diff options
author | Korey Sewell <ksewell@umich.edu> | 2006-01-25 17:06:23 -0500 |
---|---|---|
committer | Korey Sewell <ksewell@umich.edu> | 2006-01-25 17:06:23 -0500 |
commit | 14fc0996e3d349c03c1e0afcb09df3679891dea5 (patch) | |
tree | 8fc0e2f6b00bddb130cf96eeaa24f2395224a5a3 /arch | |
parent | 90aa2dbfc226f6b34165603b38f102312008c23c (diff) | |
download | gem5-14fc0996e3d349c03c1e0afcb09df3679891dea5.tar.xz |
first version of my decoder function skeleton
- this will decode the instructions but not doing anything to create the C++ object yet
(the 1st of many steps!)
arch/mips/isa_desc/bitfields.h:
initial bitfield constants ... copied some from original alpha bitfields
arch/mips/isa_desc/decoder.h:
decoder function skeleton pt.1
- this will decode the instructions but not doing anything to create the C++ object yet
(the 1st of many steps!)
--HG--
extra : convert_revision : 2b9a0f8160c78b17f9d3d5eaf5af5a4d2f074761
Diffstat (limited to 'arch')
-rw-r--r-- | arch/mips/isa_desc/bitfields.h | 112 | ||||
-rw-r--r-- | arch/mips/isa_desc/decoder.h | 1051 |
2 files changed, 251 insertions, 912 deletions
diff --git a/arch/mips/isa_desc/bitfields.h b/arch/mips/isa_desc/bitfields.h index b0ac57575..7fce190ce 100644 --- a/arch/mips/isa_desc/bitfields.h +++ b/arch/mips/isa_desc/bitfields.h @@ -3,48 +3,70 @@ // Bitfield definitions. // -// Bitfields are shared liberally between instruction formats, so they are -// simply defined alphabetically - -def bitfield A <29>; -def bitfield CC02 <20>; -def bitfield CC03 <25>; -def bitfield CC04 <11>; -def bitfield CC12 <21>; -def bitfield CC13 <26>; -def bitfield CC14 <12>; -def bitfield CC2 <18>; -def bitfield CMASK <6:4>; -def bitfield COND2 <28:25>; -def bitfield COND4 <17:14>; -def bitfield D16HI <21:20>; -def bitfield D16LO <13:0>; -def bitfield DISP19 <18:0>; -def bitfield DISP22 <21:0>; -def bitfield DISP30 <29:0>; -def bitfield FCN <29:26>; -def bitfield I <13>; -def bitfield IMM_ASI <12:5>; -def bitfield IMM22 <21:0>; -def bitfield MMASK <3:0>; -def bitfield OP <31:30>; -def bitfield OP2 <24:22>; -def bitfield OP3 <24:19>; -def bitfield OPF <13:5>; -def bitfield OPF_CC <13:11>; -def bitfield OPF_LOW5 <9:5>; -def bitfield OPF_LOW6 <10:5>; -def bitfield P <19>; -def bitfield RCOND2 <27:25>; -def bitfield RCOND3 <12:10>; -def bitfield RCOND4 <12:10>; -def bitfield RD <29:25>; -def bitfield RS1 <18:14>; -def bitfield RS2 <4:0>; -def bitfield SHCNT32 <4:0>; -def bitfield SHCNT64 <5:0>; -def bitfield SIMM10 <9:0>; -def bitfield SIMM11 <10:0>; -def bitfield SIMM13 <12:0>; -def bitfield SW_TRAP <6:0>; -def bitfield X <12>; +// Universal (format-independent) fields +def bitfield OPCODE_HI <31:29>; +def bitfield OPCODE_LO <28:26>; + +def bitfield SPECIAL_HI < 5: 3>; +def bitfield SPECIAL_HI < 2: 0>; + +def bitfield REGIMM_HI <20:19>; +def bitfield REGIMM_LO <18:16>; + +def bitfield RS <25:21>; +def bitfield RT <20:16>; + +// Integer operate format(s>; +def bitfield INTIMM <15: 0>; // integer immediate (literal) +def bitfield IMM <12:12>; // immediate flag +def bitfield INTFUNC <11: 5>; // function code +def bitfield RD <15:11>; // dest reg + +// Memory format +def signed bitfield MEMDISP <15: 0>; // displacement +def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned) + +// Memory-format jumps +def bitfield JMPFUNC <15:14>; // function code (disp<15:14>) +def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>) + +// Branch format +def signed bitfield BRDISP <20: 0>; // displacement + +// Floating-point operate format +def bitfield FMT <25:21>; +def bitfield FT <20:16>; +def bitfield FS <15:11>; +def bitfield FD <10: 6>; + +def bitfield FP_FULLFUNC <15: 5>; // complete function code + def bitfield FP_TRAPMODE <15:13>; // trapping mode + def bitfield FP_ROUNDMODE <12:11>; // rounding mode + def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding + def bitfield FP_SRCTYPE <10: 9>; // source reg type + def bitfield FP_SHORTFUNC < 8: 5>; // short function code + def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code + +// PALcode format +def bitfield PALFUNC <25: 0>; // function code + +// EV5 PAL instructions: +// HW_LD/HW_ST +def bitfield HW_LDST_PHYS <15>; // address is physical +def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR +def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc +def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b +def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch +def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked +def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional +def signed bitfield HW_LDST_DISP <9:0>; // signed displacement + +// HW_REI +def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk +def bitfield HW_REI_MBZ <13: 0>; // must be zero + +// HW_MTPR/MW_MFPR +def bitfield HW_IPR_IDX <15:0>; // IPR index + +// M5 instructions +def bitfield M5FUNC <7:0>; diff --git a/arch/mips/isa_desc/decoder.h b/arch/mips/isa_desc/decoder.h index 5d71968ce..235ff1ef6 100644 --- a/arch/mips/isa_desc/decoder.h +++ b/arch/mips/isa_desc/decoder.h @@ -7,30 +7,154 @@ // in the MIPS32 ISAthe specification document starting with Table // A-2 (document available @ www.mips.com) // -// +//@todo: Distinguish "unknown/future" use insts from "reserved" +// ones decode OPCODE_HI default FailUnimpl::unknown() { // Derived From ... Table A-2 MIPS32 ISA Manual - 0x0: decode OPCODE_LO { + 0x0: decode OPCODE_LO default FailUnimpl::reserved(){ + + 0x0: decode SPECIAL_HI { + 0x0: decode SPECIAL_LO { + 0x1: decode MOVCI { + format Move { + 0: movc({{ }}); + 1: movt({{ }}); + } + } - 0x0: decode SPECIAL { - 0x0:; - 0x1:; - 0x2:; - 0x3:; - 0x4:; - 0x5:; - 0x6:; + format ShiftRotate { + //Table A-3 Note: "1. Specific encodings of the rt, rd, and sa fields + //are used to distinguish among the SLL, NOP, SSNOP and EHB functions." + 0x0: sll({{ }}); + + 0x2: decode SRL { + 0: srl({{ }}); + 1: rotr({{ }}); + } + + 0x3: sar({{ }}); + + 0x4: sllv({{ }}); + + 0x6: decode SRLV { + 0: srlv({{ }}); + 1: rotrv({{ }}); + } + + 0x7: srav({{ }}); + } + } + + 0x1: decode SPECIAL_LO { + + //Table A-3 Note: "Specific encodings of the hint field are used + //to distinguish JR from JR.HB and JALR from JALR.HB" + format Jump { + 0x0: jr({{ }}); + 0x1: jalr({{ }}); + } + + format Move { + 0x2: movz({{ }}); + 0x3: movn({{ }}); + } + + 0x4: Syscall::syscall({{ }}); + 0x5: Break::break({{ }}); + 0x7: Synchronize::synch({{ }}); + } + + 0x2: decode SPECIAL_LO { + format MultDiv { + 0x0: mfhi({{ }}); + 0x1: mthi({{ }}); + 0x2: mflo({{ }}); + 0x3: mtlo({{ }}); + } + }; + + 0x3: decode SPECIAL_LO { + format MultDiv { + 0x0: mult({{ }}); + 0x1: multu({{ }}); + 0x2: div({{ }}); + 0x3: divu({{ }}); + } + }; + + 0x4: decode SPECIAL_LO { + format Arithmetic { + 0x0: add({{ }}); + 0x1: addu({{ }}); + 0x2: sub({{ }}); + 0x3: subu({{ }}); + } + + format Logical { + 0x0: and({{ }}); + 0x1: or({{ }}); + 0x2: xor({{ }}); + 0x3: nor({{ }}); + } + } + + 0x5: decode SPECIAL_LO { + format SetInstructions{ + 0x2: slt({{ }}); + 0x3: sltu({{ }}); + } + }; + + 0x6: decode SPECIAL_LO { + format Trap { + 0x0: tge({{ }}); + 0x1: tgeu({{ }}); + 0x2: tlt({{ }}); + 0x3: tltu({{ }}); + 0x4: teq({{ }}); + 0x6: tne({{ }}); + } + } } - 0x1: decode REGIMM { - 0x0:; - 0x1:; - 0x2:; - 0x3:; - 0x4:; - 0x5:; - 0x6:; + 0x1: decode REGIMM_HI { + 0x0: decode REGIMM_LO { + format Branch { + 0x0: bltz({{ }}); + 0x1: bgez({{ }}); + + //MIPS obsolete instructions + 0x2: bltzl({{ }}); + 0x3: bgezl({{ }}); + } + } + + 0x1: decode REGIMM_LO { + format Trap { + 0x0: tgei({{ }}); + 0x1: tgeiu({{ }}); + 0x2: tlti({{ }}); + 0x3: tltiu({{ }}); + 0x4: teqi({{ }}); + 0x6: tnei({{ }}); + } + } + + 0x2: decode REGIMM_LO { + format Branch { + 0x0: bltzal({{ }}); + 0x1: bgezal({{ }}); + + //MIPS obsolete instructions + 0x2: bltzall({{ }}); + 0x3: bgezall({{ }}); + } + } + + 0x3: decode REGIMM_LO { + 0x7: synci({{ }}); + } } format Jump { @@ -46,7 +170,7 @@ decode OPCODE_HI default FailUnimpl::unknown() { } }; - 0x1: decode OPCODE_LO { + 0x1: decode OPCODE_LO default FailUnimpl::reserved(){ format IntImmediate { 0x0: addi({{ }}); 0x1: addiu({{ }}); @@ -59,29 +183,39 @@ decode OPCODE_HI default FailUnimpl::unknown() { }; }; - 0x2: decode OPCODE_LO { - format FailUnimpl{ - 0x0: coprocessor_op({{ }}); - 0x1: coprocessor_op({{ }}); - 0x2: coprocessor_op({{ }}); - 0x3: coprocessor_op({{ }}); - }; + 0x2: decode OPCODE_LO default FailUnimpl::reserved(){ + + 0x0: decode RS { + //Table A-11 MIPS32 COP0 Encoding of rs Field + } + + 0x1: decode RS { + //Table A-13 MIPS32 COP1 Encoding of rs Field + } + + 0x2: decode RS { + //Table A-19 MIPS32 COP2 Encoding of rs Field + } - //MIPS obsolete instructions - 0x4: beql({{ }}); - 0x5: bnel({{ }}); - 0x6: blezl({{ }}); - 0x7: bgtzl({{ }}); + 0x3: decode FUNCTION_HI { + //Table A-20 MIPS64 COP1X Encoding of Function Field 1 + } + + //MIPS obsolete instructions + 0x4: beql({{ }}); + 0x5: bnel({{ }}); + 0x6: blezl({{ }}); + 0x7: bgtzl({{ }}); }; - 0x3: decode OPCODE_LO { + 0x3: decode OPCODE_LO default FailUnimpl::reserved(){ format FailUnimpl{ - 0x0: reserved({{ }}) - 0x1: reserved({{ }}) - 0x2: reserved({{ }}) - 0x3: reserved({{ }}) - 0x5: reserved({{ }}) - 0x6: reserved({{ }}) + 0x0: reserved_inst_exception({{ }}) + 0x1: reserved_inst_exception({{ }}) + 0x2: reserved_inst_exception({{ }}) + 0x3: reserved_inst_exception({{ }}) + 0x5: reserved_inst_exception({{ }}) + 0x6: reserved_inst_exception({{ }}) }; 4: decode SPECIAL2 { @@ -105,7 +239,7 @@ decode OPCODE_HI default FailUnimpl::unknown() { } }; - 0x4: decode OPCODE_LO { + 0x4: decode OPCODE_LO default FailUnimpl::reserved(){ format LoadMemory{ 0x0: lb({{ }}); 0x1: lh({{ }}); @@ -116,10 +250,10 @@ decode OPCODE_HI default FailUnimpl::unknown() { 0x6: lhu({{ }}); }; - 0x7: FailUnimpl::reserved({{ }}); + 0x7: FailUnimpl::reserved_inst_exception({{ }}); }; - 0x5: decode OPCODE_LO { + 0x5: decode OPCODE_LO default FailUnimpl::reserved(){ format StoreMemory{ 0x0: sb({{ }}); 0x1: sh({{ }}); @@ -129,14 +263,14 @@ decode OPCODE_HI default FailUnimpl::unknown() { }; format FailUnimpl{ - 0x4: reserved({{ }}); - 0x5: reserved({{ }}); + 0x4: reserved_inst_exception({{ }}); + 0x5: reserved_inst_exception({{ }}); 0x2: cache({{ }}); }; }; - 0x6: decode OPCODE_LO { + 0x6: decode OPCODE_LO default FailUnimpl::reserved(){ format LoadMemory{ 0x0: ll({{ }}); 0x1: lwc1({{ }}); @@ -146,14 +280,14 @@ decode OPCODE_HI default FailUnimpl::unknown() { format FailUnimpl{ 0x2: lwc2({{ }}); 0x3: pref({{ }}); - 0x4: reserved({{ }}); + 0x4: reserved_inst_exception({{ }}); 0x6: ldc2({{ }}); - 0x7: reserved({{ }}); + 0x7: reserved_inst_exception({{ }}); }; }; - 0x7: decode OPCODE_LO { + 0x7: decode OPCODE_LO default FailUnimpl::reserved(){ format StoreMemory{ 0x0: sc({{ }}); 0x1: swc1({{ }}); @@ -162,830 +296,13 @@ decode OPCODE_HI default FailUnimpl::unknown() { format FailUnimpl{ 0x2: swc2({{ }}); - 0x3: reserved({{ }}); - 0x4: reserved({{ }}); + 0x3: reserved_inst_exception({{ }}); + 0x4: reserved_inst_exception({{ }}); 0x6: sdc2({{ }}); - 0x7: reserved({{ }}); + 0x7: reserved_inst_exception({{ }}); }; }; - - //Table 3-1 CPU Arithmetic Instructions ( ) - format IntegerOperate { - - 0x10: decode INTFUNC { // integer arithmetic operations - - //ADD Add Word - - //ADDI Add Immediate Word - - //ADDIU Add Immediate Unsigned Word - - //ADDU Add Unsigned Word - - 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }}); - 0x40: addlv({{ - uint32_t tmp = Ra.sl + Rb_or_imm.sl; - // signed overflow occurs when operands have same sign - // and sign of result does not match. - if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) - fault = Integer_Overflow_Fault; - Rc.sl = tmp; - }}); - 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }}); - 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }}); - - 0x20: addq({{ Rc = Ra + Rb_or_imm; }}); - 0x60: addqv({{ - uint64_t tmp = Ra + Rb_or_imm; - // signed overflow occurs when operands have same sign - // and sign of result does not match. - if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>) - fault = Integer_Overflow_Fault; - Rc = tmp; - }}); - 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }}); - 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }}); - - 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }}); - 0x49: sublv({{ - uint32_t tmp = Ra.sl - Rb_or_imm.sl; - // signed overflow detection is same as for add, - // except we need to look at the *complemented* - // sign bit of the subtrahend (Rb), i.e., if the initial - // signs are the *same* then no overflow can occur - if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>) - fault = Integer_Overflow_Fault; - Rc.sl = tmp; - }}); - 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }}); - 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }}); - - 0x29: subq({{ Rc = Ra - Rb_or_imm; }}); - 0x69: subqv({{ - uint64_t tmp = Ra - Rb_or_imm; - // signed overflow detection is same as for add, - // except we need to look at the *complemented* - // sign bit of the subtrahend (Rb), i.e., if the initial - // signs are the *same* then no overflow can occur - if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>) - fault = Integer_Overflow_Fault; - Rc = tmp; - }}); - 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }}); - 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }}); - - 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }}); - 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }}); - 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }}); - 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }}); - 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }}); - - 0x0f: cmpbge({{ - int hi = 7; - int lo = 0; - uint64_t tmp = 0; - for (int i = 0; i < 8; ++i) { - tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i; - hi += 8; - lo += 8; - } - Rc = tmp; - }}); - } - - 0x11: decode INTFUNC { // integer logical operations - - 0x00: and({{ Rc = Ra & Rb_or_imm; }}); - 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }}); - 0x20: bis({{ Rc = Ra | Rb_or_imm; }}); - 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }}); - 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }}); - 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }}); - - // conditional moves - 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }}); - 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }}); - 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }}); - 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }}); - 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }}); - 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }}); - 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }}); - 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }}); - - // For AMASK, RA must be R31. - 0x61: decode RA { - 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }}); - } - - // For IMPLVER, RA must be R31 and the B operand - // must be the immediate value 1. - 0x6c: decode RA { - 31: decode IMM { - 1: decode INTIMM { - // return EV5 for FULL_SYSTEM and EV6 otherwise - 1: implver({{ -#if FULL_SYSTEM - Rc = 1; -#else - Rc = 2; -#endif - }}); - } - } - } - -#if FULL_SYSTEM - // The mysterious 11.25... - 0x25: WarnUnimpl::eleven25(); -#endif - } - - 0x12: decode INTFUNC { - 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }}); - 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }}); - 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }}); - - 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }}); - 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }}); - 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }}); - 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }}); - - 0x52: mskwh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra; - }}); - 0x62: msklh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra; - }}); - 0x72: mskqh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra; - }}); - - 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }}); - 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }}); - 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }}); - 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }}); - - 0x5a: extwh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }}); - 0x6a: extlh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }}); - 0x7a: extqh({{ - Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }}); - - 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }}); - 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }}); - 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }}); - 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }}); - - 0x57: inswh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0; - }}); - 0x67: inslh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0; - }}); - 0x77: insqh({{ - int bv = Rb_or_imm<2:0>; - Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0; - }}); - - 0x30: zap({{ - uint64_t zapmask = 0; - for (int i = 0; i < 8; ++i) { - if (Rb_or_imm<i:>) - zapmask |= (mask(8) << (i * 8)); - } - Rc = Ra & ~zapmask; - }}); - 0x31: zapnot({{ - uint64_t zapmask = 0; - for (int i = 0; i < 8; ++i) { - if (!Rb_or_imm<i:>) - zapmask |= (mask(8) << (i * 8)); - } - Rc = Ra & ~zapmask; - }}); - } - - 0x13: decode INTFUNC { // integer multiplies - 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp); - 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp); - 0x30: umulh({{ - uint64_t hi, lo; - mul128(Ra, Rb_or_imm, hi, lo); - Rc = hi; - }}, IntMultOp); - 0x40: mullv({{ - // 32-bit multiply with trap on overflow - int64_t Rax = Ra.sl; // sign extended version of Ra.sl - int64_t Rbx = Rb_or_imm.sl; - int64_t tmp = Rax * Rbx; - // To avoid overflow, all the upper 32 bits must match - // the sign bit of the lower 32. We code this as - // checking the upper 33 bits for all 0s or all 1s. - uint64_t sign_bits = tmp<63:31>; - if (sign_bits != 0 && sign_bits != mask(33)) - fault = Integer_Overflow_Fault; - Rc.sl = tmp<31:0>; - }}, IntMultOp); - 0x60: mulqv({{ - // 64-bit multiply with trap on overflow - uint64_t hi, lo; - mul128(Ra, Rb_or_imm, hi, lo); - // all the upper 64 bits must match the sign bit of - // the lower 64 - if (!((hi == 0 && lo<63:> == 0) || - (hi == mask(64) && lo<63:> == 1))) - fault = Integer_Overflow_Fault; - Rc = lo; - }}, IntMultOp); - } - - 0x1c: decode INTFUNC { - 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); } - 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); } - 0x32: ctlz({{ - uint64_t count = 0; - uint64_t temp = Rb; - if (temp<63:32>) temp >>= 32; else count += 32; - if (temp<31:16>) temp >>= 16; else count += 16; - if (temp<15:8>) temp >>= 8; else count += 8; - if (temp<7:4>) temp >>= 4; else count += 4; - if (temp<3:2>) temp >>= 2; else count += 2; - if (temp<1:1>) temp >>= 1; else count += 1; - if ((temp<0:0>) != 0x1) count += 1; - Rc = count; - }}, IntAluOp); - - 0x33: cttz({{ - uint64_t count = 0; - uint64_t temp = Rb; - if (!(temp<31:0>)) { temp >>= 32; count += 32; } - if (!(temp<15:0>)) { temp >>= 16; count += 16; } - if (!(temp<7:0>)) { temp >>= 8; count += 8; } - if (!(temp<3:0>)) { temp >>= 4; count += 4; } - if (!(temp<1:0>)) { temp >>= 2; count += 2; } - if (!(temp<0:0> & ULL(0x1))) count += 1; - Rc = count; - }}, IntAluOp); - - format FailUnimpl { - 0x30: ctpop(); - 0x31: perr(); - 0x34: unpkbw(); - 0x35: unpkbl(); - 0x36: pkwb(); - 0x37: pklb(); - 0x38: minsb8(); - 0x39: minsw4(); - 0x3a: minub8(); - 0x3b: minuw4(); - 0x3c: maxub8(); - 0x3d: maxuw4(); - 0x3e: maxsb8(); - 0x3f: maxsw4(); - } - - format BasicOperateWithNopCheck { - 0x70: decode RB { - 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp); - } - 0x78: decode RB { - 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }}, - FloatCvtOp); - } - } - } - } - - //Table 3-2 CPU Branch and Jump Instructions ( ) - //Table 3-10 Obsolete CPU Branch Instructions ( ) - - //Table 3-3 CPU Instruction Control Instructions ( ) - - //Table 3-4 CPU Load, Store, and Memory Control Instructions ( ) - - //Table 3-5 CPU Logical Instructions ( ) - - //Table 3-6 CPU Insert/Extract Instructions ( ) - - //Table 3-7 CPU Move Instructions ( ) - - //Table 3-9 CPU Trap Instructions ( ) - - //Table 3-11 FPU Arithmetic Instructions ( ) - - //Table 3-12 FPU Branch Instructions ( ) - //Table 3-17 Obsolete FPU Branch Instructions () - - //Table 3-13 FPU Compare Instructions ( ) - - //Table 3-14 FPU Convert Instructions ( ) - - //Table 3-15 FPU Load, Store, and Memory Control Instructions ( ) - - //Table 3-16 FPU Move Instructions ( ) - - //Tables 3-18 thru 3-22 are Co-Processor Instructions ( ) - - //Table 3-23 Privileged Instructions ( ) - - //Table 3-24 EJTAG Instructions ( ) - - - - - format LoadAddress { - 0x08: lda({{ Ra = Rb + disp; }}); - 0x09: ldah({{ Ra = Rb + (disp << 16); }}); - } - - format LoadOrNop { - 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }}); - 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }}); - 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}); - 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }}); - 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED); - 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED); - 0x20: copy_load({{EA = Ra;}}, - {{fault = xc->copySrcTranslate(EA);}}, - IsMemRef, IsLoad, IsCopy); - } - - format LoadOrPrefetch { - 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}); - 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT); - // IsFloating flag on lds gets the prefetch to disassemble - // using f31 instead of r31... funcitonally it's unnecessary - 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }}, - PF_EXCLUSIVE, IsFloating); - } - - format Store { - 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }}); - 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }}); - 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}); - 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }}); - 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }}); - 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }}); - 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }}); - 0x24: copy_store({{EA = Rb;}}, - {{fault = xc->copy(EA);}}, - IsMemRef, IsStore, IsCopy); - } - - format StoreCond { - 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }}, - {{ - uint64_t tmp = Mem_write_result; - // see stq_c - Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; - }}, LOCKED); - 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }}, - {{ - uint64_t tmp = Mem_write_result; - // If the write operation returns 0 or 1, then - // this was a conventional store conditional, - // and the value indicates the success/failure - // of the operation. If another value is - // returned, then this was a Turbolaser - // mailbox access, and we don't update the - // result register at all. - Ra = (tmp == 0 || tmp == 1) ? tmp : Ra; - }}, LOCKED); - } - - - - // Conditional branches. - format CondBranch { - 0x39: beq({{ cond = (Ra == 0); }}); - 0x3d: bne({{ cond = (Ra != 0); }}); - 0x3e: bge({{ cond = (Ra.sq >= 0); }}); - 0x3f: bgt({{ cond = (Ra.sq > 0); }}); - 0x3b: ble({{ cond = (Ra.sq <= 0); }}); - 0x3a: blt({{ cond = (Ra.sq < 0); }}); - 0x38: blbc({{ cond = ((Ra & 1) == 0); }}); - 0x3c: blbs({{ cond = ((Ra & 1) == 1); }}); - - 0x31: fbeq({{ cond = (Fa == 0); }}); - 0x35: fbne({{ cond = (Fa != 0); }}); - 0x36: fbge({{ cond = (Fa >= 0); }}); - 0x37: fbgt({{ cond = (Fa > 0); }}); - 0x33: fble({{ cond = (Fa <= 0); }}); - 0x32: fblt({{ cond = (Fa < 0); }}); - } - - // unconditional branches - format UncondBranch { - 0x30: br(); - 0x34: bsr(IsCall); - } - - // indirect branches - 0x1a: decode JMPFUNC { - format Jump { - 0: jmp(); - 1: jsr(IsCall); - 2: ret(IsReturn); - 3: jsr_coroutine(IsCall, IsReturn); - } - } - - // Square root and integer-to-FP moves - 0x14: decode FP_SHORTFUNC { - // Integer to FP register moves must have RB == 31 - 0x4: decode RB { - 31: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp); - 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp); - 0x014: FailUnimpl::itoff(); // VAX-format conversion - } - } - } - - // Square root instructions must have FA == 31 - 0xb: decode FA { - 31: decode FP_TYPEFUNC { - format FloatingPointOperate { -#if SS_COMPATIBLE_FP - 0x0b: sqrts({{ - if (Fb < 0.0) - fault = Arithmetic_Fault; - Fc = sqrt(Fb); - }}, FloatSqrtOp); -#else - 0x0b: sqrts({{ - if (Fb.sf < 0.0) - fault = Arithmetic_Fault; - Fc.sf = sqrt(Fb.sf); - }}, FloatSqrtOp); -#endif - 0x2b: sqrtt({{ - if (Fb < 0.0) - fault = Arithmetic_Fault; - Fc = sqrt(Fb); - }}, FloatSqrtOp); - } - } - } - - // VAX-format sqrtf and sqrtg are not implemented - 0xa: FailUnimpl::sqrtfg(); - } - - // IEEE floating point - 0x16: decode FP_SHORTFUNC_TOP2 { - // The top two bits of the short function code break this - // space into four groups: binary ops, compares, reserved, and - // conversions. See Table 4-12 of AHB. There are different - // special cases in these different groups, so we decode on - // these top two bits first just to select a decode strategy. - // Most of these instructions may have various trapping and - // rounding mode flags set; these are decoded in the - // FloatingPointDecode template used by the - // FloatingPointOperate format. - - // add/sub/mul/div: just decode on the short function code - // and source type. All valid trapping and rounding modes apply. - 0: decode FP_TRAPMODE { - // check for valid trapping modes here - 0,1,5,7: decode FP_TYPEFUNC { - format FloatingPointOperate { -#if SS_COMPATIBLE_FP - 0x00: adds({{ Fc = Fa + Fb; }}); - 0x01: subs({{ Fc = Fa - Fb; }}); - 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp); - 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp); -#else - 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }}); - 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }}); - 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp); - 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp); -#endif - - 0x20: addt({{ Fc = Fa + Fb; }}); - 0x21: subt({{ Fc = Fa - Fb; }}); - 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp); - 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp); - } - } - } - - // Floating-point compare instructions must have the default - // rounding mode, and may use the default trapping mode or - // /SU. Both trapping modes are treated the same by M5; the - // only difference on the real hardware (as far a I can tell) - // is that without /SU you'd get an imprecise trap if you - // tried to compare a NaN with something else (instead of an - // "unordered" result). - 1: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }}, - FloatCmpOp); - 0x0a4, 0x5a4: cmptun({{ // unordered - Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0; - }}, FloatCmpOp); - } - } - - // The FP-to-integer and integer-to-FP conversion insts - // require that FA be 31. - 3: decode FA { - 31: decode FP_TYPEFUNC { - format FloatingPointOperate { - 0x2f: decode FP_ROUNDMODE { - format FPFixedRounding { - // "chopped" i.e. round toward zero - 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }}, - Chopped); - // round to minus infinity - 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }}, - MinusInfinity); - } - default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }}); - } - - // The cvtts opcode is overloaded to be cvtst if the trap - // mode is 2 or 6 (which are not valid otherwise) - 0x2c: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - // trap on denorm version "cvtst/s" is - // simulated same as cvtst - 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }}); - } - default: cvtts({{ Fc.sf = Fb; }}); - } - - // The trapping mode for integer-to-FP conversions - // must be /SUI or nothing; /U and /SU are not - // allowed. The full set of rounding modes are - // supported though. - 0x3c: decode FP_TRAPMODE { - 0,7: cvtqs({{ Fc.sf = Fb.sq; }}); - } - 0x3e: decode FP_TRAPMODE { - 0,7: cvtqt({{ Fc = Fb.sq; }}); - } - } - } - } - } - - // misc FP operate - 0x17: decode FP_FULLFUNC { - format BasicOperateWithNopCheck { - 0x010: cvtlq({{ - Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>; - }}); - 0x030: cvtql({{ - Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); - }}); - - // We treat the precise & imprecise trapping versions of - // cvtql identically. - 0x130, 0x530: cvtqlv({{ - // To avoid overflow, all the upper 32 bits must match - // the sign bit of the lower 32. We code this as - // checking the upper 33 bits for all 0s or all 1s. - uint64_t sign_bits = Fb.uq<63:31>; - if (sign_bits != 0 && sign_bits != mask(33)) - fault = Integer_Overflow_Fault; - Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29); - }}); - - 0x020: cpys({{ // copy sign - Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>; - }}); - 0x021: cpysn({{ // copy sign negated - Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>; - }}); - 0x022: cpyse({{ // copy sign and exponent - Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>; - }}); - - 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }}); - 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }}); - 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }}); - 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }}); - 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }}); - 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }}); - - 0x024: mt_fpcr({{ FPCR = Fa.uq; }}); - 0x025: mf_fpcr({{ Fa.uq = FPCR; }}); - } - } - - // miscellaneous mem-format ops - 0x18: decode MEMFUNC { - format WarnUnimpl { - 0x8000: fetch(); - 0xa000: fetch_m(); - 0xe800: ecb(); - } - - format MiscPrefetch { - 0xf800: wh64({{ EA = Rb & ~ULL(63); }}, - {{ xc->writeHint(EA, 64, memAccessFlags); }}, - IsMemRef, IsDataPrefetch, IsStore, MemWriteOp, - NO_FAULT); - } - - format BasicOperate { - 0xc000: rpcc({{ -#if FULL_SYSTEM - /* Rb is a fake dependency so here is a fun way to get - * the parser to understand that. - */ - Ra = xc->readIpr(MipsISA::IPR_CC, fault) + (Rb & 0); - -#else - Ra = curTick; -#endif - }}); - - // All of the barrier instructions below do nothing in - // their execute() methods (hence the empty code blocks). - // All of their functionality is hard-coded in the - // pipeline based on the flags IsSerializing, - // IsMemBarrier, and IsWriteBarrier. In the current - // detailed CPU model, the execute() function only gets - // called at fetch, so there's no way to generate pipeline - // behavior at any other stage. Once we go to an - // exec-in-exec CPU model we should be able to get rid of - // these flags and implement this behavior via the - // execute() methods. - - // trapb is just a barrier on integer traps, where excb is - // a barrier on integer and FP traps. "EXCB is thus a - // superset of TRAPB." (Mips ARM, Sec 4.11.4) We treat - // them the same though. - 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); - 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass); - 0x4000: mb({{ }}, IsMemBarrier, MemReadOp); - 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp); - } - -#if FULL_SYSTEM - format BasicOperate { - 0xe000: rc({{ - Ra = xc->readIntrFlag(); - xc->setIntrFlag(0); - }}, IsNonSpeculative); - 0xf000: rs({{ - Ra = xc->readIntrFlag(); - xc->setIntrFlag(1); - }}, IsNonSpeculative); - } -#else - format FailUnimpl { - 0xe000: rc(); - 0xf000: rs(); - } -#endif - } - -#if FULL_SYSTEM - 0x00: CallPal::call_pal({{ - if (!palValid || - (palPriv - && xc->readIpr(MipsISA::IPR_ICM, fault) != MipsISA::mode_kernel)) { - // invalid pal function code, or attempt to do privileged - // PAL call in non-kernel mode - fault = Unimplemented_Opcode_Fault; - } - else { - // check to see if simulator wants to do something special - // on this PAL call (including maybe suppress it) - bool dopal = xc->simPalCheck(palFunc); - - if (dopal) { - MipsISA::swap_palshadow(&xc->xcBase()->regs, true); - xc->setIpr(MipsISA::IPR_EXC_ADDR, NPC); - NPC = xc->readIpr(MipsISA::IPR_PAL_BASE, fault) + palOffset; - } - } - }}, IsNonSpeculative); -#else - 0x00: decode PALFUNC { - format EmulatedCallPal { - 0x00: halt ({{ - SimExit(curTick, "halt instruction encountered"); - }}, IsNonSpeculative); - 0x83: callsys({{ - xc->syscall(); - }}, IsNonSpeculative, IsSerializeAfter); - // Read uniq reg into ABI return value register (r0) - 0x9e: rduniq({{ R0 = Runiq; }}); - // Write uniq reg with value from ABI arg register (r16) - 0x9f: wruniq({{ Runiq = R16; }}); - } - } -#endif - -#if FULL_SYSTEM - format HwLoadStore { - 0x1b: decode HW_LDST_QUAD { - 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L); - 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q); - } - - 0x1f: decode HW_LDST_COND { - 0: decode HW_LDST_QUAD { - 0: hw_st({{ EA = (Rb + disp) & ~3; }}, - {{ Mem.ul = Ra<31:0>; }}, L); - 1: hw_st({{ EA = (Rb + disp) & ~7; }}, - {{ Mem.uq = Ra.uq; }}, Q); - } - - 1: FailUnimpl::hw_st_cond(); - } - } - - format HwMoveIPR { - 0x19: hw_mfpr({{ - // this instruction is only valid in PAL mode - if (!xc->inPalMode()) { - fault = Unimplemented_Opcode_Fault; - } - else { - Ra = xc->readIpr(ipr_index, fault); - } - }}); - 0x1d: hw_mtpr({{ - // this instruction is only valid in PAL mode - if (!xc->inPalMode()) { - fault = Unimplemented_Opcode_Fault; - } - else { - xc->setIpr(ipr_index, Ra); - if (traceData) { traceData->setData(Ra); } - } - }}); - } - - format BasicOperate { - 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore); - - // M5 special opcodes use the reserved 0x01 opcode space - 0x01: decode M5FUNC { - 0x00: arm({{ - MipsPseudo::arm(xc->xcBase()); - }}, IsNonSpeculative); - 0x01: quiesce({{ - MipsPseudo::quiesce(xc->xcBase()); - }}, IsNonSpeculative); - 0x10: ivlb({{ - MipsPseudo::ivlb(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x11: ivle({{ - MipsPseudo::ivle(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x20: m5exit_old({{ - MipsPseudo::m5exit_old(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x21: m5exit({{ - MipsPseudo::m5exit(xc->xcBase()); - }}, No_OpClass, IsNonSpeculative); - 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }}); - 0x40: resetstats({{ - MipsPseudo::resetstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x41: dumpstats({{ - MipsPseudo::dumpstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x42: dumpresetstats({{ - MipsPseudo::dumpresetstats(xc->xcBase()); - }}, IsNonSpeculative); - 0x43: m5checkpoint({{ - MipsPseudo::m5checkpoint(xc->xcBase()); - }}, IsNonSpeculative); - 0x50: m5readfile({{ - MipsPseudo::readfile(xc->xcBase()); - }}, IsNonSpeculative); - 0x51: m5break({{ - MipsPseudo::debugbreak(xc->xcBase()); - }}, IsNonSpeculative); - 0x52: m5switchcpu({{ - MipsPseudo::switchcpu(xc->xcBase()); - }}, IsNonSpeculative); - 0x53: m5addsymbol({{ - MipsPseudo::addsymbol(xc->xcBase()); - }}, IsNonSpeculative); - - } - } -#endif } |