasicOperateWithNopCheck { + 0x010: cvtlq({{ + Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; + }}); + 0x030: cvtql({{ + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + // We treat the precise & imprecise trapping versions of + // cvtql identically. + 0x130, 0x530: cvtqlv({{ + // To avoid overflow, all the upper 32 bits must match + // the sign bit of the lower 32. We code this as + // checking the upper 33 bits for all 0s or all 1s. + uint64_t sign_bits = Fb.uq<63:31>; + if (sign_bits != 0 && sign_bits != mask(33)) + fault = Integer_Overflow_Fault; + Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); + }}); + + 0x020: cpys({{ // copy sign + Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x021: cpysn({{ // copy sign negated + Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; + }}); + 0x022: cpyse({{ // copy sign and exponent + Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; + }}); + + 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); + 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); + 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); + 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); + 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); + 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); + + 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); + 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); + } + } + + // miscellaneous mem-format ops + 0x18: decode MEMFUNC { + format WarnUnimpl { + 0x8000: fetch(); + 0xa000: fetch_m(); + 0xe800: ecb(); + } + + format MiscPrefetch { + 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, + {{ xc->writeHint(EA, 64, memAccessFlags); }}, + IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, + NO_FAULT); + } + + format BasicOperate { + 0xc000: rpcc({{ +#if FULL_SYSTEM + /* Rb is a fake dependency so here is a fun way to get + * the parser to understand that. + */ + Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0); + +#else + Ra = curTick; +#endif + }}); + + // All of the barrier instructions below do nothing in + // their execute() methods (hence the empty code blocks). + // All of their functionality is hard-coded in the + // pipeline based on the flags IsSerializing, + // IsMemBarrier, and IsWriteBarrier. In the current + // detailed CPU model, the execute() function only gets + // called at fetch, so there's no way to generate pipeline + // behavior at any other stage. Once we go to an + // exec-in-exec CPU model we should be able to get rid of + // these flags and implement this behavior via the + // execute() methods. + + // trapb is just a barrier on integer traps, where excb is + // a barrier on integer and FP traps. "EXCB is thus a + // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat + // them the same though. + 0x0000: trapb({{ }}, IsSerializing, No_OpClass); + 0x0400: excb({{ }}, IsSerializing, No_OpClass); + 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); + 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); + } + +#if FULL_SYSTEM + format BasicOperate { + 0xe000: rc({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(0); + }}, IsNonSpeculative); + 0xf000: rs({{ + Ra = xc->readIntrFlag(); + xc->setIntrFlag(1); + }}, IsNonSpeculative); + } +#else + format FailUnimpl { + 0xe000: rc(); + 0xf000: rs(); + } +#endif + } + +#if FULL_SYSTEM + 0x00: CallPal::call_pal({{ + if (!palValid || + (palPriv + && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) { + // invalid pal function code, or attempt to do privileged + // PAL call in non-kernel mode + fault = Unimplemented_Opcode_Fault; + } + else { + // check to see if simulator wants to do something special + // on this PAL call (including maybe suppress it) + bool dopal = xc->simPalCheck(palFunc); + + if (dopal) { + AlphaISA::swap_palshadow(&xc->xcBase()->regs, true); + xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC); + NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset; + } + } + }}, IsNonSpeculative); +#else + 0x00: decode PALFUNC { + format EmulatedCallPal { + 0x00: halt ({{ + SimExit(curTick, "halt instruction encountered"); + }}, IsNonSpeculative); + 0x83: callsys({{ + xc->syscall(); + }}, IsNonSpeculative); + // Read uniq reg into ABI return value register (r0) + 0x9e: rduniq({{ R0 = Runiq; }}); + // Write uniq reg with value from ABI arg register (r16) + 0x9f: wruniq({{ Runiq = R16; }}); + } + } +#endif + +#if FULL_SYSTEM + format HwLoadStore { + 0x1b: decode HW_LDST_QUAD { + 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); + 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); + } + + 0x1f: decode HW_LDST_COND { + 0: decode HW_LDST_QUAD { + 0: hw_st({{ EA = (Rb + disp) & ~3; }}, + {{ Mem.ul = Ra<31:0>; }}, L); + 1: hw_st({{ EA = (Rb + disp) & ~7; }}, + {{ Mem.uq = Ra.uq; }}, Q); + } + + 1: FailUnimpl::hw_st_cond(); + } + } + + format HwMoveIPR { + 0x19: hw_mfpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + Ra = xc->readIpr(ipr_index, fault); + } + }}); + 0x1d: hw_mtpr({{ + // this instruction is only valid in PAL mode + if (!xc->inPalMode()) { + fault = Unimplemented_Opcode_Fault; + } + else { + xc->setIpr(ipr_index, Ra); + if (traceData) { traceData->setData(Ra); } + } + }}); + } + + format BasicOperate { + 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing); + + // M5 special opcodes use the reserved 0x01 opcode space + 0x01: decode M5FUNC { + 0x00: arm({{ + AlphaPseudo::arm(xc->xcBase()); + }}, IsNonSpeculative); + 0x01: quiesce({{ + AlphaPseudo::quiesce(xc->xcBase()); + }}, IsNonSpeculative); + 0x10: ivlb({{ + AlphaPseudo::ivlb(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x11: ivle({{ + AlphaPseudo::ivle(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x20: m5exit_old({{ + AlphaPseudo::m5exit_old(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x21: m5exit({{ + AlphaPseudo::m5exit(xc->xcBase()); + }}, No_OpClass, IsNonSpeculative); + 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); + 0x40: resetstats({{ + AlphaPseudo::resetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x41: dumpstats({{ + AlphaPseudo::dumpstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x42: dumpresetstats({{ + AlphaPseudo::dumpresetstats(xc->xcBase()); + }}, IsNonSpeculative); + 0x43: m5checkpoint({{ + AlphaPseudo::m5checkpoint(xc->xcBase()); + }}, IsNonSpeculative); + 0x50: m5readfile({{ + AlphaPseudo::readfile(xc->xcBase()); + }}, IsNonSpeculative); + 0x51: m5break({{ + AlphaPseudo::debugbreak(xc->xcBase()); + }}, IsNonSpeculative); + 0x52: m5switchcpu({{ + AlphaPseudo::switchcpu(xc->xcBase()); + }}, IsNonSpeculative); + 0x53: m5addsymbol({{ + AlphaPseudo::addsymbol(xc->xcBase()); + }}, IsNonSpeculative); + + } + } +#endif +} |