summaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
authorKorey Sewell <ksewell@umich.edu>2006-01-25 17:06:23 -0500
committerKorey Sewell <ksewell@umich.edu>2006-01-25 17:06:23 -0500
commit14fc0996e3d349c03c1e0afcb09df3679891dea5 (patch)
tree8fc0e2f6b00bddb130cf96eeaa24f2395224a5a3 /arch
parent90aa2dbfc226f6b34165603b38f102312008c23c (diff)
downloadgem5-14fc0996e3d349c03c1e0afcb09df3679891dea5.tar.xz
first version of my decoder function skeleton
- this will decode the instructions but not doing anything to create the C++ object yet (the 1st of many steps!) arch/mips/isa_desc/bitfields.h: initial bitfield constants ... copied some from original alpha bitfields arch/mips/isa_desc/decoder.h: decoder function skeleton pt.1 - this will decode the instructions but not doing anything to create the C++ object yet (the 1st of many steps!) --HG-- extra : convert_revision : 2b9a0f8160c78b17f9d3d5eaf5af5a4d2f074761
Diffstat (limited to 'arch')
-rw-r--r--arch/mips/isa_desc/bitfields.h112
-rw-r--r--arch/mips/isa_desc/decoder.h1051
2 files changed, 251 insertions, 912 deletions
diff --git a/arch/mips/isa_desc/bitfields.h b/arch/mips/isa_desc/bitfields.h
index b0ac57575..7fce190ce 100644
--- a/arch/mips/isa_desc/bitfields.h
+++ b/arch/mips/isa_desc/bitfields.h
@@ -3,48 +3,70 @@
// Bitfield definitions.
//
-// Bitfields are shared liberally between instruction formats, so they are
-// simply defined alphabetically
-
-def bitfield A <29>;
-def bitfield CC02 <20>;
-def bitfield CC03 <25>;
-def bitfield CC04 <11>;
-def bitfield CC12 <21>;
-def bitfield CC13 <26>;
-def bitfield CC14 <12>;
-def bitfield CC2 <18>;
-def bitfield CMASK <6:4>;
-def bitfield COND2 <28:25>;
-def bitfield COND4 <17:14>;
-def bitfield D16HI <21:20>;
-def bitfield D16LO <13:0>;
-def bitfield DISP19 <18:0>;
-def bitfield DISP22 <21:0>;
-def bitfield DISP30 <29:0>;
-def bitfield FCN <29:26>;
-def bitfield I <13>;
-def bitfield IMM_ASI <12:5>;
-def bitfield IMM22 <21:0>;
-def bitfield MMASK <3:0>;
-def bitfield OP <31:30>;
-def bitfield OP2 <24:22>;
-def bitfield OP3 <24:19>;
-def bitfield OPF <13:5>;
-def bitfield OPF_CC <13:11>;
-def bitfield OPF_LOW5 <9:5>;
-def bitfield OPF_LOW6 <10:5>;
-def bitfield P <19>;
-def bitfield RCOND2 <27:25>;
-def bitfield RCOND3 <12:10>;
-def bitfield RCOND4 <12:10>;
-def bitfield RD <29:25>;
-def bitfield RS1 <18:14>;
-def bitfield RS2 <4:0>;
-def bitfield SHCNT32 <4:0>;
-def bitfield SHCNT64 <5:0>;
-def bitfield SIMM10 <9:0>;
-def bitfield SIMM11 <10:0>;
-def bitfield SIMM13 <12:0>;
-def bitfield SW_TRAP <6:0>;
-def bitfield X <12>;
+// Universal (format-independent) fields
+def bitfield OPCODE_HI <31:29>;
+def bitfield OPCODE_LO <28:26>;
+
+def bitfield SPECIAL_HI < 5: 3>;
+def bitfield SPECIAL_HI < 2: 0>;
+
+def bitfield REGIMM_HI <20:19>;
+def bitfield REGIMM_LO <18:16>;
+
+def bitfield RS <25:21>;
+def bitfield RT <20:16>;
+
+// Integer operate format(s>;
+def bitfield INTIMM <15: 0>; // integer immediate (literal)
+def bitfield IMM <12:12>; // immediate flag
+def bitfield INTFUNC <11: 5>; // function code
+def bitfield RD <15:11>; // dest reg
+
+// Memory format
+def signed bitfield MEMDISP <15: 0>; // displacement
+def bitfield MEMFUNC <15: 0>; // function code (same field, unsigned)
+
+// Memory-format jumps
+def bitfield JMPFUNC <15:14>; // function code (disp<15:14>)
+def bitfield JMPHINT <13: 0>; // tgt Icache idx hint (disp<13:0>)
+
+// Branch format
+def signed bitfield BRDISP <20: 0>; // displacement
+
+// Floating-point operate format
+def bitfield FMT <25:21>;
+def bitfield FT <20:16>;
+def bitfield FS <15:11>;
+def bitfield FD <10: 6>;
+
+def bitfield FP_FULLFUNC <15: 5>; // complete function code
+ def bitfield FP_TRAPMODE <15:13>; // trapping mode
+ def bitfield FP_ROUNDMODE <12:11>; // rounding mode
+ def bitfield FP_TYPEFUNC <10: 5>; // type+func: handiest for decoding
+ def bitfield FP_SRCTYPE <10: 9>; // source reg type
+ def bitfield FP_SHORTFUNC < 8: 5>; // short function code
+ def bitfield FP_SHORTFUNC_TOP2 <8:7>; // top 2 bits of short func code
+
+// PALcode format
+def bitfield PALFUNC <25: 0>; // function code
+
+// EV5 PAL instructions:
+// HW_LD/HW_ST
+def bitfield HW_LDST_PHYS <15>; // address is physical
+def bitfield HW_LDST_ALT <14>; // use ALT_MODE IPR
+def bitfield HW_LDST_WRTCK <13>; // HW_LD only: fault if no write acc
+def bitfield HW_LDST_QUAD <12>; // size: 0=32b, 1=64b
+def bitfield HW_LDST_VPTE <11>; // HW_LD only: is PTE fetch
+def bitfield HW_LDST_LOCK <10>; // HW_LD only: is load locked
+def bitfield HW_LDST_COND <10>; // HW_ST only: is store conditional
+def signed bitfield HW_LDST_DISP <9:0>; // signed displacement
+
+// HW_REI
+def bitfield HW_REI_TYP <15:14>; // type: stalling vs. non-stallingk
+def bitfield HW_REI_MBZ <13: 0>; // must be zero
+
+// HW_MTPR/MW_MFPR
+def bitfield HW_IPR_IDX <15:0>; // IPR index
+
+// M5 instructions
+def bitfield M5FUNC <7:0>;
diff --git a/arch/mips/isa_desc/decoder.h b/arch/mips/isa_desc/decoder.h
index 5d71968ce..235ff1ef6 100644
--- a/arch/mips/isa_desc/decoder.h
+++ b/arch/mips/isa_desc/decoder.h
@@ -7,30 +7,154 @@
// in the MIPS32 ISAthe specification document starting with Table
// A-2 (document available @ www.mips.com)
//
-//
+//@todo: Distinguish "unknown/future" use insts from "reserved"
+// ones
decode OPCODE_HI default FailUnimpl::unknown() {
// Derived From ... Table A-2 MIPS32 ISA Manual
- 0x0: decode OPCODE_LO {
+ 0x0: decode OPCODE_LO default FailUnimpl::reserved(){
+
+ 0x0: decode SPECIAL_HI {
+ 0x0: decode SPECIAL_LO {
+ 0x1: decode MOVCI {
+ format Move {
+ 0: movc({{ }});
+ 1: movt({{ }});
+ }
+ }
- 0x0: decode SPECIAL {
- 0x0:;
- 0x1:;
- 0x2:;
- 0x3:;
- 0x4:;
- 0x5:;
- 0x6:;
+ format ShiftRotate {
+ //Table A-3 Note: "1. Specific encodings of the rt, rd, and sa fields
+ //are used to distinguish among the SLL, NOP, SSNOP and EHB functions."
+ 0x0: sll({{ }});
+
+ 0x2: decode SRL {
+ 0: srl({{ }});
+ 1: rotr({{ }});
+ }
+
+ 0x3: sar({{ }});
+
+ 0x4: sllv({{ }});
+
+ 0x6: decode SRLV {
+ 0: srlv({{ }});
+ 1: rotrv({{ }});
+ }
+
+ 0x7: srav({{ }});
+ }
+ }
+
+ 0x1: decode SPECIAL_LO {
+
+ //Table A-3 Note: "Specific encodings of the hint field are used
+ //to distinguish JR from JR.HB and JALR from JALR.HB"
+ format Jump {
+ 0x0: jr({{ }});
+ 0x1: jalr({{ }});
+ }
+
+ format Move {
+ 0x2: movz({{ }});
+ 0x3: movn({{ }});
+ }
+
+ 0x4: Syscall::syscall({{ }});
+ 0x5: Break::break({{ }});
+ 0x7: Synchronize::synch({{ }});
+ }
+
+ 0x2: decode SPECIAL_LO {
+ format MultDiv {
+ 0x0: mfhi({{ }});
+ 0x1: mthi({{ }});
+ 0x2: mflo({{ }});
+ 0x3: mtlo({{ }});
+ }
+ };
+
+ 0x3: decode SPECIAL_LO {
+ format MultDiv {
+ 0x0: mult({{ }});
+ 0x1: multu({{ }});
+ 0x2: div({{ }});
+ 0x3: divu({{ }});
+ }
+ };
+
+ 0x4: decode SPECIAL_LO {
+ format Arithmetic {
+ 0x0: add({{ }});
+ 0x1: addu({{ }});
+ 0x2: sub({{ }});
+ 0x3: subu({{ }});
+ }
+
+ format Logical {
+ 0x0: and({{ }});
+ 0x1: or({{ }});
+ 0x2: xor({{ }});
+ 0x3: nor({{ }});
+ }
+ }
+
+ 0x5: decode SPECIAL_LO {
+ format SetInstructions{
+ 0x2: slt({{ }});
+ 0x3: sltu({{ }});
+ }
+ };
+
+ 0x6: decode SPECIAL_LO {
+ format Trap {
+ 0x0: tge({{ }});
+ 0x1: tgeu({{ }});
+ 0x2: tlt({{ }});
+ 0x3: tltu({{ }});
+ 0x4: teq({{ }});
+ 0x6: tne({{ }});
+ }
+ }
}
- 0x1: decode REGIMM {
- 0x0:;
- 0x1:;
- 0x2:;
- 0x3:;
- 0x4:;
- 0x5:;
- 0x6:;
+ 0x1: decode REGIMM_HI {
+ 0x0: decode REGIMM_LO {
+ format Branch {
+ 0x0: bltz({{ }});
+ 0x1: bgez({{ }});
+
+ //MIPS obsolete instructions
+ 0x2: bltzl({{ }});
+ 0x3: bgezl({{ }});
+ }
+ }
+
+ 0x1: decode REGIMM_LO {
+ format Trap {
+ 0x0: tgei({{ }});
+ 0x1: tgeiu({{ }});
+ 0x2: tlti({{ }});
+ 0x3: tltiu({{ }});
+ 0x4: teqi({{ }});
+ 0x6: tnei({{ }});
+ }
+ }
+
+ 0x2: decode REGIMM_LO {
+ format Branch {
+ 0x0: bltzal({{ }});
+ 0x1: bgezal({{ }});
+
+ //MIPS obsolete instructions
+ 0x2: bltzall({{ }});
+ 0x3: bgezall({{ }});
+ }
+ }
+
+ 0x3: decode REGIMM_LO {
+ 0x7: synci({{ }});
+ }
}
format Jump {
@@ -46,7 +170,7 @@ decode OPCODE_HI default FailUnimpl::unknown() {
}
};
- 0x1: decode OPCODE_LO {
+ 0x1: decode OPCODE_LO default FailUnimpl::reserved(){
format IntImmediate {
0x0: addi({{ }});
0x1: addiu({{ }});
@@ -59,29 +183,39 @@ decode OPCODE_HI default FailUnimpl::unknown() {
};
};
- 0x2: decode OPCODE_LO {
- format FailUnimpl{
- 0x0: coprocessor_op({{ }});
- 0x1: coprocessor_op({{ }});
- 0x2: coprocessor_op({{ }});
- 0x3: coprocessor_op({{ }});
- };
+ 0x2: decode OPCODE_LO default FailUnimpl::reserved(){
+
+ 0x0: decode RS {
+ //Table A-11 MIPS32 COP0 Encoding of rs Field
+ }
+
+ 0x1: decode RS {
+ //Table A-13 MIPS32 COP1 Encoding of rs Field
+ }
+
+ 0x2: decode RS {
+ //Table A-19 MIPS32 COP2 Encoding of rs Field
+ }
- //MIPS obsolete instructions
- 0x4: beql({{ }});
- 0x5: bnel({{ }});
- 0x6: blezl({{ }});
- 0x7: bgtzl({{ }});
+ 0x3: decode FUNCTION_HI {
+ //Table A-20 MIPS64 COP1X Encoding of Function Field 1
+ }
+
+ //MIPS obsolete instructions
+ 0x4: beql({{ }});
+ 0x5: bnel({{ }});
+ 0x6: blezl({{ }});
+ 0x7: bgtzl({{ }});
};
- 0x3: decode OPCODE_LO {
+ 0x3: decode OPCODE_LO default FailUnimpl::reserved(){
format FailUnimpl{
- 0x0: reserved({{ }})
- 0x1: reserved({{ }})
- 0x2: reserved({{ }})
- 0x3: reserved({{ }})
- 0x5: reserved({{ }})
- 0x6: reserved({{ }})
+ 0x0: reserved_inst_exception({{ }})
+ 0x1: reserved_inst_exception({{ }})
+ 0x2: reserved_inst_exception({{ }})
+ 0x3: reserved_inst_exception({{ }})
+ 0x5: reserved_inst_exception({{ }})
+ 0x6: reserved_inst_exception({{ }})
};
4: decode SPECIAL2 {
@@ -105,7 +239,7 @@ decode OPCODE_HI default FailUnimpl::unknown() {
}
};
- 0x4: decode OPCODE_LO {
+ 0x4: decode OPCODE_LO default FailUnimpl::reserved(){
format LoadMemory{
0x0: lb({{ }});
0x1: lh({{ }});
@@ -116,10 +250,10 @@ decode OPCODE_HI default FailUnimpl::unknown() {
0x6: lhu({{ }});
};
- 0x7: FailUnimpl::reserved({{ }});
+ 0x7: FailUnimpl::reserved_inst_exception({{ }});
};
- 0x5: decode OPCODE_LO {
+ 0x5: decode OPCODE_LO default FailUnimpl::reserved(){
format StoreMemory{
0x0: sb({{ }});
0x1: sh({{ }});
@@ -129,14 +263,14 @@ decode OPCODE_HI default FailUnimpl::unknown() {
};
format FailUnimpl{
- 0x4: reserved({{ }});
- 0x5: reserved({{ }});
+ 0x4: reserved_inst_exception({{ }});
+ 0x5: reserved_inst_exception({{ }});
0x2: cache({{ }});
};
};
- 0x6: decode OPCODE_LO {
+ 0x6: decode OPCODE_LO default FailUnimpl::reserved(){
format LoadMemory{
0x0: ll({{ }});
0x1: lwc1({{ }});
@@ -146,14 +280,14 @@ decode OPCODE_HI default FailUnimpl::unknown() {
format FailUnimpl{
0x2: lwc2({{ }});
0x3: pref({{ }});
- 0x4: reserved({{ }});
+ 0x4: reserved_inst_exception({{ }});
0x6: ldc2({{ }});
- 0x7: reserved({{ }});
+ 0x7: reserved_inst_exception({{ }});
};
};
- 0x7: decode OPCODE_LO {
+ 0x7: decode OPCODE_LO default FailUnimpl::reserved(){
format StoreMemory{
0x0: sc({{ }});
0x1: swc1({{ }});
@@ -162,830 +296,13 @@ decode OPCODE_HI default FailUnimpl::unknown() {
format FailUnimpl{
0x2: swc2({{ }});
- 0x3: reserved({{ }});
- 0x4: reserved({{ }});
+ 0x3: reserved_inst_exception({{ }});
+ 0x4: reserved_inst_exception({{ }});
0x6: sdc2({{ }});
- 0x7: reserved({{ }});
+ 0x7: reserved_inst_exception({{ }});
};
};
-
- //Table 3-1 CPU Arithmetic Instructions ( )
- format IntegerOperate {
-
- 0x10: decode INTFUNC { // integer arithmetic operations
-
- //ADD Add Word
-
- //ADDI Add Immediate Word
-
- //ADDIU Add Immediate Unsigned Word
-
- //ADDU Add Unsigned Word
-
- 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
- 0x40: addlv({{
- uint32_t tmp = Ra.sl + Rb_or_imm.sl;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
- 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
-
- 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
- 0x60: addqv({{
- uint64_t tmp = Ra + Rb_or_imm;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
- 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
-
- 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
- 0x49: sublv({{
- uint32_t tmp = Ra.sl - Rb_or_imm.sl;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
- 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
-
- 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
- 0x69: subqv({{
- uint64_t tmp = Ra - Rb_or_imm;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
- 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
-
- 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
- 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
- 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
- 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
- 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
-
- 0x0f: cmpbge({{
- int hi = 7;
- int lo = 0;
- uint64_t tmp = 0;
- for (int i = 0; i < 8; ++i) {
- tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
- hi += 8;
- lo += 8;
- }
- Rc = tmp;
- }});
- }
-
- 0x11: decode INTFUNC { // integer logical operations
-
- 0x00: and({{ Rc = Ra & Rb_or_imm; }});
- 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
- 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
- 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
- 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
- 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
-
- // conditional moves
- 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
- 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
- 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
- 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
- 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
- 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
- 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
- 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
-
- // For AMASK, RA must be R31.
- 0x61: decode RA {
- 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
- }
-
- // For IMPLVER, RA must be R31 and the B operand
- // must be the immediate value 1.
- 0x6c: decode RA {
- 31: decode IMM {
- 1: decode INTIMM {
- // return EV5 for FULL_SYSTEM and EV6 otherwise
- 1: implver({{
-#if FULL_SYSTEM
- Rc = 1;
-#else
- Rc = 2;
-#endif
- }});
- }
- }
- }
-
-#if FULL_SYSTEM
- // The mysterious 11.25...
- 0x25: WarnUnimpl::eleven25();
-#endif
- }
-
- 0x12: decode INTFUNC {
- 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
- 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
- 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
-
- 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
- 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
- 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
- 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
-
- 0x52: mskwh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
- }});
- 0x62: msklh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
- }});
- 0x72: mskqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
- }});
-
- 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
- 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
- 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
- 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
-
- 0x5a: extwh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
- 0x6a: extlh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
- 0x7a: extqh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
-
- 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
- 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
- 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
- 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
-
- 0x57: inswh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x67: inslh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x77: insqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
- }});
-
- 0x30: zap({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- 0x31: zapnot({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (!Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- }
-
- 0x13: decode INTFUNC { // integer multiplies
- 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
- 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
- 0x30: umulh({{
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- Rc = hi;
- }}, IntMultOp);
- 0x40: mullv({{
- // 32-bit multiply with trap on overflow
- int64_t Rax = Ra.sl; // sign extended version of Ra.sl
- int64_t Rbx = Rb_or_imm.sl;
- int64_t tmp = Rax * Rbx;
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = tmp<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp<31:0>;
- }}, IntMultOp);
- 0x60: mulqv({{
- // 64-bit multiply with trap on overflow
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- // all the upper 64 bits must match the sign bit of
- // the lower 64
- if (!((hi == 0 && lo<63:> == 0) ||
- (hi == mask(64) && lo<63:> == 1)))
- fault = Integer_Overflow_Fault;
- Rc = lo;
- }}, IntMultOp);
- }
-
- 0x1c: decode INTFUNC {
- 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
- 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
- 0x32: ctlz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (temp<63:32>) temp >>= 32; else count += 32;
- if (temp<31:16>) temp >>= 16; else count += 16;
- if (temp<15:8>) temp >>= 8; else count += 8;
- if (temp<7:4>) temp >>= 4; else count += 4;
- if (temp<3:2>) temp >>= 2; else count += 2;
- if (temp<1:1>) temp >>= 1; else count += 1;
- if ((temp<0:0>) != 0x1) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- 0x33: cttz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (!(temp<31:0>)) { temp >>= 32; count += 32; }
- if (!(temp<15:0>)) { temp >>= 16; count += 16; }
- if (!(temp<7:0>)) { temp >>= 8; count += 8; }
- if (!(temp<3:0>)) { temp >>= 4; count += 4; }
- if (!(temp<1:0>)) { temp >>= 2; count += 2; }
- if (!(temp<0:0> & ULL(0x1))) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- format FailUnimpl {
- 0x30: ctpop();
- 0x31: perr();
- 0x34: unpkbw();
- 0x35: unpkbl();
- 0x36: pkwb();
- 0x37: pklb();
- 0x38: minsb8();
- 0x39: minsw4();
- 0x3a: minub8();
- 0x3b: minuw4();
- 0x3c: maxub8();
- 0x3d: maxuw4();
- 0x3e: maxsb8();
- 0x3f: maxsw4();
- }
-
- format BasicOperateWithNopCheck {
- 0x70: decode RB {
- 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
- }
- 0x78: decode RB {
- 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
- FloatCvtOp);
- }
- }
- }
- }
-
- //Table 3-2 CPU Branch and Jump Instructions ( )
- //Table 3-10 Obsolete CPU Branch Instructions ( )
-
- //Table 3-3 CPU Instruction Control Instructions ( )
-
- //Table 3-4 CPU Load, Store, and Memory Control Instructions ( )
-
- //Table 3-5 CPU Logical Instructions ( )
-
- //Table 3-6 CPU Insert/Extract Instructions ( )
-
- //Table 3-7 CPU Move Instructions ( )
-
- //Table 3-9 CPU Trap Instructions ( )
-
- //Table 3-11 FPU Arithmetic Instructions ( )
-
- //Table 3-12 FPU Branch Instructions ( )
- //Table 3-17 Obsolete FPU Branch Instructions ()
-
- //Table 3-13 FPU Compare Instructions ( )
-
- //Table 3-14 FPU Convert Instructions ( )
-
- //Table 3-15 FPU Load, Store, and Memory Control Instructions ( )
-
- //Table 3-16 FPU Move Instructions ( )
-
- //Tables 3-18 thru 3-22 are Co-Processor Instructions ( )
-
- //Table 3-23 Privileged Instructions ( )
-
- //Table 3-24 EJTAG Instructions ( )
-
-
-
-
- format LoadAddress {
- 0x08: lda({{ Ra = Rb + disp; }});
- 0x09: ldah({{ Ra = Rb + (disp << 16); }});
- }
-
- format LoadOrNop {
- 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
- 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
- 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
- 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
- 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
- 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
- 0x20: copy_load({{EA = Ra;}},
- {{fault = xc->copySrcTranslate(EA);}},
- IsMemRef, IsLoad, IsCopy);
- }
-
- format LoadOrPrefetch {
- 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
- 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
- // IsFloating flag on lds gets the prefetch to disassemble
- // using f31 instead of r31... funcitonally it's unnecessary
- 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
- PF_EXCLUSIVE, IsFloating);
- }
-
- format Store {
- 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
- 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
- 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
- 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
- 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
- 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
- 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
- 0x24: copy_store({{EA = Rb;}},
- {{fault = xc->copy(EA);}},
- IsMemRef, IsStore, IsCopy);
- }
-
- format StoreCond {
- 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
- {{
- uint64_t tmp = Mem_write_result;
- // see stq_c
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
- {{
- uint64_t tmp = Mem_write_result;
- // If the write operation returns 0 or 1, then
- // this was a conventional store conditional,
- // and the value indicates the success/failure
- // of the operation. If another value is
- // returned, then this was a Turbolaser
- // mailbox access, and we don't update the
- // result register at all.
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- }
-
-
-
- // Conditional branches.
- format CondBranch {
- 0x39: beq({{ cond = (Ra == 0); }});
- 0x3d: bne({{ cond = (Ra != 0); }});
- 0x3e: bge({{ cond = (Ra.sq >= 0); }});
- 0x3f: bgt({{ cond = (Ra.sq > 0); }});
- 0x3b: ble({{ cond = (Ra.sq <= 0); }});
- 0x3a: blt({{ cond = (Ra.sq < 0); }});
- 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
- 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
-
- 0x31: fbeq({{ cond = (Fa == 0); }});
- 0x35: fbne({{ cond = (Fa != 0); }});
- 0x36: fbge({{ cond = (Fa >= 0); }});
- 0x37: fbgt({{ cond = (Fa > 0); }});
- 0x33: fble({{ cond = (Fa <= 0); }});
- 0x32: fblt({{ cond = (Fa < 0); }});
- }
-
- // unconditional branches
- format UncondBranch {
- 0x30: br();
- 0x34: bsr(IsCall);
- }
-
- // indirect branches
- 0x1a: decode JMPFUNC {
- format Jump {
- 0: jmp();
- 1: jsr(IsCall);
- 2: ret(IsReturn);
- 3: jsr_coroutine(IsCall, IsReturn);
- }
- }
-
- // Square root and integer-to-FP moves
- 0x14: decode FP_SHORTFUNC {
- // Integer to FP register moves must have RB == 31
- 0x4: decode RB {
- 31: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
- 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
- 0x014: FailUnimpl::itoff(); // VAX-format conversion
- }
- }
- }
-
- // Square root instructions must have FA == 31
- 0xb: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x0b: sqrts({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
-#else
- 0x0b: sqrts({{
- if (Fb.sf < 0.0)
- fault = Arithmetic_Fault;
- Fc.sf = sqrt(Fb.sf);
- }}, FloatSqrtOp);
-#endif
- 0x2b: sqrtt({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
- }
- }
- }
-
- // VAX-format sqrtf and sqrtg are not implemented
- 0xa: FailUnimpl::sqrtfg();
- }
-
- // IEEE floating point
- 0x16: decode FP_SHORTFUNC_TOP2 {
- // The top two bits of the short function code break this
- // space into four groups: binary ops, compares, reserved, and
- // conversions. See Table 4-12 of AHB. There are different
- // special cases in these different groups, so we decode on
- // these top two bits first just to select a decode strategy.
- // Most of these instructions may have various trapping and
- // rounding mode flags set; these are decoded in the
- // FloatingPointDecode template used by the
- // FloatingPointOperate format.
-
- // add/sub/mul/div: just decode on the short function code
- // and source type. All valid trapping and rounding modes apply.
- 0: decode FP_TRAPMODE {
- // check for valid trapping modes here
- 0,1,5,7: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x00: adds({{ Fc = Fa + Fb; }});
- 0x01: subs({{ Fc = Fa - Fb; }});
- 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
-#else
- 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
- 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
- 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
- 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
-#endif
-
- 0x20: addt({{ Fc = Fa + Fb; }});
- 0x21: subt({{ Fc = Fa - Fb; }});
- 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
- }
- }
- }
-
- // Floating-point compare instructions must have the default
- // rounding mode, and may use the default trapping mode or
- // /SU. Both trapping modes are treated the same by M5; the
- // only difference on the real hardware (as far a I can tell)
- // is that without /SU you'd get an imprecise trap if you
- // tried to compare a NaN with something else (instead of an
- // "unordered" result).
- 1: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a4, 0x5a4: cmptun({{ // unordered
- Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
- }}, FloatCmpOp);
- }
- }
-
- // The FP-to-integer and integer-to-FP conversion insts
- // require that FA be 31.
- 3: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
- 0x2f: decode FP_ROUNDMODE {
- format FPFixedRounding {
- // "chopped" i.e. round toward zero
- 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
- Chopped);
- // round to minus infinity
- 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
- MinusInfinity);
- }
- default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
- }
-
- // The cvtts opcode is overloaded to be cvtst if the trap
- // mode is 2 or 6 (which are not valid otherwise)
- 0x2c: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- // trap on denorm version "cvtst/s" is
- // simulated same as cvtst
- 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
- }
- default: cvtts({{ Fc.sf = Fb; }});
- }
-
- // The trapping mode for integer-to-FP conversions
- // must be /SUI or nothing; /U and /SU are not
- // allowed. The full set of rounding modes are
- // supported though.
- 0x3c: decode FP_TRAPMODE {
- 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
- }
- 0x3e: decode FP_TRAPMODE {
- 0,7: cvtqt({{ Fc = Fb.sq; }});
- }
- }
- }
- }
- }
-
- // misc FP operate
- 0x17: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x010: cvtlq({{
- Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
- }});
- 0x030: cvtql({{
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- // We treat the precise & imprecise trapping versions of
- // cvtql identically.
- 0x130, 0x530: cvtqlv({{
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = Fb.uq<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- 0x020: cpys({{ // copy sign
- Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x021: cpysn({{ // copy sign negated
- Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x022: cpyse({{ // copy sign and exponent
- Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
- }});
-
- 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
- 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
- 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
- 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
- 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
- 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
-
- 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
- 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
- }
- }
-
- // miscellaneous mem-format ops
- 0x18: decode MEMFUNC {
- format WarnUnimpl {
- 0x8000: fetch();
- 0xa000: fetch_m();
- 0xe800: ecb();
- }
-
- format MiscPrefetch {
- 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
- {{ xc->writeHint(EA, 64, memAccessFlags); }},
- IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
- NO_FAULT);
- }
-
- format BasicOperate {
- 0xc000: rpcc({{
-#if FULL_SYSTEM
- /* Rb is a fake dependency so here is a fun way to get
- * the parser to understand that.
- */
- Ra = xc->readIpr(MipsISA::IPR_CC, fault) + (Rb & 0);
-
-#else
- Ra = curTick;
-#endif
- }});
-
- // All of the barrier instructions below do nothing in
- // their execute() methods (hence the empty code blocks).
- // All of their functionality is hard-coded in the
- // pipeline based on the flags IsSerializing,
- // IsMemBarrier, and IsWriteBarrier. In the current
- // detailed CPU model, the execute() function only gets
- // called at fetch, so there's no way to generate pipeline
- // behavior at any other stage. Once we go to an
- // exec-in-exec CPU model we should be able to get rid of
- // these flags and implement this behavior via the
- // execute() methods.
-
- // trapb is just a barrier on integer traps, where excb is
- // a barrier on integer and FP traps. "EXCB is thus a
- // superset of TRAPB." (Mips ARM, Sec 4.11.4) We treat
- // them the same though.
- 0x0000: trapb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
- 0x0400: excb({{ }}, IsSerializing, IsSerializeBefore, No_OpClass);
- 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
- 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
- }
-
-#if FULL_SYSTEM
- format BasicOperate {
- 0xe000: rc({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(0);
- }}, IsNonSpeculative);
- 0xf000: rs({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(1);
- }}, IsNonSpeculative);
- }
-#else
- format FailUnimpl {
- 0xe000: rc();
- 0xf000: rs();
- }
-#endif
- }
-
-#if FULL_SYSTEM
- 0x00: CallPal::call_pal({{
- if (!palValid ||
- (palPriv
- && xc->readIpr(MipsISA::IPR_ICM, fault) != MipsISA::mode_kernel)) {
- // invalid pal function code, or attempt to do privileged
- // PAL call in non-kernel mode
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- // check to see if simulator wants to do something special
- // on this PAL call (including maybe suppress it)
- bool dopal = xc->simPalCheck(palFunc);
-
- if (dopal) {
- MipsISA::swap_palshadow(&xc->xcBase()->regs, true);
- xc->setIpr(MipsISA::IPR_EXC_ADDR, NPC);
- NPC = xc->readIpr(MipsISA::IPR_PAL_BASE, fault) + palOffset;
- }
- }
- }}, IsNonSpeculative);
-#else
- 0x00: decode PALFUNC {
- format EmulatedCallPal {
- 0x00: halt ({{
- SimExit(curTick, "halt instruction encountered");
- }}, IsNonSpeculative);
- 0x83: callsys({{
- xc->syscall();
- }}, IsNonSpeculative, IsSerializeAfter);
- // Read uniq reg into ABI return value register (r0)
- 0x9e: rduniq({{ R0 = Runiq; }});
- // Write uniq reg with value from ABI arg register (r16)
- 0x9f: wruniq({{ Runiq = R16; }});
- }
- }
-#endif
-
-#if FULL_SYSTEM
- format HwLoadStore {
- 0x1b: decode HW_LDST_QUAD {
- 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
- 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
- }
-
- 0x1f: decode HW_LDST_COND {
- 0: decode HW_LDST_QUAD {
- 0: hw_st({{ EA = (Rb + disp) & ~3; }},
- {{ Mem.ul = Ra<31:0>; }}, L);
- 1: hw_st({{ EA = (Rb + disp) & ~7; }},
- {{ Mem.uq = Ra.uq; }}, Q);
- }
-
- 1: FailUnimpl::hw_st_cond();
- }
- }
-
- format HwMoveIPR {
- 0x19: hw_mfpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- Ra = xc->readIpr(ipr_index, fault);
- }
- }});
- 0x1d: hw_mtpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- xc->setIpr(ipr_index, Ra);
- if (traceData) { traceData->setData(Ra); }
- }
- }});
- }
-
- format BasicOperate {
- 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing, IsSerializeBefore);
-
- // M5 special opcodes use the reserved 0x01 opcode space
- 0x01: decode M5FUNC {
- 0x00: arm({{
- MipsPseudo::arm(xc->xcBase());
- }}, IsNonSpeculative);
- 0x01: quiesce({{
- MipsPseudo::quiesce(xc->xcBase());
- }}, IsNonSpeculative);
- 0x10: ivlb({{
- MipsPseudo::ivlb(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x11: ivle({{
- MipsPseudo::ivle(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x20: m5exit_old({{
- MipsPseudo::m5exit_old(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x21: m5exit({{
- MipsPseudo::m5exit(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
- 0x40: resetstats({{
- MipsPseudo::resetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x41: dumpstats({{
- MipsPseudo::dumpstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x42: dumpresetstats({{
- MipsPseudo::dumpresetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x43: m5checkpoint({{
- MipsPseudo::m5checkpoint(xc->xcBase());
- }}, IsNonSpeculative);
- 0x50: m5readfile({{
- MipsPseudo::readfile(xc->xcBase());
- }}, IsNonSpeculative);
- 0x51: m5break({{
- MipsPseudo::debugbreak(xc->xcBase());
- }}, IsNonSpeculative);
- 0x52: m5switchcpu({{
- MipsPseudo::switchcpu(xc->xcBase());
- }}, IsNonSpeculative);
- 0x53: m5addsymbol({{
- MipsPseudo::addsymbol(xc->xcBase());
- }}, IsNonSpeculative);
-
- }
- }
-#endif
}