summaryrefslogtreecommitdiff
path: root/arch
diff options
context:
space:
mode:
authorSteve Reinhardt <stever@eecs.umich.edu>2006-02-09 23:02:38 -0500
committerSteve Reinhardt <stever@eecs.umich.edu>2006-02-09 23:02:38 -0500
commitdd473ecd578a1bb21d2b6420f3944065a3539ffa (patch)
tree5ee60b5348d1e4347533541ee72af1616b3257be /arch
parentfb90b1dd13fb6c0090bfe2731ca9ccee56479761 (diff)
downloadgem5-dd473ecd578a1bb21d2b6420f3944065a3539ffa.tar.xz
Split Alpha ISA description into multiple files
(thanks to Gabe's include feature!). arch/alpha/isa/main.isa: Split out into multiple .isa files. --HG-- extra : convert_revision : 30d8edf74ea194d4a208febf1e66edc72a7dbd5d
Diffstat (limited to 'arch')
-rw-r--r--arch/alpha/isa/branch.isa259
-rw-r--r--arch/alpha/isa/decoder.isa799
-rw-r--r--arch/alpha/isa/fp.isa300
-rw-r--r--arch/alpha/isa/int.isa128
-rw-r--r--arch/alpha/isa/main.isa2326
-rw-r--r--arch/alpha/isa/mem.isa441
-rw-r--r--arch/alpha/isa/pal.isa260
-rw-r--r--arch/alpha/isa/unimp.isa165
-rw-r--r--arch/alpha/isa/unknown.isa52
-rw-r--r--arch/alpha/isa/util.isa112
10 files changed, 2534 insertions, 2308 deletions
diff --git a/arch/alpha/isa/branch.isa b/arch/alpha/isa/branch.isa
new file mode 100644
index 000000000..e9c790c53
--- /dev/null
+++ b/arch/alpha/isa/branch.isa
@@ -0,0 +1,259 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output header {{
+
+ /**
+ * Base class for instructions whose disassembly is not purely a
+ * function of the machine instruction (i.e., it depends on the
+ * PC). This class overrides the disassemble() method to check
+ * the PC and symbol table values before re-using a cached
+ * disassembly string. This is necessary for branches and jumps,
+ * where the disassembly string includes the target address (which
+ * may depend on the PC and/or symbol table).
+ */
+ class PCDependentDisassembly : public AlphaStaticInst
+ {
+ protected:
+ /// Cached program counter from last disassembly
+ mutable Addr cachedPC;
+ /// Cached symbol table pointer from last disassembly
+ mutable const SymbolTable *cachedSymtab;
+
+ /// Constructor
+ PCDependentDisassembly(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ cachedPC(0), cachedSymtab(0)
+ {
+ }
+
+ const std::string &
+ disassemble(Addr pc, const SymbolTable *symtab) const;
+ };
+
+ /**
+ * Base class for branches (PC-relative control transfers),
+ * conditional or unconditional.
+ */
+ class Branch : public PCDependentDisassembly
+ {
+ protected:
+ /// Displacement to target address (signed).
+ int32_t disp;
+
+ /// Constructor.
+ Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : PCDependentDisassembly(mnem, _machInst, __opClass),
+ disp(BRDISP << 2)
+ {
+ }
+
+ Addr branchTarget(Addr branchPC) const;
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+
+ /**
+ * Base class for jumps (register-indirect control transfers). In
+ * the Alpha ISA, these are always unconditional.
+ */
+ class Jump : public PCDependentDisassembly
+ {
+ protected:
+
+ /// Displacement to target address (signed).
+ int32_t disp;
+
+ public:
+ /// Constructor
+ Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : PCDependentDisassembly(mnem, _machInst, __opClass),
+ disp(BRDISP)
+ {
+ }
+
+ Addr branchTarget(ExecContext *xc) const;
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ Addr
+ Branch::branchTarget(Addr branchPC) const
+ {
+ return branchPC + 4 + disp;
+ }
+
+ Addr
+ Jump::branchTarget(ExecContext *xc) const
+ {
+ Addr NPC = xc->readPC() + 4;
+ uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
+ return (Rb & ~3) | (NPC & 1);
+ }
+
+ const std::string &
+ PCDependentDisassembly::disassemble(Addr pc,
+ const SymbolTable *symtab) const
+ {
+ if (!cachedDisassembly ||
+ pc != cachedPC || symtab != cachedSymtab)
+ {
+ if (cachedDisassembly)
+ delete cachedDisassembly;
+
+ cachedDisassembly =
+ new std::string(generateDisassembly(pc, symtab));
+ cachedPC = pc;
+ cachedSymtab = symtab;
+ }
+
+ return *cachedDisassembly;
+ }
+
+ std::string
+ Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+ // There's only one register arg (RA), but it could be
+ // either a source (the condition for conditional
+ // branches) or a destination (the link reg for
+ // unconditional branches)
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ ss << ",";
+ }
+ else if (_numDestRegs > 0) {
+ printReg(ss, _destRegIdx[0]);
+ ss << ",";
+ }
+
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ if (_numSrcRegs == 0 && _numDestRegs == 0) {
+ printReg(ss, 31);
+ ss << ",";
+ }
+#endif
+
+ Addr target = pc + 4 + disp;
+
+ std::string str;
+ if (symtab && symtab->findSymbol(target, str))
+ ss << str;
+ else
+ ccprintf(ss, "0x%x", target);
+
+ return ss.str();
+ }
+
+ std::string
+ Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ if (_numDestRegs == 0) {
+ printReg(ss, 31);
+ ss << ",";
+ }
+#endif
+
+ if (_numDestRegs > 0) {
+ printReg(ss, _destRegIdx[0]);
+ ss << ",";
+ }
+
+ ccprintf(ss, "(r%d)", RB);
+
+ return ss.str();
+ }
+}};
+
+def template JumpOrBranchDecode {{
+ return (RA == 31)
+ ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
+ : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
+}};
+
+def format CondBranch(code) {{
+ code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
+ iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
+ ('IsDirectControl', 'IsCondControl'))
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ decode_block = BasicDecode.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+}};
+
+let {{
+def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
+ # Declare basic control transfer w/o link (i.e. link reg is R31)
+ nolink_code = 'NPC = %s;\n' % npc_expr
+ nolink_iop = InstObjParams(name, Name, base_class,
+ CodeBlock(nolink_code), flags)
+ header_output = BasicDeclare.subst(nolink_iop)
+ decoder_output = BasicConstructor.subst(nolink_iop)
+ exec_output = BasicExecute.subst(nolink_iop)
+
+ # Generate declaration of '*AndLink' version, append to decls
+ link_code = 'Ra = NPC & ~3;\n' + nolink_code
+ link_iop = InstObjParams(name, Name + 'AndLink', base_class,
+ CodeBlock(link_code), flags)
+ header_output += BasicDeclare.subst(link_iop)
+ decoder_output += BasicConstructor.subst(link_iop)
+ exec_output += BasicExecute.subst(link_iop)
+
+ # need to use link_iop for the decode template since it is expecting
+ # the shorter version of class_name (w/o "AndLink")
+
+ return (header_output, decoder_output,
+ JumpOrBranchDecode.subst(nolink_iop), exec_output)
+}};
+
+def format UncondBranch(*flags) {{
+ flags += ('IsUncondControl', 'IsDirectControl')
+ (header_output, decoder_output, decode_block, exec_output) = \
+ UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
+}};
+
+def format Jump(*flags) {{
+ flags += ('IsUncondControl', 'IsIndirectControl')
+ (header_output, decoder_output, decode_block, exec_output) = \
+ UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
+}};
+
+
diff --git a/arch/alpha/isa/decoder.isa b/arch/alpha/isa/decoder.isa
new file mode 100644
index 000000000..6a35fa229
--- /dev/null
+++ b/arch/alpha/isa/decoder.isa
@@ -0,0 +1,799 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+decode OPCODE default Unknown::unknown() {
+
+ format LoadAddress {
+ 0x08: lda({{ Ra = Rb + disp; }});
+ 0x09: ldah({{ Ra = Rb + (disp << 16); }});
+ }
+
+ format LoadOrNop {
+ 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
+ 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
+ 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
+ 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
+ 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
+ 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
+ 0x20: copy_load({{EA = Ra;}},
+ {{fault = xc->copySrcTranslate(EA);}},
+ IsMemRef, IsLoad, IsCopy);
+ }
+
+ format LoadOrPrefetch {
+ 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
+ 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
+ // IsFloating flag on lds gets the prefetch to disassemble
+ // using f31 instead of r31... funcitonally it's unnecessary
+ 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
+ PF_EXCLUSIVE, IsFloating);
+ }
+
+ format Store {
+ 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
+ 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
+ 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
+ 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
+ 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
+ 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
+ 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
+ 0x24: copy_store({{EA = Rb;}},
+ {{fault = xc->copy(EA);}},
+ IsMemRef, IsStore, IsCopy);
+ }
+
+ format StoreCond {
+ 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
+ {{
+ uint64_t tmp = Mem_write_result;
+ // see stq_c
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, LOCKED);
+ 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
+ {{
+ uint64_t tmp = Mem_write_result;
+ // If the write operation returns 0 or 1, then
+ // this was a conventional store conditional,
+ // and the value indicates the success/failure
+ // of the operation. If another value is
+ // returned, then this was a Turbolaser
+ // mailbox access, and we don't update the
+ // result register at all.
+ Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
+ }}, LOCKED);
+ }
+
+ format IntegerOperate {
+
+ 0x10: decode INTFUNC { // integer arithmetic operations
+
+ 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
+ 0x40: addlv({{
+ uint32_t tmp = Ra.sl + Rb_or_imm.sl;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp;
+ }});
+ 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
+ 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
+
+ 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
+ 0x60: addqv({{
+ uint64_t tmp = Ra + Rb_or_imm;
+ // signed overflow occurs when operands have same sign
+ // and sign of result does not match.
+ if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = Integer_Overflow_Fault;
+ Rc = tmp;
+ }});
+ 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
+ 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
+
+ 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
+ 0x49: sublv({{
+ uint32_t tmp = Ra.sl - Rb_or_imm.sl;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp;
+ }});
+ 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
+ 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
+
+ 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
+ 0x69: subqv({{
+ uint64_t tmp = Ra - Rb_or_imm;
+ // signed overflow detection is same as for add,
+ // except we need to look at the *complemented*
+ // sign bit of the subtrahend (Rb), i.e., if the initial
+ // signs are the *same* then no overflow can occur
+ if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
+ fault = Integer_Overflow_Fault;
+ Rc = tmp;
+ }});
+ 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
+ 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
+
+ 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
+ 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
+ 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
+ 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
+ 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
+
+ 0x0f: cmpbge({{
+ int hi = 7;
+ int lo = 0;
+ uint64_t tmp = 0;
+ for (int i = 0; i < 8; ++i) {
+ tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
+ hi += 8;
+ lo += 8;
+ }
+ Rc = tmp;
+ }});
+ }
+
+ 0x11: decode INTFUNC { // integer logical operations
+
+ 0x00: and({{ Rc = Ra & Rb_or_imm; }});
+ 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
+ 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
+ 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
+ 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
+ 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
+
+ // conditional moves
+ 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
+ 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
+ 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
+ 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
+ 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
+ 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
+ 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
+ 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
+
+ // For AMASK, RA must be R31.
+ 0x61: decode RA {
+ 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
+ }
+
+ // For IMPLVER, RA must be R31 and the B operand
+ // must be the immediate value 1.
+ 0x6c: decode RA {
+ 31: decode IMM {
+ 1: decode INTIMM {
+ // return EV5 for FULL_SYSTEM and EV6 otherwise
+ 1: implver({{
+#if FULL_SYSTEM
+ Rc = 1;
+#else
+ Rc = 2;
+#endif
+ }});
+ }
+ }
+ }
+
+#if FULL_SYSTEM
+ // The mysterious 11.25...
+ 0x25: WarnUnimpl::eleven25();
+#endif
+ }
+
+ 0x12: decode INTFUNC {
+ 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
+ 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
+ 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
+
+ 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
+ 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
+ 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
+ 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
+
+ 0x52: mskwh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x62: msklh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
+ }});
+ 0x72: mskqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
+ }});
+
+ 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
+ 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
+ 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
+ 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
+
+ 0x5a: extwh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
+ 0x6a: extlh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
+ 0x7a: extqh({{
+ Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
+
+ 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
+ 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
+
+ 0x57: inswh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x67: inslh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
+ }});
+ 0x77: insqh({{
+ int bv = Rb_or_imm<2:0>;
+ Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
+ }});
+
+ 0x30: zap({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ 0x31: zapnot({{
+ uint64_t zapmask = 0;
+ for (int i = 0; i < 8; ++i) {
+ if (!Rb_or_imm<i:>)
+ zapmask |= (mask(8) << (i * 8));
+ }
+ Rc = Ra & ~zapmask;
+ }});
+ }
+
+ 0x13: decode INTFUNC { // integer multiplies
+ 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
+ 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
+ 0x30: umulh({{
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ Rc = hi;
+ }}, IntMultOp);
+ 0x40: mullv({{
+ // 32-bit multiply with trap on overflow
+ int64_t Rax = Ra.sl; // sign extended version of Ra.sl
+ int64_t Rbx = Rb_or_imm.sl;
+ int64_t tmp = Rax * Rbx;
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = tmp<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = Integer_Overflow_Fault;
+ Rc.sl = tmp<31:0>;
+ }}, IntMultOp);
+ 0x60: mulqv({{
+ // 64-bit multiply with trap on overflow
+ uint64_t hi, lo;
+ mul128(Ra, Rb_or_imm, hi, lo);
+ // all the upper 64 bits must match the sign bit of
+ // the lower 64
+ if (!((hi == 0 && lo<63:> == 0) ||
+ (hi == mask(64) && lo<63:> == 1)))
+ fault = Integer_Overflow_Fault;
+ Rc = lo;
+ }}, IntMultOp);
+ }
+
+ 0x1c: decode INTFUNC {
+ 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
+ 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
+ 0x32: ctlz({{
+ uint64_t count = 0;
+ uint64_t temp = Rb;
+ if (temp<63:32>) temp >>= 32; else count += 32;
+ if (temp<31:16>) temp >>= 16; else count += 16;
+ if (temp<15:8>) temp >>= 8; else count += 8;
+ if (temp<7:4>) temp >>= 4; else count += 4;
+ if (temp<3:2>) temp >>= 2; else count += 2;
+ if (temp<1:1>) temp >>= 1; else count += 1;
+ if ((temp<0:0>) != 0x1) count += 1;
+ Rc = count;
+ }}, IntAluOp);
+
+ 0x33: cttz({{
+ uint64_t count = 0;
+ uint64_t temp = Rb;
+ if (!(temp<31:0>)) { temp >>= 32; count += 32; }
+ if (!(temp<15:0>)) { temp >>= 16; count += 16; }
+ if (!(temp<7:0>)) { temp >>= 8; count += 8; }
+ if (!(temp<3:0>)) { temp >>= 4; count += 4; }
+ if (!(temp<1:0>)) { temp >>= 2; count += 2; }
+ if (!(temp<0:0> & ULL(0x1))) count += 1;
+ Rc = count;
+ }}, IntAluOp);
+
+ format FailUnimpl {
+ 0x30: ctpop();
+ 0x31: perr();
+ 0x34: unpkbw();
+ 0x35: unpkbl();
+ 0x36: pkwb();
+ 0x37: pklb();
+ 0x38: minsb8();
+ 0x39: minsw4();
+ 0x3a: minub8();
+ 0x3b: minuw4();
+ 0x3c: maxub8();
+ 0x3d: maxuw4();
+ 0x3e: maxsb8();
+ 0x3f: maxsw4();
+ }
+
+ format BasicOperateWithNopCheck {
+ 0x70: decode RB {
+ 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
+ }
+ 0x78: decode RB {
+ 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
+ FloatCvtOp);
+ }
+ }
+ }
+ }
+
+ // Conditional branches.
+ format CondBranch {
+ 0x39: beq({{ cond = (Ra == 0); }});
+ 0x3d: bne({{ cond = (Ra != 0); }});
+ 0x3e: bge({{ cond = (Ra.sq >= 0); }});
+ 0x3f: bgt({{ cond = (Ra.sq > 0); }});
+ 0x3b: ble({{ cond = (Ra.sq <= 0); }});
+ 0x3a: blt({{ cond = (Ra.sq < 0); }});
+ 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
+ 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
+
+ 0x31: fbeq({{ cond = (Fa == 0); }});
+ 0x35: fbne({{ cond = (Fa != 0); }});
+ 0x36: fbge({{ cond = (Fa >= 0); }});
+ 0x37: fbgt({{ cond = (Fa > 0); }});
+ 0x33: fble({{ cond = (Fa <= 0); }});
+ 0x32: fblt({{ cond = (Fa < 0); }});
+ }
+
+ // unconditional branches
+ format UncondBranch {
+ 0x30: br();
+ 0x34: bsr(IsCall);
+ }
+
+ // indirect branches
+ 0x1a: decode JMPFUNC {
+ format Jump {
+ 0: jmp();
+ 1: jsr(IsCall);
+ 2: ret(IsReturn);
+ 3: jsr_coroutine(IsCall, IsReturn);
+ }
+ }
+
+ // Square root and integer-to-FP moves
+ 0x14: decode FP_SHORTFUNC {
+ // Integer to FP register moves must have RB == 31
+ 0x4: decode RB {
+ 31: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
+ 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
+ 0x014: FailUnimpl::itoff(); // VAX-format conversion
+ }
+ }
+ }
+
+ // Square root instructions must have FA == 31
+ 0xb: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#if SS_COMPATIBLE_FP
+ 0x0b: sqrts({{
+ if (Fb < 0.0)
+ fault = Arithmetic_Fault;
+ Fc = sqrt(Fb);
+ }}, FloatSqrtOp);
+#else
+ 0x0b: sqrts({{
+ if (Fb.sf < 0.0)
+ fault = Arithmetic_Fault;
+ Fc.sf = sqrt(Fb.sf);
+ }}, FloatSqrtOp);
+#endif
+ 0x2b: sqrtt({{
+ if (Fb < 0.0)
+ fault = Arithmetic_Fault;
+ Fc = sqrt(Fb);
+ }}, FloatSqrtOp);
+ }
+ }
+ }
+
+ // VAX-format sqrtf and sqrtg are not implemented
+ 0xa: FailUnimpl::sqrtfg();
+ }
+
+ // IEEE floating point
+ 0x16: decode FP_SHORTFUNC_TOP2 {
+ // The top two bits of the short function code break this
+ // space into four groups: binary ops, compares, reserved, and
+ // conversions. See Table 4-12 of AHB. There are different
+ // special cases in these different groups, so we decode on
+ // these top two bits first just to select a decode strategy.
+ // Most of these instructions may have various trapping and
+ // rounding mode flags set; these are decoded in the
+ // FloatingPointDecode template used by the
+ // FloatingPointOperate format.
+
+ // add/sub/mul/div: just decode on the short function code
+ // and source type. All valid trapping and rounding modes apply.
+ 0: decode FP_TRAPMODE {
+ // check for valid trapping modes here
+ 0,1,5,7: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+#if SS_COMPATIBLE_FP
+ 0x00: adds({{ Fc = Fa + Fb; }});
+ 0x01: subs({{ Fc = Fa - Fb; }});
+ 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
+ 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
+#else
+ 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
+ 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
+ 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
+ 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
+#endif
+
+ 0x20: addt({{ Fc = Fa + Fb; }});
+ 0x21: subt({{ Fc = Fa - Fb; }});
+ 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
+ 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
+ }
+ }
+ }
+
+ // Floating-point compare instructions must have the default
+ // rounding mode, and may use the default trapping mode or
+ // /SU. Both trapping modes are treated the same by M5; the
+ // only difference on the real hardware (as far a I can tell)
+ // is that without /SU you'd get an imprecise trap if you
+ // tried to compare a NaN with something else (instead of an
+ // "unordered" result).
+ 1: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
+ FloatCmpOp);
+ 0x0a4, 0x5a4: cmptun({{ // unordered
+ Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
+ }}, FloatCmpOp);
+ }
+ }
+
+ // The FP-to-integer and integer-to-FP conversion insts
+ // require that FA be 31.
+ 3: decode FA {
+ 31: decode FP_TYPEFUNC {
+ format FloatingPointOperate {
+ 0x2f: decode FP_ROUNDMODE {
+ format FPFixedRounding {
+ // "chopped" i.e. round toward zero
+ 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
+ Chopped);
+ // round to minus infinity
+ 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
+ MinusInfinity);
+ }
+ default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
+ }
+
+ // The cvtts opcode is overloaded to be cvtst if the trap
+ // mode is 2 or 6 (which are not valid otherwise)
+ 0x2c: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ // trap on denorm version "cvtst/s" is
+ // simulated same as cvtst
+ 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
+ }
+ default: cvtts({{ Fc.sf = Fb; }});
+ }
+
+ // The trapping mode for integer-to-FP conversions
+ // must be /SUI or nothing; /U and /SU are not
+ // allowed. The full set of rounding modes are
+ // supported though.
+ 0x3c: decode FP_TRAPMODE {
+ 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
+ }
+ 0x3e: decode FP_TRAPMODE {
+ 0,7: cvtqt({{ Fc = Fb.sq; }});
+ }
+ }
+ }
+ }
+ }
+
+ // misc FP operate
+ 0x17: decode FP_FULLFUNC {
+ format BasicOperateWithNopCheck {
+ 0x010: cvtlq({{
+ Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
+ }});
+ 0x030: cvtql({{
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ // We treat the precise & imprecise trapping versions of
+ // cvtql identically.
+ 0x130, 0x530: cvtqlv({{
+ // To avoid overflow, all the upper 32 bits must match
+ // the sign bit of the lower 32. We code this as
+ // checking the upper 33 bits for all 0s or all 1s.
+ uint64_t sign_bits = Fb.uq<63:31>;
+ if (sign_bits != 0 && sign_bits != mask(33))
+ fault = Integer_Overflow_Fault;
+ Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
+ }});
+
+ 0x020: cpys({{ // copy sign
+ Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x021: cpysn({{ // copy sign negated
+ Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
+ }});
+ 0x022: cpyse({{ // copy sign and exponent
+ Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
+ }});
+
+ 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
+ 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
+ 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
+ 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
+ 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
+ 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
+
+ 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
+ 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
+ }
+ }
+
+ // miscellaneous mem-format ops
+ 0x18: decode MEMFUNC {
+ format WarnUnimpl {
+ 0x8000: fetch();
+ 0xa000: fetch_m();
+ 0xe800: ecb();
+ }
+
+ format MiscPrefetch {
+ 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
+ {{ xc->writeHint(EA, 64, memAccessFlags); }},
+ IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
+ NO_FAULT);
+ }
+
+ format BasicOperate {
+ 0xc000: rpcc({{
+#if FULL_SYSTEM
+ /* Rb is a fake dependency so here is a fun way to get
+ * the parser to understand that.
+ */
+ Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
+
+#else
+ Ra = curTick;
+#endif
+ }});
+
+ // All of the barrier instructions below do nothing in
+ // their execute() methods (hence the empty code blocks).
+ // All of their functionality is hard-coded in the
+ // pipeline based on the flags IsSerializing,
+ // IsMemBarrier, and IsWriteBarrier. In the current
+ // detailed CPU model, the execute() function only gets
+ // called at fetch, so there's no way to generate pipeline
+ // behavior at any other stage. Once we go to an
+ // exec-in-exec CPU model we should be able to get rid of
+ // these flags and implement this behavior via the
+ // execute() methods.
+
+ // trapb is just a barrier on integer traps, where excb is
+ // a barrier on integer and FP traps. "EXCB is thus a
+ // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
+ // them the same though.
+ 0x0000: trapb({{ }}, IsSerializing, No_OpClass);
+ 0x0400: excb({{ }}, IsSerializing, No_OpClass);
+ 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
+ 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
+ }
+
+#if FULL_SYSTEM
+ format BasicOperate {
+ 0xe000: rc({{
+ Ra = xc->readIntrFlag();
+ xc->setIntrFlag(0);
+ }}, IsNonSpeculative);
+ 0xf000: rs({{
+ Ra = xc->readIntrFlag();
+ xc->setIntrFlag(1);
+ }}, IsNonSpeculative);
+ }
+#else
+ format FailUnimpl {
+ 0xe000: rc();
+ 0xf000: rs();
+ }
+#endif
+ }
+
+#if FULL_SYSTEM
+ 0x00: CallPal::call_pal({{
+ if (!palValid ||
+ (palPriv
+ && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
+ // invalid pal function code, or attempt to do privileged
+ // PAL call in non-kernel mode
+ fault = Unimplemented_Opcode_Fault;
+ }
+ else {
+ // check to see if simulator wants to do something special
+ // on this PAL call (including maybe suppress it)
+ bool dopal = xc->simPalCheck(palFunc);
+
+ if (dopal) {
+ AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
+ xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
+ NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
+ }
+ }
+ }}, IsNonSpeculative);
+#else
+ 0x00: decode PALFUNC {
+ format EmulatedCallPal {
+ 0x00: halt ({{
+ SimExit(curTick, "halt instruction encountered");
+ }}, IsNonSpeculative);
+ 0x83: callsys({{
+ xc->syscall();
+ }}, IsNonSpeculative);
+ // Read uniq reg into ABI return value register (r0)
+ 0x9e: rduniq({{ R0 = Runiq; }});
+ // Write uniq reg with value from ABI arg register (r16)
+ 0x9f: wruniq({{ Runiq = R16; }});
+ }
+ }
+#endif
+
+#if FULL_SYSTEM
+ format HwLoadStore {
+ 0x1b: decode HW_LDST_QUAD {
+ 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
+ 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
+ }
+
+ 0x1f: decode HW_LDST_COND {
+ 0: decode HW_LDST_QUAD {
+ 0: hw_st({{ EA = (Rb + disp) & ~3; }},
+ {{ Mem.ul = Ra<31:0>; }}, L);
+ 1: hw_st({{ EA = (Rb + disp) & ~7; }},
+ {{ Mem.uq = Ra.uq; }}, Q);
+ }
+
+ 1: FailUnimpl::hw_st_cond();
+ }
+ }
+
+ format HwMoveIPR {
+ 0x19: hw_mfpr({{
+ // this instruction is only valid in PAL mode
+ if (!xc->inPalMode()) {
+ fault = Unimplemented_Opcode_Fault;
+ }
+ else {
+ Ra = xc->readIpr(ipr_index, fault);
+ }
+ }});
+ 0x1d: hw_mtpr({{
+ // this instruction is only valid in PAL mode
+ if (!xc->inPalMode()) {
+ fault = Unimplemented_Opcode_Fault;
+ }
+ else {
+ xc->setIpr(ipr_index, Ra);
+ if (traceData) { traceData->setData(Ra); }
+ }
+ }});
+ }
+
+ format BasicOperate {
+ 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing);
+
+ // M5 special opcodes use the reserved 0x01 opcode space
+ 0x01: decode M5FUNC {
+ 0x00: arm({{
+ AlphaPseudo::arm(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x01: quiesce({{
+ AlphaPseudo::quiesce(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x10: ivlb({{
+ AlphaPseudo::ivlb(xc->xcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x11: ivle({{
+ AlphaPseudo::ivle(xc->xcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x20: m5exit_old({{
+ AlphaPseudo::m5exit_old(xc->xcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x21: m5exit({{
+ AlphaPseudo::m5exit(xc->xcBase());
+ }}, No_OpClass, IsNonSpeculative);
+ 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
+ 0x40: resetstats({{
+ AlphaPseudo::resetstats(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x41: dumpstats({{
+ AlphaPseudo::dumpstats(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x42: dumpresetstats({{
+ AlphaPseudo::dumpresetstats(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x43: m5checkpoint({{
+ AlphaPseudo::m5checkpoint(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x50: m5readfile({{
+ AlphaPseudo::readfile(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x51: m5break({{
+ AlphaPseudo::debugbreak(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x52: m5switchcpu({{
+ AlphaPseudo::switchcpu(xc->xcBase());
+ }}, IsNonSpeculative);
+ 0x53: m5addsymbol({{
+ AlphaPseudo::addsymbol(xc->xcBase());
+ }}, IsNonSpeculative);
+
+ }
+ }
+#endif
+}
diff --git a/arch/alpha/isa/fp.isa b/arch/alpha/isa/fp.isa
new file mode 100644
index 000000000..0abc814be
--- /dev/null
+++ b/arch/alpha/isa/fp.isa
@@ -0,0 +1,300 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output exec {{
+ /// Check "FP enabled" machine status bit. Called when executing any FP
+ /// instruction in full-system mode.
+ /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
+ /// if not. Non-full-system mode: always returns No_Fault.
+#if FULL_SYSTEM
+ inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
+ {
+ Fault fault = No_Fault; // dummy... this ipr access should not fault
+ if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
+ fault = Fen_Fault;
+ }
+ return fault;
+ }
+#else
+ inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
+ {
+ return No_Fault;
+ }
+#endif
+}};
+
+output header {{
+ /**
+ * Base class for general floating-point instructions. Includes
+ * support for various Alpha rounding and trapping modes. Only FP
+ * instructions that require this support are derived from this
+ * class; the rest derive directly from AlphaStaticInst.
+ */
+ class AlphaFP : public AlphaStaticInst
+ {
+ public:
+ /// Alpha FP rounding modes.
+ enum RoundingMode {
+ Chopped = 0, ///< round toward zero
+ Minus_Infinity = 1, ///< round toward minus infinity
+ Normal = 2, ///< round to nearest (default)
+ Dynamic = 3, ///< use FPCR setting (in instruction)
+ Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
+ };
+
+ /// Alpha FP trapping modes.
+ /// For instructions that produce integer results, the
+ /// "Underflow Enable" modes really mean "Overflow Enable", and
+ /// the assembly modifier is V rather than U.
+ enum TrappingMode {
+ /// default: nothing enabled
+ Imprecise = 0, ///< no modifier
+ /// underflow/overflow traps enabled, inexact disabled
+ Underflow_Imprecise = 1, ///< /U or /V
+ Underflow_Precise = 5, ///< /SU or /SV
+ /// underflow/overflow and inexact traps enabled
+ Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
+ };
+
+ protected:
+ /// Map Alpha rounding mode to C99 constants from <fenv.h>.
+ static const int alphaToC99RoundingMode[];
+
+ /// Map enum RoundingMode values to disassembly suffixes.
+ static const char *roundingModeSuffix[];
+ /// Map enum TrappingMode values to FP disassembly suffixes.
+ static const char *fpTrappingModeSuffix[];
+ /// Map enum TrappingMode values to integer disassembly suffixes.
+ static const char *intTrappingModeSuffix[];
+
+ /// This instruction's rounding mode.
+ RoundingMode roundingMode;
+ /// This instruction's trapping mode.
+ TrappingMode trappingMode;
+
+ /// Have we warned about this instruction's unsupported
+ /// rounding mode (if applicable)?
+ mutable bool warnedOnRounding;
+
+ /// Have we warned about this instruction's unsupported
+ /// trapping mode (if applicable)?
+ mutable bool warnedOnTrapping;
+
+ /// Constructor
+ AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ roundingMode((enum RoundingMode)FP_ROUNDMODE),
+ trappingMode((enum TrappingMode)FP_TRAPMODE),
+ warnedOnRounding(false),
+ warnedOnTrapping(false)
+ {
+ }
+
+ int getC99RoundingMode(uint64_t fpcr_val) const;
+
+ // This differs from the AlphaStaticInst version only in
+ // printing suffixes for non-default rounding & trapping modes.
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+
+}};
+
+
+output decoder {{
+ int
+ AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const
+ {
+ if (roundingMode == Dynamic) {
+ return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)];
+ }
+ else {
+ return alphaToC99RoundingMode[roundingMode];
+ }
+ }
+
+ std::string
+ AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ std::string mnem_str(mnemonic);
+
+#ifndef SS_COMPATIBLE_DISASSEMBLY
+ std::string suffix("");
+ suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
+ ? fpTrappingModeSuffix[trappingMode]
+ : intTrappingModeSuffix[trappingMode]);
+ suffix += roundingModeSuffix[roundingMode];
+
+ if (suffix != "") {
+ mnem_str = csprintf("%s/%s", mnemonic, suffix);
+ }
+#endif
+
+ std::stringstream ss;
+ ccprintf(ss, "%-10s ", mnem_str.c_str());
+
+ // just print the first two source regs... if there's
+ // a third one, it's a read-modify-write dest (Rc),
+ // e.g. for CMOVxx
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ }
+ if (_numSrcRegs > 1) {
+ ss << ",";
+ printReg(ss, _srcRegIdx[1]);
+ }
+
+ // just print the first dest... if there's a second one,
+ // it's generally implicit
+ if (_numDestRegs > 0) {
+ if (_numSrcRegs > 0)
+ ss << ",";
+ printReg(ss, _destRegIdx[0]);
+ }
+
+ return ss.str();
+ }
+
+ const int AlphaFP::alphaToC99RoundingMode[] = {
+ FE_TOWARDZERO, // Chopped
+ FE_DOWNWARD, // Minus_Infinity
+ FE_TONEAREST, // Normal
+ FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
+ };
+
+ const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
+ // mark invalid trapping modes, but don't fail on them, because
+ // you could decode anything on a misspeculated path
+ const char *AlphaFP::fpTrappingModeSuffix[] =
+ { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
+ const char *AlphaFP::intTrappingModeSuffix[] =
+ { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
+}};
+
+// FP instruction class execute method template. Handles non-standard
+// rounding modes.
+def template FloatingPointExecute {{
+ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ if (trappingMode != Imprecise && !warnedOnTrapping) {
+ warn("%s: non-standard trapping mode not supported",
+ generateDisassembly(0, NULL));
+ warnedOnTrapping = true;
+ }
+
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_rd)s;
+#if USE_FENV
+ if (roundingMode == Normal) {
+ %(code)s;
+ } else {
+ fesetround(getC99RoundingMode(xc->readFpcr()));
+ %(code)s;
+ fesetround(FE_TONEAREST);
+ }
+#else
+ if (roundingMode != Normal && !warnedOnRounding) {
+ warn("%s: non-standard rounding mode not supported",
+ generateDisassembly(0, NULL));
+ warnedOnRounding = true;
+ }
+ %(code)s;
+#endif
+
+ if (fault == No_Fault) {
+ %(op_wb)s;
+ }
+
+ return fault;
+ }
+}};
+
+// FP instruction class execute method template where no dynamic
+// rounding mode control is needed. Like BasicExecute, but includes
+// check & warning for non-standard trapping mode.
+def template FPFixedRoundingExecute {{
+ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ if (trappingMode != Imprecise && !warnedOnTrapping) {
+ warn("%s: non-standard trapping mode not supported",
+ generateDisassembly(0, NULL));
+ warnedOnTrapping = true;
+ }
+
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(op_wb)s;
+ }
+
+ return fault;
+ }
+}};
+
+def template FloatingPointDecode {{
+ {
+ AlphaStaticInst *i = new %(class_name)s(machInst);
+ if (FC == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+// General format for floating-point operate instructions:
+// - Checks trapping and rounding mode flags. Trapping modes
+// currently unimplemented (will fail).
+// - Generates NOP if FC == 31.
+def format FloatingPointOperate(code, *opt_args) {{
+ iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
+ decode_block = FloatingPointDecode.subst(iop)
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ exec_output = FloatingPointExecute.subst(iop)
+}};
+
+// Special format for cvttq where rounding mode is pre-decoded
+def format FPFixedRounding(code, class_suffix, *opt_args) {{
+ Name += class_suffix
+ iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
+ decode_block = FloatingPointDecode.subst(iop)
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ exec_output = FPFixedRoundingExecute.subst(iop)
+}};
+
diff --git a/arch/alpha/isa/int.isa b/arch/alpha/isa/int.isa
new file mode 100644
index 000000000..049437f8c
--- /dev/null
+++ b/arch/alpha/isa/int.isa
@@ -0,0 +1,128 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output header {{
+ /**
+ * Base class for integer immediate instructions.
+ */
+ class IntegerImm : public AlphaStaticInst
+ {
+ protected:
+ /// Immediate operand value (unsigned 8-bit int).
+ uint8_t imm;
+
+ /// Constructor
+ IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
+ {
+ }
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ std::string
+ IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ std::stringstream ss;
+
+ ccprintf(ss, "%-10s ", mnemonic);
+
+ // just print the first source reg... if there's
+ // a second one, it's a read-modify-write dest (Rc),
+ // e.g. for CMOVxx
+ if (_numSrcRegs > 0) {
+ printReg(ss, _srcRegIdx[0]);
+ ss << ",";
+ }
+
+ ss << (int)imm;
+
+ if (_numDestRegs > 0) {
+ ss << ",";
+ printReg(ss, _destRegIdx[0]);
+ }
+
+ return ss.str();
+ }
+}};
+
+
+def template RegOrImmDecode {{
+ {
+ AlphaStaticInst *i =
+ (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
+ : (AlphaStaticInst *)new %(class_name)s(machInst);
+ if (RC == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+// Primary format for integer operate instructions:
+// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
+// - Generates NOP if RC == 31.
+def format IntegerOperate(code, *opt_flags) {{
+ # If the code block contains 'Rb_or_imm', we define two instructions,
+ # one using 'Rb' and one using 'imm', and have the decoder select
+ # the right one.
+ uses_imm = (code.find('Rb_or_imm') != -1)
+ if uses_imm:
+ orig_code = code
+ # base code is reg version:
+ # rewrite by substituting 'Rb' for 'Rb_or_imm'
+ code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
+ # generate immediate version by substituting 'imm'
+ # note that imm takes no extenstion, so we extend
+ # the regexp to replace any extension as well
+ imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
+
+ # generate declaration for register version
+ cblk = CodeBlock(code)
+ iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+
+ if uses_imm:
+ # append declaration for imm version
+ imm_cblk = CodeBlock(imm_code)
+ imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
+ opt_flags)
+ header_output += BasicDeclare.subst(imm_iop)
+ decoder_output += BasicConstructor.subst(imm_iop)
+ exec_output += BasicExecute.subst(imm_iop)
+ # decode checks IMM bit to pick correct version
+ decode_block = RegOrImmDecode.subst(iop)
+ else:
+ # no imm version: just check for nop
+ decode_block = OperateNopCheckDecode.subst(iop)
+}};
diff --git a/arch/alpha/isa/main.isa b/arch/alpha/isa/main.isa
index eb4aad033..fa2f71a29 100644
--- a/arch/alpha/isa/main.isa
+++ b/arch/alpha/isa/main.isa
@@ -405,2319 +405,29 @@ def format BasicOperateWithNopCheck(code, *opt_args) {{
exec_output = BasicExecute.subst(iop)
}};
+// Integer instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/int.isa"
-////////////////////////////////////////////////////////////////////
-//
-// Integer operate instructions
-//
-
-output header {{
- /**
- * Base class for integer immediate instructions.
- */
- class IntegerImm : public AlphaStaticInst
- {
- protected:
- /// Immediate operand value (unsigned 8-bit int).
- uint8_t imm;
-
- /// Constructor
- IntegerImm(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass), imm(INTIMM)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- IntegerImm::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
- // just print the first source reg... if there's
- // a second one, it's a read-modify-write dest (Rc),
- // e.g. for CMOVxx
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- ss << ",";
- }
-
- ss << (int)imm;
-
- if (_numDestRegs > 0) {
- ss << ",";
- printReg(ss, _destRegIdx[0]);
- }
-
- return ss.str();
- }
-}};
-
-
-def template RegOrImmDecode {{
- {
- AlphaStaticInst *i =
- (IMM) ? (AlphaStaticInst *)new %(class_name)sImm(machInst)
- : (AlphaStaticInst *)new %(class_name)s(machInst);
- if (RC == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-// Primary format for integer operate instructions:
-// - Generates both reg-reg and reg-imm versions if Rb_or_imm is used.
-// - Generates NOP if RC == 31.
-def format IntegerOperate(code, *opt_flags) {{
- # If the code block contains 'Rb_or_imm', we define two instructions,
- # one using 'Rb' and one using 'imm', and have the decoder select
- # the right one.
- uses_imm = (code.find('Rb_or_imm') != -1)
- if uses_imm:
- orig_code = code
- # base code is reg version:
- # rewrite by substituting 'Rb' for 'Rb_or_imm'
- code = re.sub(r'Rb_or_imm', 'Rb', orig_code)
- # generate immediate version by substituting 'imm'
- # note that imm takes no extenstion, so we extend
- # the regexp to replace any extension as well
- imm_code = re.sub(r'Rb_or_imm(\.\w+)?', 'imm', orig_code)
-
- # generate declaration for register version
- cblk = CodeBlock(code)
- iop = InstObjParams(name, Name, 'AlphaStaticInst', cblk, opt_flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = BasicExecute.subst(iop)
-
- if uses_imm:
- # append declaration for imm version
- imm_cblk = CodeBlock(imm_code)
- imm_iop = InstObjParams(name, Name + 'Imm', 'IntegerImm', imm_cblk,
- opt_flags)
- header_output += BasicDeclare.subst(imm_iop)
- decoder_output += BasicConstructor.subst(imm_iop)
- exec_output += BasicExecute.subst(imm_iop)
- # decode checks IMM bit to pick correct version
- decode_block = RegOrImmDecode.subst(iop)
- else:
- # no imm version: just check for nop
- decode_block = OperateNopCheckDecode.subst(iop)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Floating-point instructions
-//
-// Note that many FP-type instructions which do not support all the
-// various rounding & trapping modes use the simpler format
-// BasicOperateWithNopCheck.
-//
-
-output exec {{
- /// Check "FP enabled" machine status bit. Called when executing any FP
- /// instruction in full-system mode.
- /// @retval Full-system mode: No_Fault if FP is enabled, Fen_Fault
- /// if not. Non-full-system mode: always returns No_Fault.
-#if FULL_SYSTEM
- inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
- {
- Fault fault = No_Fault; // dummy... this ipr access should not fault
- if (!EV5::ICSR_FPE(xc->readIpr(AlphaISA::IPR_ICSR, fault))) {
- fault = Fen_Fault;
- }
- return fault;
- }
-#else
- inline Fault checkFpEnableFault(%(CPU_exec_context)s *xc)
- {
- return No_Fault;
- }
-#endif
-}};
-
-output header {{
- /**
- * Base class for general floating-point instructions. Includes
- * support for various Alpha rounding and trapping modes. Only FP
- * instructions that require this support are derived from this
- * class; the rest derive directly from AlphaStaticInst.
- */
- class AlphaFP : public AlphaStaticInst
- {
- public:
- /// Alpha FP rounding modes.
- enum RoundingMode {
- Chopped = 0, ///< round toward zero
- Minus_Infinity = 1, ///< round toward minus infinity
- Normal = 2, ///< round to nearest (default)
- Dynamic = 3, ///< use FPCR setting (in instruction)
- Plus_Infinity = 3 ///< round to plus inifinity (in FPCR)
- };
-
- /// Alpha FP trapping modes.
- /// For instructions that produce integer results, the
- /// "Underflow Enable" modes really mean "Overflow Enable", and
- /// the assembly modifier is V rather than U.
- enum TrappingMode {
- /// default: nothing enabled
- Imprecise = 0, ///< no modifier
- /// underflow/overflow traps enabled, inexact disabled
- Underflow_Imprecise = 1, ///< /U or /V
- Underflow_Precise = 5, ///< /SU or /SV
- /// underflow/overflow and inexact traps enabled
- Underflow_Inexact_Precise = 7 ///< /SUI or /SVI
- };
-
- protected:
- /// Map Alpha rounding mode to C99 constants from <fenv.h>.
- static const int alphaToC99RoundingMode[];
-
- /// Map enum RoundingMode values to disassembly suffixes.
- static const char *roundingModeSuffix[];
- /// Map enum TrappingMode values to FP disassembly suffixes.
- static const char *fpTrappingModeSuffix[];
- /// Map enum TrappingMode values to integer disassembly suffixes.
- static const char *intTrappingModeSuffix[];
-
- /// This instruction's rounding mode.
- RoundingMode roundingMode;
- /// This instruction's trapping mode.
- TrappingMode trappingMode;
-
- /// Have we warned about this instruction's unsupported
- /// rounding mode (if applicable)?
- mutable bool warnedOnRounding;
-
- /// Have we warned about this instruction's unsupported
- /// trapping mode (if applicable)?
- mutable bool warnedOnTrapping;
-
- /// Constructor
- AlphaFP(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- roundingMode((enum RoundingMode)FP_ROUNDMODE),
- trappingMode((enum TrappingMode)FP_TRAPMODE),
- warnedOnRounding(false),
- warnedOnTrapping(false)
- {
- }
-
- int getC99RoundingMode(uint64_t fpcr_val) const;
-
- // This differs from the AlphaStaticInst version only in
- // printing suffixes for non-default rounding & trapping modes.
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
-}};
-
-
-output decoder {{
- int
- AlphaFP::getC99RoundingMode(uint64_t fpcr_val) const
- {
- if (roundingMode == Dynamic) {
- return alphaToC99RoundingMode[bits(fpcr_val, 59, 58)];
- }
- else {
- return alphaToC99RoundingMode[roundingMode];
- }
- }
-
- std::string
- AlphaFP::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::string mnem_str(mnemonic);
-
-#ifndef SS_COMPATIBLE_DISASSEMBLY
- std::string suffix("");
- suffix += ((_destRegIdx[0] >= FP_Base_DepTag)
- ? fpTrappingModeSuffix[trappingMode]
- : intTrappingModeSuffix[trappingMode]);
- suffix += roundingModeSuffix[roundingMode];
-
- if (suffix != "") {
- mnem_str = csprintf("%s/%s", mnemonic, suffix);
- }
-#endif
-
- std::stringstream ss;
- ccprintf(ss, "%-10s ", mnem_str.c_str());
-
- // just print the first two source regs... if there's
- // a third one, it's a read-modify-write dest (Rc),
- // e.g. for CMOVxx
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- }
- if (_numSrcRegs > 1) {
- ss << ",";
- printReg(ss, _srcRegIdx[1]);
- }
-
- // just print the first dest... if there's a second one,
- // it's generally implicit
- if (_numDestRegs > 0) {
- if (_numSrcRegs > 0)
- ss << ",";
- printReg(ss, _destRegIdx[0]);
- }
-
- return ss.str();
- }
-
- const int AlphaFP::alphaToC99RoundingMode[] = {
- FE_TOWARDZERO, // Chopped
- FE_DOWNWARD, // Minus_Infinity
- FE_TONEAREST, // Normal
- FE_UPWARD // Dynamic in inst, Plus_Infinity in FPCR
- };
-
- const char *AlphaFP::roundingModeSuffix[] = { "c", "m", "", "d" };
- // mark invalid trapping modes, but don't fail on them, because
- // you could decode anything on a misspeculated path
- const char *AlphaFP::fpTrappingModeSuffix[] =
- { "", "u", "INVTM2", "INVTM3", "INVTM4", "su", "INVTM6", "sui" };
- const char *AlphaFP::intTrappingModeSuffix[] =
- { "", "v", "INVTM2", "INVTM3", "INVTM4", "sv", "INVTM6", "svi" };
-}};
-
-// FP instruction class execute method template. Handles non-standard
-// rounding modes.
-def template FloatingPointExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (trappingMode != Imprecise && !warnedOnTrapping) {
- warn("%s: non-standard trapping mode not supported",
- generateDisassembly(0, NULL));
- warnedOnTrapping = true;
- }
-
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
-#if USE_FENV
- if (roundingMode == Normal) {
- %(code)s;
- } else {
- fesetround(getC99RoundingMode(xc->readFpcr()));
- %(code)s;
- fesetround(FE_TONEAREST);
- }
-#else
- if (roundingMode != Normal && !warnedOnRounding) {
- warn("%s: non-standard rounding mode not supported",
- generateDisassembly(0, NULL));
- warnedOnRounding = true;
- }
- %(code)s;
-#endif
-
- if (fault == No_Fault) {
- %(op_wb)s;
- }
-
- return fault;
- }
-}};
-
-// FP instruction class execute method template where no dynamic
-// rounding mode control is needed. Like BasicExecute, but includes
-// check & warning for non-standard trapping mode.
-def template FPFixedRoundingExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (trappingMode != Imprecise && !warnedOnTrapping) {
- warn("%s: non-standard trapping mode not supported",
- generateDisassembly(0, NULL));
- warnedOnTrapping = true;
- }
-
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
- %(code)s;
-
- if (fault == No_Fault) {
- %(op_wb)s;
- }
-
- return fault;
- }
-}};
-
-def template FloatingPointDecode {{
- {
- AlphaStaticInst *i = new %(class_name)s(machInst);
- if (FC == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-// General format for floating-point operate instructions:
-// - Checks trapping and rounding mode flags. Trapping modes
-// currently unimplemented (will fail).
-// - Generates NOP if FC == 31.
-def format FloatingPointOperate(code, *opt_args) {{
- iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
- decode_block = FloatingPointDecode.subst(iop)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = FloatingPointExecute.subst(iop)
-}};
-
-// Special format for cvttq where rounding mode is pre-decoded
-def format FPFixedRounding(code, class_suffix, *opt_args) {{
- Name += class_suffix
- iop = InstObjParams(name, Name, 'AlphaFP', CodeBlock(code), opt_args)
- decode_block = FloatingPointDecode.subst(iop)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- exec_output = FPFixedRoundingExecute.subst(iop)
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Memory-format instructions: LoadAddress, Load, Store
-//
-
-output header {{
- /**
- * Base class for general Alpha memory-format instructions.
- */
- class Memory : public AlphaStaticInst
- {
- protected:
-
- /// Memory request flags. See mem_req_base.hh.
- unsigned memAccessFlags;
- /// Pointer to EAComp object.
- const StaticInstPtr<AlphaISA> eaCompPtr;
- /// Pointer to MemAcc object.
- const StaticInstPtr<AlphaISA> memAccPtr;
-
- /// Constructor
- Memory(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
-
- public:
-
- const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; }
- const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; }
- };
-
- /**
- * Base class for memory-format instructions using a 32-bit
- * displacement (i.e. most of them).
- */
- class MemoryDisp32 : public Memory
- {
- protected:
- /// Displacement for EA calculation (signed).
- int32_t disp;
-
- /// Constructor.
- MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
- disp(MEMDISP)
- {
- }
- };
-
-
- /**
- * Base class for a few miscellaneous memory-format insts
- * that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
- * None of these instructions has a destination register either.
- */
- class MemoryNoDisp : public Memory
- {
- protected:
- /// Constructor
- MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-
-output decoder {{
- std::string
- Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
- flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
- }
-
- std::string
- MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s (r%d)", mnemonic, RB);
- }
-}};
-
-def format LoadAddress(code) {{
- iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-
-def template LoadStoreDeclare {{
- /**
- * Static instruction class for "%(mnemonic)s".
- */
- class %(class_name)s : public %(base_class)s
- {
- protected:
-
- /**
- * "Fake" effective address computation class for "%(mnemonic)s".
- */
- class EAComp : public %(base_class)s
- {
- public:
- /// Constructor
- EAComp(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-
- /**
- * "Fake" memory access instruction class for "%(mnemonic)s".
- */
- class MemAcc : public %(base_class)s
- {
- public:
- /// Constructor
- MemAcc(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-
- public:
-
- /// Constructor.
- %(class_name)s(MachInst machInst);
-
- %(BasicExecDeclare)s
- };
-}};
-
-def template LoadStoreConstructor {{
- /** TODO: change op_class to AddrGenOp or something (requires
- * creating new member of OpClass enum in op_class.hh, updating
- * config files, etc.). */
- inline %(class_name)s::EAComp::EAComp(MachInst machInst)
- : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp)
- {
- %(ea_constructor)s;
- }
-
- inline %(class_name)s::MemAcc::MemAcc(MachInst machInst)
- : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s)
- {
- %(memacc_constructor)s;
- }
-
- inline %(class_name)s::%(class_name)s(MachInst machInst)
- : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
- new EAComp(machInst), new MemAcc(machInst))
- {
- %(constructor)s;
- }
-}};
-
-
-def template EACompExecute {{
- Fault
- %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_rd)s;
- %(code)s;
-
- if (fault == No_Fault) {
- %(op_wb)s;
- xc->setEA(EA);
- }
-
- return fault;
- }
-}};
-
-def template MemAccExecute {{
- Fault
- %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- EA = xc->getEA();
-
- if (fault == No_Fault) {
- %(op_mem_rd)s;
- %(code)s;
- }
-
- if (fault == No_Fault) {
- %(op_mem_wb)s;
- }
-
- if (fault == No_Fault) {
- %(postacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_nonmem_wb)s;
- }
-
- return fault;
- }
-}};
-
-
-def template LoadStoreExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- %(ea_code)s;
-
- if (fault == No_Fault) {
- %(op_mem_rd)s;
- %(memacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_mem_wb)s;
- }
-
- if (fault == No_Fault) {
- %(postacc_code)s;
- }
-
- if (fault == No_Fault) {
- %(op_nonmem_wb)s;
- }
-
- return fault;
- }
-}};
-
-
-def template PrefetchExecute {{
- Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- Addr EA;
- Fault fault = No_Fault;
-
- %(fp_enable_check)s;
- %(op_decl)s;
- %(op_nonmem_rd)s;
- %(ea_code)s;
-
- if (fault == No_Fault) {
- xc->prefetch(EA, memAccessFlags);
- }
-
- return No_Fault;
- }
-}};
-
-// load instructions use Ra as dest, so check for
-// Ra == 31 to detect nops
-def template LoadNopCheckDecode {{
- {
- AlphaStaticInst *i = new %(class_name)s(machInst);
- if (RA == 31) {
- i = makeNop(i);
- }
- return i;
- }
-}};
-
-
-// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
-def template LoadPrefetchCheckDecode {{
- {
- if (RA != 31) {
- return new %(class_name)s(machInst);
- }
- else {
- return new %(class_name)sPrefetch(machInst);
- }
- }
-}};
-
-
-let {{
-def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
- base_class = 'MemoryDisp32', flags = [],
- decode_template = BasicDecode,
- exec_template = LoadStoreExecute):
- # Segregate flags into instruction flags (handled by InstObjParams)
- # and memory access flags (handled here).
-
- # Would be nice to autogenerate this list, but oh well.
- valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE']
- mem_flags = [f for f in flags if f in valid_mem_flags]
- inst_flags = [f for f in flags if f not in valid_mem_flags]
-
- # add hook to get effective addresses into execution trace output.
- ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
-
- # generate code block objects
- ea_cblk = CodeBlock(ea_code)
- memacc_cblk = CodeBlock(memacc_code)
- postacc_cblk = CodeBlock(postacc_code)
-
- # Some CPU models execute the memory operation as an atomic unit,
- # while others want to separate them into an effective address
- # computation and a memory access operation. As a result, we need
- # to generate three StaticInst objects. Note that the latter two
- # are nested inside the larger "atomic" one.
-
- # generate InstObjParams for EAComp object
- ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags)
-
- # generate InstObjParams for MemAcc object
- memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags)
- # in the split execution model, the MemAcc portion is responsible
- # for the post-access code.
- memacc_iop.postacc_code = postacc_cblk.code
-
- # generate InstObjParams for unified execution
- cblk = CodeBlock(ea_code + memacc_code + postacc_code)
- iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
-
- iop.ea_constructor = ea_cblk.constructor
- iop.ea_code = ea_cblk.code
- iop.memacc_constructor = memacc_cblk.constructor
- iop.memacc_code = memacc_cblk.code
- iop.postacc_code = postacc_cblk.code
-
- if mem_flags:
- s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
- iop.constructor += s
- memacc_iop.constructor += s
-
- # (header_output, decoder_output, decode_block, exec_output)
- return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
- decode_template.subst(iop),
- EACompExecute.subst(ea_iop)
- + MemAccExecute.subst(memacc_iop)
- + exec_template.subst(iop))
-}};
-
-
-def format LoadOrNop(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
- decode_template = LoadNopCheckDecode)
-}};
-
-
-// Note that the flags passed in apply only to the prefetch version
-def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
- # declare the load instruction object and generate the decode block
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code,
- decode_template = LoadPrefetchCheckDecode)
-
- # Declare the prefetch instruction object.
-
- # convert flags from tuple to list to make them mutable
- pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT']
-
- (pf_header_output, pf_decoder_output, _, pf_exec_output) = \
- LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
- flags = pf_flags, exec_template = PrefetchExecute)
-
- header_output += pf_header_output
- decoder_output += pf_decoder_output
- exec_output += pf_exec_output
-}};
-
-
-def format Store(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags)
-}};
-
-
-def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
- flags = flags)
-}};
-
-
-// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
-def format MiscPrefetch(ea_code, memacc_code, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
- base_class = 'MemoryNoDisp')
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// Control transfer instructions
-//
-
-output header {{
-
- /**
- * Base class for instructions whose disassembly is not purely a
- * function of the machine instruction (i.e., it depends on the
- * PC). This class overrides the disassemble() method to check
- * the PC and symbol table values before re-using a cached
- * disassembly string. This is necessary for branches and jumps,
- * where the disassembly string includes the target address (which
- * may depend on the PC and/or symbol table).
- */
- class PCDependentDisassembly : public AlphaStaticInst
- {
- protected:
- /// Cached program counter from last disassembly
- mutable Addr cachedPC;
- /// Cached symbol table pointer from last disassembly
- mutable const SymbolTable *cachedSymtab;
-
- /// Constructor
- PCDependentDisassembly(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- cachedPC(0), cachedSymtab(0)
- {
- }
-
- const std::string &
- disassemble(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for branches (PC-relative control transfers),
- * conditional or unconditional.
- */
- class Branch : public PCDependentDisassembly
- {
- protected:
- /// Displacement to target address (signed).
- int32_t disp;
-
- /// Constructor.
- Branch(const char *mnem, MachInst _machInst, OpClass __opClass)
- : PCDependentDisassembly(mnem, _machInst, __opClass),
- disp(BRDISP << 2)
- {
- }
+// Floating-point instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/fp.isa"
- Addr branchTarget(Addr branchPC) const;
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for jumps (register-indirect control transfers). In
- * the Alpha ISA, these are always unconditional.
- */
- class Jump : public PCDependentDisassembly
- {
- protected:
-
- /// Displacement to target address (signed).
- int32_t disp;
-
- public:
- /// Constructor
- Jump(const char *mnem, MachInst _machInst, OpClass __opClass)
- : PCDependentDisassembly(mnem, _machInst, __opClass),
- disp(BRDISP)
- {
- }
-
- Addr branchTarget(ExecContext *xc) const;
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- Addr
- Branch::branchTarget(Addr branchPC) const
- {
- return branchPC + 4 + disp;
- }
-
- Addr
- Jump::branchTarget(ExecContext *xc) const
- {
- Addr NPC = xc->readPC() + 4;
- uint64_t Rb = xc->readIntReg(_srcRegIdx[0]);
- return (Rb & ~3) | (NPC & 1);
- }
-
- const std::string &
- PCDependentDisassembly::disassemble(Addr pc,
- const SymbolTable *symtab) const
- {
- if (!cachedDisassembly ||
- pc != cachedPC || symtab != cachedSymtab)
- {
- if (cachedDisassembly)
- delete cachedDisassembly;
-
- cachedDisassembly =
- new std::string(generateDisassembly(pc, symtab));
- cachedPC = pc;
- cachedSymtab = symtab;
- }
-
- return *cachedDisassembly;
- }
-
- std::string
- Branch::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
- // There's only one register arg (RA), but it could be
- // either a source (the condition for conditional
- // branches) or a destination (the link reg for
- // unconditional branches)
- if (_numSrcRegs > 0) {
- printReg(ss, _srcRegIdx[0]);
- ss << ",";
- }
- else if (_numDestRegs > 0) {
- printReg(ss, _destRegIdx[0]);
- ss << ",";
- }
-
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- if (_numSrcRegs == 0 && _numDestRegs == 0) {
- printReg(ss, 31);
- ss << ",";
- }
-#endif
-
- Addr target = pc + 4 + disp;
-
- std::string str;
- if (symtab && symtab->findSymbol(target, str))
- ss << str;
- else
- ccprintf(ss, "0x%x", target);
-
- return ss.str();
- }
-
- std::string
- Jump::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- std::stringstream ss;
-
- ccprintf(ss, "%-10s ", mnemonic);
-
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- if (_numDestRegs == 0) {
- printReg(ss, 31);
- ss << ",";
- }
-#endif
-
- if (_numDestRegs > 0) {
- printReg(ss, _destRegIdx[0]);
- ss << ",";
- }
-
- ccprintf(ss, "(r%d)", RB);
-
- return ss.str();
- }
-}};
-
-def template JumpOrBranchDecode {{
- return (RA == 31)
- ? (StaticInst<AlphaISA> *)new %(class_name)s(machInst)
- : (StaticInst<AlphaISA> *)new %(class_name)sAndLink(machInst);
-}};
-
-def format CondBranch(code) {{
- code = 'bool cond;\n' + code + '\nif (cond) NPC = NPC + disp;\n';
- iop = InstObjParams(name, Name, 'Branch', CodeBlock(code),
- ('IsDirectControl', 'IsCondControl'))
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-let {{
-def UncondCtrlBase(name, Name, base_class, npc_expr, flags):
- # Declare basic control transfer w/o link (i.e. link reg is R31)
- nolink_code = 'NPC = %s;\n' % npc_expr
- nolink_iop = InstObjParams(name, Name, base_class,
- CodeBlock(nolink_code), flags)
- header_output = BasicDeclare.subst(nolink_iop)
- decoder_output = BasicConstructor.subst(nolink_iop)
- exec_output = BasicExecute.subst(nolink_iop)
-
- # Generate declaration of '*AndLink' version, append to decls
- link_code = 'Ra = NPC & ~3;\n' + nolink_code
- link_iop = InstObjParams(name, Name + 'AndLink', base_class,
- CodeBlock(link_code), flags)
- header_output += BasicDeclare.subst(link_iop)
- decoder_output += BasicConstructor.subst(link_iop)
- exec_output += BasicExecute.subst(link_iop)
-
- # need to use link_iop for the decode template since it is expecting
- # the shorter version of class_name (w/o "AndLink")
-
- return (header_output, decoder_output,
- JumpOrBranchDecode.subst(nolink_iop), exec_output)
-}};
-
-def format UncondBranch(*flags) {{
- flags += ('IsUncondControl', 'IsDirectControl')
- (header_output, decoder_output, decode_block, exec_output) = \
- UncondCtrlBase(name, Name, 'Branch', 'NPC + disp', flags)
-}};
-
-def format Jump(*flags) {{
- flags += ('IsUncondControl', 'IsIndirectControl')
- (header_output, decoder_output, decode_block, exec_output) = \
- UncondCtrlBase(name, Name, 'Jump', '(Rb & ~3) | (NPC & 1)', flags)
-}};
-
-
-////////////////////////////////////////////////////////////////////
-//
-// PAL calls
-//
-
-output header {{
- /**
- * Base class for emulated call_pal calls (used only in
- * non-full-system mode).
- */
- class EmulatedCallPal : public AlphaStaticInst
- {
- protected:
-
- /// Constructor.
- EmulatedCallPal(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- EmulatedCallPal::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%s %s", "call_pal", mnemonic);
-#else
- return csprintf("%-10s %s", "call_pal", mnemonic);
-#endif
- }
-}};
-
-def format EmulatedCallPal(code, *flags) {{
- iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-output header {{
- /**
- * Base class for full-system-mode call_pal instructions.
- * Probably could turn this into a leaf class and get rid of the
- * parser template.
- */
- class CallPalBase : public AlphaStaticInst
- {
- protected:
- int palFunc; ///< Function code part of instruction
- int palOffset; ///< Target PC, offset from IPR_PAL_BASE
- bool palValid; ///< is the function code valid?
- bool palPriv; ///< is this call privileged?
-
- /// Constructor.
- CallPalBase(const char *mnem, MachInst _machInst,
- OpClass __opClass);
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- inline
- CallPalBase::CallPalBase(const char *mnem, MachInst _machInst,
- OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- palFunc(PALFUNC)
- {
- // From the 21164 HRM (paraphrased):
- // Bit 7 of the function code (mask 0x80) indicates
- // whether the call is privileged (bit 7 == 0) or
- // unprivileged (bit 7 == 1). The privileged call table
- // starts at 0x2000, the unprivielged call table starts at
- // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
- // offset.
- const int palPrivMask = 0x80;
- const int palOffsetMask = 0x3f;
-
- // Pal call is invalid unless all other bits are 0
- palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
- palPriv = ((machInst & palPrivMask) == 0);
- int shortPalFunc = (machInst & palOffsetMask);
- // Add 1 to base to set pal-mode bit
- palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
- }
-
- std::string
- CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s %#x", "call_pal", palFunc);
- }
-}};
-
-def format CallPal(code, *flags) {{
- iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags)
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// hw_ld, hw_st
-//
-
-output header {{
- /**
- * Base class for hw_ld and hw_st.
- */
- class HwLoadStore : public Memory
- {
- protected:
-
- /// Displacement for EA calculation (signed).
- int16_t disp;
-
- /// Constructor
- HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
- StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr);
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-
-output decoder {{
- inline
- HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst,
- OpClass __opClass,
- StaticInstPtr<AlphaISA> _eaCompPtr,
- StaticInstPtr<AlphaISA> _memAccPtr)
- : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
- disp(HW_LDST_DISP)
- {
- memAccessFlags = 0;
- if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
- if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
- if (HW_LDST_VPTE) memAccessFlags |= VPTE;
- if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
- }
-
- std::string
- HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
-#else
- // HW_LDST_LOCK and HW_LDST_COND are the same bit.
- const char *lock_str =
- (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
-
- return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
- mnemonic, RA, disp, RB,
- HW_LDST_PHYS ? ",PHYS" : "",
- HW_LDST_ALT ? ",ALT" : "",
- HW_LDST_QUAD ? ",QUAD" : "",
- HW_LDST_VPTE ? ",VPTE" : "",
- lock_str);
-#endif
- }
-}};
-
-def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
- flags = flags, base_class = 'HwLoadStore')
-}};
-
-
-def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
- (header_output, decoder_output, decode_block, exec_output) = \
- LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
- postacc_code, flags = flags, base_class = 'HwLoadStore')
-}};
-
-
-output header {{
- /**
- * Base class for hw_mfpr and hw_mtpr.
- */
- class HwMoveIPR : public AlphaStaticInst
- {
- protected:
- /// Index of internal processor register.
- int ipr_index;
-
- /// Constructor
- HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
- : AlphaStaticInst(mnem, _machInst, __opClass),
- ipr_index(HW_IPR_IDX)
- {
- }
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- if (_numSrcRegs > 0) {
- // must be mtpr
- return csprintf("%-10s r%d,IPR(%#x)",
- mnemonic, RA, ipr_index);
- }
- else {
- // must be mfpr
- return csprintf("%-10s IPR(%#x),r%d",
- mnemonic, ipr_index, RA);
- }
- }
-}};
-
-def format HwMoveIPR(code) {{
- iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code),
- ['IprAccessOp'])
- header_output = BasicDeclare.subst(iop)
- decoder_output = BasicConstructor.subst(iop)
- decode_block = BasicDecode.subst(iop)
- exec_output = BasicExecute.subst(iop)
-}};
+// Memory instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/mem.isa"
+// Branch/jump instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/branch.isa"
-////////////////////////////////////////////////////////////////////
-//
-// Unimplemented instructions
-//
+// PAL instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/pal.isa"
-output header {{
- /**
- * Static instruction class for unimplemented instructions that
- * cause simulator termination. Note that these are recognized
- * (legal) instructions that the simulator does not support; the
- * 'Unknown' class is used for unrecognized/illegal instructions.
- * This is a leaf class.
- */
- class FailUnimplemented : public AlphaStaticInst
- {
- public:
- /// Constructor
- FailUnimplemented(const char *_mnemonic, MachInst _machInst)
- : AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
+// Unimplemented instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/unimp.isa"
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-
- /**
- * Base class for unimplemented instructions that cause a warning
- * to be printed (but do not terminate simulation). This
- * implementation is a little screwy in that it will print a
- * warning for each instance of a particular unimplemented machine
- * instruction, not just for each unimplemented opcode. Should
- * probably make the 'warned' flag a static member of the derived
- * class.
- */
- class WarnUnimplemented : public AlphaStaticInst
- {
- private:
- /// Have we warned on this instruction yet?
- mutable bool warned;
-
- public:
- /// Constructor
- WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
- : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
+// Unknown instruction templates, formats, etc.
+##include "m5/arch/alpha/isa/unknown.isa"
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-output decoder {{
- std::string
- FailUnimplemented::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
- return csprintf("%-10s (unimplemented)", mnemonic);
- }
-
- std::string
- WarnUnimplemented::generateDisassembly(Addr pc,
- const SymbolTable *symtab) const
- {
-#ifdef SS_COMPATIBLE_DISASSEMBLY
- return csprintf("%-10s", mnemonic);
-#else
- return csprintf("%-10s (unimplemented)", mnemonic);
-#endif
- }
-}};
-
-output exec {{
- Fault
- FailUnimplemented::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- panic("attempt to execute unimplemented instruction '%s' "
- "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
- return Unimplemented_Opcode_Fault;
- }
-
- Fault
- WarnUnimplemented::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- if (!warned) {
- warn("instruction '%s' unimplemented\n", mnemonic);
- warned = true;
- }
+// Execution utility functions
+##include "m5/arch/alpha/isa/util.isa"
- return No_Fault;
- }
-}};
-
-
-def format FailUnimpl() {{
- iop = InstObjParams(name, 'FailUnimplemented')
- decode_block = BasicDecodeWithMnemonic.subst(iop)
-}};
-
-def format WarnUnimpl() {{
- iop = InstObjParams(name, 'WarnUnimplemented')
- decode_block = BasicDecodeWithMnemonic.subst(iop)
-}};
-
-output header {{
- /**
- * Static instruction class for unknown (illegal) instructions.
- * These cause simulator termination if they are executed in a
- * non-speculative mode. This is a leaf class.
- */
- class Unknown : public AlphaStaticInst
- {
- public:
- /// Constructor
- Unknown(MachInst _machInst)
- : AlphaStaticInst("unknown", _machInst, No_OpClass)
- {
- // don't call execute() (which panics) if we're on a
- // speculative path
- flags[IsNonSpeculative] = true;
- }
-
- %(BasicExecDeclare)s
-
- std::string
- generateDisassembly(Addr pc, const SymbolTable *symtab) const;
- };
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Unknown instructions
-//
-
-output decoder {{
- std::string
- Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const
- {
- return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
- "unknown", machInst, OPCODE);
- }
-}};
-
-output exec {{
- Fault
- Unknown::execute(%(CPU_exec_context)s *xc,
- Trace::InstRecord *traceData) const
- {
- panic("attempt to execute unknown instruction "
- "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
- return Unimplemented_Opcode_Fault;
- }
-}};
-
-def format Unknown() {{
- decode_block = 'return new Unknown(machInst);\n'
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// Utility functions for execute methods
-//
-
-output exec {{
-
- /// Return opa + opb, summing carry into third arg.
- inline uint64_t
- addc(uint64_t opa, uint64_t opb, int &carry)
- {
- uint64_t res = opa + opb;
- if (res < opa || res < opb)
- ++carry;
- return res;
- }
-
- /// Multiply two 64-bit values (opa * opb), returning the 128-bit
- /// product in res_hi and res_lo.
- inline void
- mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
- {
- // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
- uint64_t opa_hi = opa<63:32>;
- uint64_t opa_lo = opa<31:0>;
- uint64_t opb_hi = opb<63:32>;
- uint64_t opb_lo = opb<31:0>;
-
- res_lo = opa_lo * opb_lo;
-
- // The middle partial products logically belong in bit
- // positions 95 to 32. Thus the lower 32 bits of each product
- // sum into the upper 32 bits of the low result, while the
- // upper 32 sum into the low 32 bits of the upper result.
- uint64_t partial1 = opa_hi * opb_lo;
- uint64_t partial2 = opa_lo * opb_hi;
-
- uint64_t partial1_lo = partial1<31:0> << 32;
- uint64_t partial1_hi = partial1<63:32>;
- uint64_t partial2_lo = partial2<31:0> << 32;
- uint64_t partial2_hi = partial2<63:32>;
-
- // Add partial1_lo and partial2_lo to res_lo, keeping track
- // of any carries out
- int carry_out = 0;
- res_lo = addc(partial1_lo, res_lo, carry_out);
- res_lo = addc(partial2_lo, res_lo, carry_out);
-
- // Now calculate the high 64 bits...
- res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
- }
-
- /// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
- /// See Table 2-2 of Alpha AHB.
- inline int
- map_s(int old_exp)
- {
- int hibit = old_exp<7:>;
- int lobits = old_exp<6:0>;
-
- if (hibit == 1) {
- return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
- }
- else {
- return (lobits == 0) ? 0 : (0x380 | lobits);
- }
- }
-
- /// Convert a 32-bit S-floating value to the equivalent 64-bit
- /// representation to be stored in an FP reg.
- inline uint64_t
- s_to_t(uint32_t s_val)
- {
- uint64_t tmp = s_val;
- return (tmp<31:> << 63 // sign bit
- | (uint64_t)map_s(tmp<30:23>) << 52 // exponent
- | tmp<22:0> << 29); // fraction
- }
-
- /// Convert a 64-bit T-floating value to the equivalent 32-bit
- /// S-floating representation to be stored in memory.
- inline int32_t
- t_to_s(uint64_t t_val)
- {
- return (t_val<63:62> << 30 // sign bit & hi exp bit
- | t_val<58:29>); // rest of exp & fraction
- }
-}};
-
-////////////////////////////////////////////////////////////////////
-//
-// The actual decoder specification
-//
-
-decode OPCODE default Unknown::unknown() {
-
- format LoadAddress {
- 0x08: lda({{ Ra = Rb + disp; }});
- 0x09: ldah({{ Ra = Rb + (disp << 16); }});
- }
-
- format LoadOrNop {
- 0x0a: ldbu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.ub; }});
- 0x0c: ldwu({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uw; }});
- 0x0b: ldq_u({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }});
- 0x23: ldt({{ EA = Rb + disp; }}, {{ Fa = Mem.df; }});
- 0x2a: ldl_l({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }}, LOCKED);
- 0x2b: ldq_l({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, LOCKED);
- 0x20: copy_load({{EA = Ra;}},
- {{fault = xc->copySrcTranslate(EA);}},
- IsMemRef, IsLoad, IsCopy);
- }
-
- format LoadOrPrefetch {
- 0x28: ldl({{ EA = Rb + disp; }}, {{ Ra.sl = Mem.sl; }});
- 0x29: ldq({{ EA = Rb + disp; }}, {{ Ra.uq = Mem.uq; }}, EVICT_NEXT);
- // IsFloating flag on lds gets the prefetch to disassemble
- // using f31 instead of r31... funcitonally it's unnecessary
- 0x22: lds({{ EA = Rb + disp; }}, {{ Fa.uq = s_to_t(Mem.ul); }},
- PF_EXCLUSIVE, IsFloating);
- }
-
- format Store {
- 0x0e: stb({{ EA = Rb + disp; }}, {{ Mem.ub = Ra<7:0>; }});
- 0x0d: stw({{ EA = Rb + disp; }}, {{ Mem.uw = Ra<15:0>; }});
- 0x2c: stl({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }});
- 0x2d: stq({{ EA = Rb + disp; }}, {{ Mem.uq = Ra.uq; }});
- 0x0f: stq_u({{ EA = (Rb + disp) & ~7; }}, {{ Mem.uq = Ra.uq; }});
- 0x26: sts({{ EA = Rb + disp; }}, {{ Mem.ul = t_to_s(Fa.uq); }});
- 0x27: stt({{ EA = Rb + disp; }}, {{ Mem.df = Fa; }});
- 0x24: copy_store({{EA = Rb;}},
- {{fault = xc->copy(EA);}},
- IsMemRef, IsStore, IsCopy);
- }
-
- format StoreCond {
- 0x2e: stl_c({{ EA = Rb + disp; }}, {{ Mem.ul = Ra<31:0>; }},
- {{
- uint64_t tmp = Mem_write_result;
- // see stq_c
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- 0x2f: stq_c({{ EA = Rb + disp; }}, {{ Mem.uq = Ra; }},
- {{
- uint64_t tmp = Mem_write_result;
- // If the write operation returns 0 or 1, then
- // this was a conventional store conditional,
- // and the value indicates the success/failure
- // of the operation. If another value is
- // returned, then this was a Turbolaser
- // mailbox access, and we don't update the
- // result register at all.
- Ra = (tmp == 0 || tmp == 1) ? tmp : Ra;
- }}, LOCKED);
- }
-
- format IntegerOperate {
-
- 0x10: decode INTFUNC { // integer arithmetic operations
-
- 0x00: addl({{ Rc.sl = Ra.sl + Rb_or_imm.sl; }});
- 0x40: addlv({{
- uint32_t tmp = Ra.sl + Rb_or_imm.sl;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra.sl<31:> == Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x02: s4addl({{ Rc.sl = (Ra.sl << 2) + Rb_or_imm.sl; }});
- 0x12: s8addl({{ Rc.sl = (Ra.sl << 3) + Rb_or_imm.sl; }});
-
- 0x20: addq({{ Rc = Ra + Rb_or_imm; }});
- 0x60: addqv({{
- uint64_t tmp = Ra + Rb_or_imm;
- // signed overflow occurs when operands have same sign
- // and sign of result does not match.
- if (Ra<63:> == Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x22: s4addq({{ Rc = (Ra << 2) + Rb_or_imm; }});
- 0x32: s8addq({{ Rc = (Ra << 3) + Rb_or_imm; }});
-
- 0x09: subl({{ Rc.sl = Ra.sl - Rb_or_imm.sl; }});
- 0x49: sublv({{
- uint32_t tmp = Ra.sl - Rb_or_imm.sl;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra.sl<31:> != Rb_or_imm.sl<31:> && tmp<31:> != Ra.sl<31:>)
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp;
- }});
- 0x0b: s4subl({{ Rc.sl = (Ra.sl << 2) - Rb_or_imm.sl; }});
- 0x1b: s8subl({{ Rc.sl = (Ra.sl << 3) - Rb_or_imm.sl; }});
-
- 0x29: subq({{ Rc = Ra - Rb_or_imm; }});
- 0x69: subqv({{
- uint64_t tmp = Ra - Rb_or_imm;
- // signed overflow detection is same as for add,
- // except we need to look at the *complemented*
- // sign bit of the subtrahend (Rb), i.e., if the initial
- // signs are the *same* then no overflow can occur
- if (Ra<63:> != Rb_or_imm<63:> && tmp<63:> != Ra<63:>)
- fault = Integer_Overflow_Fault;
- Rc = tmp;
- }});
- 0x2b: s4subq({{ Rc = (Ra << 2) - Rb_or_imm; }});
- 0x3b: s8subq({{ Rc = (Ra << 3) - Rb_or_imm; }});
-
- 0x2d: cmpeq({{ Rc = (Ra == Rb_or_imm); }});
- 0x6d: cmple({{ Rc = (Ra.sq <= Rb_or_imm.sq); }});
- 0x4d: cmplt({{ Rc = (Ra.sq < Rb_or_imm.sq); }});
- 0x3d: cmpule({{ Rc = (Ra.uq <= Rb_or_imm.uq); }});
- 0x1d: cmpult({{ Rc = (Ra.uq < Rb_or_imm.uq); }});
-
- 0x0f: cmpbge({{
- int hi = 7;
- int lo = 0;
- uint64_t tmp = 0;
- for (int i = 0; i < 8; ++i) {
- tmp |= (Ra.uq<hi:lo> >= Rb_or_imm.uq<hi:lo>) << i;
- hi += 8;
- lo += 8;
- }
- Rc = tmp;
- }});
- }
-
- 0x11: decode INTFUNC { // integer logical operations
-
- 0x00: and({{ Rc = Ra & Rb_or_imm; }});
- 0x08: bic({{ Rc = Ra & ~Rb_or_imm; }});
- 0x20: bis({{ Rc = Ra | Rb_or_imm; }});
- 0x28: ornot({{ Rc = Ra | ~Rb_or_imm; }});
- 0x40: xor({{ Rc = Ra ^ Rb_or_imm; }});
- 0x48: eqv({{ Rc = Ra ^ ~Rb_or_imm; }});
-
- // conditional moves
- 0x14: cmovlbs({{ Rc = ((Ra & 1) == 1) ? Rb_or_imm : Rc; }});
- 0x16: cmovlbc({{ Rc = ((Ra & 1) == 0) ? Rb_or_imm : Rc; }});
- 0x24: cmoveq({{ Rc = (Ra == 0) ? Rb_or_imm : Rc; }});
- 0x26: cmovne({{ Rc = (Ra != 0) ? Rb_or_imm : Rc; }});
- 0x44: cmovlt({{ Rc = (Ra.sq < 0) ? Rb_or_imm : Rc; }});
- 0x46: cmovge({{ Rc = (Ra.sq >= 0) ? Rb_or_imm : Rc; }});
- 0x64: cmovle({{ Rc = (Ra.sq <= 0) ? Rb_or_imm : Rc; }});
- 0x66: cmovgt({{ Rc = (Ra.sq > 0) ? Rb_or_imm : Rc; }});
-
- // For AMASK, RA must be R31.
- 0x61: decode RA {
- 31: amask({{ Rc = Rb_or_imm & ~ULL(0x17); }});
- }
-
- // For IMPLVER, RA must be R31 and the B operand
- // must be the immediate value 1.
- 0x6c: decode RA {
- 31: decode IMM {
- 1: decode INTIMM {
- // return EV5 for FULL_SYSTEM and EV6 otherwise
- 1: implver({{
-#if FULL_SYSTEM
- Rc = 1;
-#else
- Rc = 2;
-#endif
- }});
- }
- }
- }
-
-#if FULL_SYSTEM
- // The mysterious 11.25...
- 0x25: WarnUnimpl::eleven25();
-#endif
- }
-
- 0x12: decode INTFUNC {
- 0x39: sll({{ Rc = Ra << Rb_or_imm<5:0>; }});
- 0x34: srl({{ Rc = Ra.uq >> Rb_or_imm<5:0>; }});
- 0x3c: sra({{ Rc = Ra.sq >> Rb_or_imm<5:0>; }});
-
- 0x02: mskbl({{ Rc = Ra & ~(mask( 8) << (Rb_or_imm<2:0> * 8)); }});
- 0x12: mskwl({{ Rc = Ra & ~(mask(16) << (Rb_or_imm<2:0> * 8)); }});
- 0x22: mskll({{ Rc = Ra & ~(mask(32) << (Rb_or_imm<2:0> * 8)); }});
- 0x32: mskql({{ Rc = Ra & ~(mask(64) << (Rb_or_imm<2:0> * 8)); }});
-
- 0x52: mskwh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(16) >> (64 - 8 * bv))) : Ra;
- }});
- 0x62: msklh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(32) >> (64 - 8 * bv))) : Ra;
- }});
- 0x72: mskqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra & ~(mask(64) >> (64 - 8 * bv))) : Ra;
- }});
-
- 0x06: extbl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))< 7:0>; }});
- 0x16: extwl({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<15:0>; }});
- 0x26: extll({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8))<31:0>; }});
- 0x36: extql({{ Rc = (Ra.uq >> (Rb_or_imm<2:0> * 8)); }});
-
- 0x5a: extwh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<15:0>; }});
- 0x6a: extlh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>)<31:0>; }});
- 0x7a: extqh({{
- Rc = (Ra << (64 - (Rb_or_imm<2:0> * 8))<5:0>); }});
-
- 0x0b: insbl({{ Rc = Ra< 7:0> << (Rb_or_imm<2:0> * 8); }});
- 0x1b: inswl({{ Rc = Ra<15:0> << (Rb_or_imm<2:0> * 8); }});
- 0x2b: insll({{ Rc = Ra<31:0> << (Rb_or_imm<2:0> * 8); }});
- 0x3b: insql({{ Rc = Ra << (Rb_or_imm<2:0> * 8); }});
-
- 0x57: inswh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<15:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x67: inslh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq<31:0> >> (64 - 8 * bv)) : 0;
- }});
- 0x77: insqh({{
- int bv = Rb_or_imm<2:0>;
- Rc = bv ? (Ra.uq >> (64 - 8 * bv)) : 0;
- }});
-
- 0x30: zap({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- 0x31: zapnot({{
- uint64_t zapmask = 0;
- for (int i = 0; i < 8; ++i) {
- if (!Rb_or_imm<i:>)
- zapmask |= (mask(8) << (i * 8));
- }
- Rc = Ra & ~zapmask;
- }});
- }
-
- 0x13: decode INTFUNC { // integer multiplies
- 0x00: mull({{ Rc.sl = Ra.sl * Rb_or_imm.sl; }}, IntMultOp);
- 0x20: mulq({{ Rc = Ra * Rb_or_imm; }}, IntMultOp);
- 0x30: umulh({{
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- Rc = hi;
- }}, IntMultOp);
- 0x40: mullv({{
- // 32-bit multiply with trap on overflow
- int64_t Rax = Ra.sl; // sign extended version of Ra.sl
- int64_t Rbx = Rb_or_imm.sl;
- int64_t tmp = Rax * Rbx;
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = tmp<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Rc.sl = tmp<31:0>;
- }}, IntMultOp);
- 0x60: mulqv({{
- // 64-bit multiply with trap on overflow
- uint64_t hi, lo;
- mul128(Ra, Rb_or_imm, hi, lo);
- // all the upper 64 bits must match the sign bit of
- // the lower 64
- if (!((hi == 0 && lo<63:> == 0) ||
- (hi == mask(64) && lo<63:> == 1)))
- fault = Integer_Overflow_Fault;
- Rc = lo;
- }}, IntMultOp);
- }
-
- 0x1c: decode INTFUNC {
- 0x00: decode RA { 31: sextb({{ Rc.sb = Rb_or_imm< 7:0>; }}); }
- 0x01: decode RA { 31: sextw({{ Rc.sw = Rb_or_imm<15:0>; }}); }
- 0x32: ctlz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (temp<63:32>) temp >>= 32; else count += 32;
- if (temp<31:16>) temp >>= 16; else count += 16;
- if (temp<15:8>) temp >>= 8; else count += 8;
- if (temp<7:4>) temp >>= 4; else count += 4;
- if (temp<3:2>) temp >>= 2; else count += 2;
- if (temp<1:1>) temp >>= 1; else count += 1;
- if ((temp<0:0>) != 0x1) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- 0x33: cttz({{
- uint64_t count = 0;
- uint64_t temp = Rb;
- if (!(temp<31:0>)) { temp >>= 32; count += 32; }
- if (!(temp<15:0>)) { temp >>= 16; count += 16; }
- if (!(temp<7:0>)) { temp >>= 8; count += 8; }
- if (!(temp<3:0>)) { temp >>= 4; count += 4; }
- if (!(temp<1:0>)) { temp >>= 2; count += 2; }
- if (!(temp<0:0> & ULL(0x1))) count += 1;
- Rc = count;
- }}, IntAluOp);
-
- format FailUnimpl {
- 0x30: ctpop();
- 0x31: perr();
- 0x34: unpkbw();
- 0x35: unpkbl();
- 0x36: pkwb();
- 0x37: pklb();
- 0x38: minsb8();
- 0x39: minsw4();
- 0x3a: minub8();
- 0x3b: minuw4();
- 0x3c: maxub8();
- 0x3d: maxuw4();
- 0x3e: maxsb8();
- 0x3f: maxsw4();
- }
-
- format BasicOperateWithNopCheck {
- 0x70: decode RB {
- 31: ftoit({{ Rc = Fa.uq; }}, FloatCvtOp);
- }
- 0x78: decode RB {
- 31: ftois({{ Rc.sl = t_to_s(Fa.uq); }},
- FloatCvtOp);
- }
- }
- }
- }
-
- // Conditional branches.
- format CondBranch {
- 0x39: beq({{ cond = (Ra == 0); }});
- 0x3d: bne({{ cond = (Ra != 0); }});
- 0x3e: bge({{ cond = (Ra.sq >= 0); }});
- 0x3f: bgt({{ cond = (Ra.sq > 0); }});
- 0x3b: ble({{ cond = (Ra.sq <= 0); }});
- 0x3a: blt({{ cond = (Ra.sq < 0); }});
- 0x38: blbc({{ cond = ((Ra & 1) == 0); }});
- 0x3c: blbs({{ cond = ((Ra & 1) == 1); }});
-
- 0x31: fbeq({{ cond = (Fa == 0); }});
- 0x35: fbne({{ cond = (Fa != 0); }});
- 0x36: fbge({{ cond = (Fa >= 0); }});
- 0x37: fbgt({{ cond = (Fa > 0); }});
- 0x33: fble({{ cond = (Fa <= 0); }});
- 0x32: fblt({{ cond = (Fa < 0); }});
- }
-
- // unconditional branches
- format UncondBranch {
- 0x30: br();
- 0x34: bsr(IsCall);
- }
-
- // indirect branches
- 0x1a: decode JMPFUNC {
- format Jump {
- 0: jmp();
- 1: jsr(IsCall);
- 2: ret(IsReturn);
- 3: jsr_coroutine(IsCall, IsReturn);
- }
- }
-
- // Square root and integer-to-FP moves
- 0x14: decode FP_SHORTFUNC {
- // Integer to FP register moves must have RB == 31
- 0x4: decode RB {
- 31: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x004: itofs({{ Fc.uq = s_to_t(Ra.ul); }}, FloatCvtOp);
- 0x024: itoft({{ Fc.uq = Ra.uq; }}, FloatCvtOp);
- 0x014: FailUnimpl::itoff(); // VAX-format conversion
- }
- }
- }
-
- // Square root instructions must have FA == 31
- 0xb: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x0b: sqrts({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
-#else
- 0x0b: sqrts({{
- if (Fb.sf < 0.0)
- fault = Arithmetic_Fault;
- Fc.sf = sqrt(Fb.sf);
- }}, FloatSqrtOp);
-#endif
- 0x2b: sqrtt({{
- if (Fb < 0.0)
- fault = Arithmetic_Fault;
- Fc = sqrt(Fb);
- }}, FloatSqrtOp);
- }
- }
- }
-
- // VAX-format sqrtf and sqrtg are not implemented
- 0xa: FailUnimpl::sqrtfg();
- }
-
- // IEEE floating point
- 0x16: decode FP_SHORTFUNC_TOP2 {
- // The top two bits of the short function code break this
- // space into four groups: binary ops, compares, reserved, and
- // conversions. See Table 4-12 of AHB. There are different
- // special cases in these different groups, so we decode on
- // these top two bits first just to select a decode strategy.
- // Most of these instructions may have various trapping and
- // rounding mode flags set; these are decoded in the
- // FloatingPointDecode template used by the
- // FloatingPointOperate format.
-
- // add/sub/mul/div: just decode on the short function code
- // and source type. All valid trapping and rounding modes apply.
- 0: decode FP_TRAPMODE {
- // check for valid trapping modes here
- 0,1,5,7: decode FP_TYPEFUNC {
- format FloatingPointOperate {
-#if SS_COMPATIBLE_FP
- 0x00: adds({{ Fc = Fa + Fb; }});
- 0x01: subs({{ Fc = Fa - Fb; }});
- 0x02: muls({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x03: divs({{ Fc = Fa / Fb; }}, FloatDivOp);
-#else
- 0x00: adds({{ Fc.sf = Fa.sf + Fb.sf; }});
- 0x01: subs({{ Fc.sf = Fa.sf - Fb.sf; }});
- 0x02: muls({{ Fc.sf = Fa.sf * Fb.sf; }}, FloatMultOp);
- 0x03: divs({{ Fc.sf = Fa.sf / Fb.sf; }}, FloatDivOp);
-#endif
-
- 0x20: addt({{ Fc = Fa + Fb; }});
- 0x21: subt({{ Fc = Fa - Fb; }});
- 0x22: mult({{ Fc = Fa * Fb; }}, FloatMultOp);
- 0x23: divt({{ Fc = Fa / Fb; }}, FloatDivOp);
- }
- }
- }
-
- // Floating-point compare instructions must have the default
- // rounding mode, and may use the default trapping mode or
- // /SU. Both trapping modes are treated the same by M5; the
- // only difference on the real hardware (as far a I can tell)
- // is that without /SU you'd get an imprecise trap if you
- // tried to compare a NaN with something else (instead of an
- // "unordered" result).
- 1: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x0a5, 0x5a5: cmpteq({{ Fc = (Fa == Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a7, 0x5a7: cmptle({{ Fc = (Fa <= Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a6, 0x5a6: cmptlt({{ Fc = (Fa < Fb) ? 2.0 : 0.0; }},
- FloatCmpOp);
- 0x0a4, 0x5a4: cmptun({{ // unordered
- Fc = (!(Fa < Fb) && !(Fa == Fb) && !(Fa > Fb)) ? 2.0 : 0.0;
- }}, FloatCmpOp);
- }
- }
-
- // The FP-to-integer and integer-to-FP conversion insts
- // require that FA be 31.
- 3: decode FA {
- 31: decode FP_TYPEFUNC {
- format FloatingPointOperate {
- 0x2f: decode FP_ROUNDMODE {
- format FPFixedRounding {
- // "chopped" i.e. round toward zero
- 0: cvttq({{ Fc.sq = (int64_t)trunc(Fb); }},
- Chopped);
- // round to minus infinity
- 1: cvttq({{ Fc.sq = (int64_t)floor(Fb); }},
- MinusInfinity);
- }
- default: cvttq({{ Fc.sq = (int64_t)nearbyint(Fb); }});
- }
-
- // The cvtts opcode is overloaded to be cvtst if the trap
- // mode is 2 or 6 (which are not valid otherwise)
- 0x2c: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- // trap on denorm version "cvtst/s" is
- // simulated same as cvtst
- 0x2ac, 0x6ac: cvtst({{ Fc = Fb.sf; }});
- }
- default: cvtts({{ Fc.sf = Fb; }});
- }
-
- // The trapping mode for integer-to-FP conversions
- // must be /SUI or nothing; /U and /SU are not
- // allowed. The full set of rounding modes are
- // supported though.
- 0x3c: decode FP_TRAPMODE {
- 0,7: cvtqs({{ Fc.sf = Fb.sq; }});
- }
- 0x3e: decode FP_TRAPMODE {
- 0,7: cvtqt({{ Fc = Fb.sq; }});
- }
- }
- }
- }
- }
-
- // misc FP operate
- 0x17: decode FP_FULLFUNC {
- format BasicOperateWithNopCheck {
- 0x010: cvtlq({{
- Fc.sl = (Fb.uq<63:62> << 30) | Fb.uq<58:29>;
- }});
- 0x030: cvtql({{
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- // We treat the precise & imprecise trapping versions of
- // cvtql identically.
- 0x130, 0x530: cvtqlv({{
- // To avoid overflow, all the upper 32 bits must match
- // the sign bit of the lower 32. We code this as
- // checking the upper 33 bits for all 0s or all 1s.
- uint64_t sign_bits = Fb.uq<63:31>;
- if (sign_bits != 0 && sign_bits != mask(33))
- fault = Integer_Overflow_Fault;
- Fc.uq = (Fb.uq<31:30> << 62) | (Fb.uq<29:0> << 29);
- }});
-
- 0x020: cpys({{ // copy sign
- Fc.uq = (Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x021: cpysn({{ // copy sign negated
- Fc.uq = (~Fa.uq<63:> << 63) | Fb.uq<62:0>;
- }});
- 0x022: cpyse({{ // copy sign and exponent
- Fc.uq = (Fa.uq<63:52> << 52) | Fb.uq<51:0>;
- }});
-
- 0x02a: fcmoveq({{ Fc = (Fa == 0) ? Fb : Fc; }});
- 0x02b: fcmovne({{ Fc = (Fa != 0) ? Fb : Fc; }});
- 0x02c: fcmovlt({{ Fc = (Fa < 0) ? Fb : Fc; }});
- 0x02d: fcmovge({{ Fc = (Fa >= 0) ? Fb : Fc; }});
- 0x02e: fcmovle({{ Fc = (Fa <= 0) ? Fb : Fc; }});
- 0x02f: fcmovgt({{ Fc = (Fa > 0) ? Fb : Fc; }});
-
- 0x024: mt_fpcr({{ FPCR = Fa.uq; }});
- 0x025: mf_fpcr({{ Fa.uq = FPCR; }});
- }
- }
-
- // miscellaneous mem-format ops
- 0x18: decode MEMFUNC {
- format WarnUnimpl {
- 0x8000: fetch();
- 0xa000: fetch_m();
- 0xe800: ecb();
- }
-
- format MiscPrefetch {
- 0xf800: wh64({{ EA = Rb & ~ULL(63); }},
- {{ xc->writeHint(EA, 64, memAccessFlags); }},
- IsMemRef, IsDataPrefetch, IsStore, MemWriteOp,
- NO_FAULT);
- }
-
- format BasicOperate {
- 0xc000: rpcc({{
-#if FULL_SYSTEM
- /* Rb is a fake dependency so here is a fun way to get
- * the parser to understand that.
- */
- Ra = xc->readIpr(AlphaISA::IPR_CC, fault) + (Rb & 0);
-
-#else
- Ra = curTick;
-#endif
- }});
-
- // All of the barrier instructions below do nothing in
- // their execute() methods (hence the empty code blocks).
- // All of their functionality is hard-coded in the
- // pipeline based on the flags IsSerializing,
- // IsMemBarrier, and IsWriteBarrier. In the current
- // detailed CPU model, the execute() function only gets
- // called at fetch, so there's no way to generate pipeline
- // behavior at any other stage. Once we go to an
- // exec-in-exec CPU model we should be able to get rid of
- // these flags and implement this behavior via the
- // execute() methods.
-
- // trapb is just a barrier on integer traps, where excb is
- // a barrier on integer and FP traps. "EXCB is thus a
- // superset of TRAPB." (Alpha ARM, Sec 4.11.4) We treat
- // them the same though.
- 0x0000: trapb({{ }}, IsSerializing, No_OpClass);
- 0x0400: excb({{ }}, IsSerializing, No_OpClass);
- 0x4000: mb({{ }}, IsMemBarrier, MemReadOp);
- 0x4400: wmb({{ }}, IsWriteBarrier, MemWriteOp);
- }
-
-#if FULL_SYSTEM
- format BasicOperate {
- 0xe000: rc({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(0);
- }}, IsNonSpeculative);
- 0xf000: rs({{
- Ra = xc->readIntrFlag();
- xc->setIntrFlag(1);
- }}, IsNonSpeculative);
- }
-#else
- format FailUnimpl {
- 0xe000: rc();
- 0xf000: rs();
- }
-#endif
- }
-
-#if FULL_SYSTEM
- 0x00: CallPal::call_pal({{
- if (!palValid ||
- (palPriv
- && xc->readIpr(AlphaISA::IPR_ICM, fault) != AlphaISA::mode_kernel)) {
- // invalid pal function code, or attempt to do privileged
- // PAL call in non-kernel mode
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- // check to see if simulator wants to do something special
- // on this PAL call (including maybe suppress it)
- bool dopal = xc->simPalCheck(palFunc);
-
- if (dopal) {
- AlphaISA::swap_palshadow(&xc->xcBase()->regs, true);
- xc->setIpr(AlphaISA::IPR_EXC_ADDR, NPC);
- NPC = xc->readIpr(AlphaISA::IPR_PAL_BASE, fault) + palOffset;
- }
- }
- }}, IsNonSpeculative);
-#else
- 0x00: decode PALFUNC {
- format EmulatedCallPal {
- 0x00: halt ({{
- SimExit(curTick, "halt instruction encountered");
- }}, IsNonSpeculative);
- 0x83: callsys({{
- xc->syscall();
- }}, IsNonSpeculative);
- // Read uniq reg into ABI return value register (r0)
- 0x9e: rduniq({{ R0 = Runiq; }});
- // Write uniq reg with value from ABI arg register (r16)
- 0x9f: wruniq({{ Runiq = R16; }});
- }
- }
-#endif
-
-#if FULL_SYSTEM
- format HwLoadStore {
- 0x1b: decode HW_LDST_QUAD {
- 0: hw_ld({{ EA = (Rb + disp) & ~3; }}, {{ Ra = Mem.ul; }}, L);
- 1: hw_ld({{ EA = (Rb + disp) & ~7; }}, {{ Ra = Mem.uq; }}, Q);
- }
-
- 0x1f: decode HW_LDST_COND {
- 0: decode HW_LDST_QUAD {
- 0: hw_st({{ EA = (Rb + disp) & ~3; }},
- {{ Mem.ul = Ra<31:0>; }}, L);
- 1: hw_st({{ EA = (Rb + disp) & ~7; }},
- {{ Mem.uq = Ra.uq; }}, Q);
- }
-
- 1: FailUnimpl::hw_st_cond();
- }
- }
-
- format HwMoveIPR {
- 0x19: hw_mfpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- Ra = xc->readIpr(ipr_index, fault);
- }
- }});
- 0x1d: hw_mtpr({{
- // this instruction is only valid in PAL mode
- if (!xc->inPalMode()) {
- fault = Unimplemented_Opcode_Fault;
- }
- else {
- xc->setIpr(ipr_index, Ra);
- if (traceData) { traceData->setData(Ra); }
- }
- }});
- }
-
- format BasicOperate {
- 0x1e: hw_rei({{ xc->hwrei(); }}, IsSerializing);
-
- // M5 special opcodes use the reserved 0x01 opcode space
- 0x01: decode M5FUNC {
- 0x00: arm({{
- AlphaPseudo::arm(xc->xcBase());
- }}, IsNonSpeculative);
- 0x01: quiesce({{
- AlphaPseudo::quiesce(xc->xcBase());
- }}, IsNonSpeculative);
- 0x10: ivlb({{
- AlphaPseudo::ivlb(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x11: ivle({{
- AlphaPseudo::ivle(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x20: m5exit_old({{
- AlphaPseudo::m5exit_old(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x21: m5exit({{
- AlphaPseudo::m5exit(xc->xcBase());
- }}, No_OpClass, IsNonSpeculative);
- 0x30: initparam({{ Ra = xc->xcBase()->cpu->system->init_param; }});
- 0x40: resetstats({{
- AlphaPseudo::resetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x41: dumpstats({{
- AlphaPseudo::dumpstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x42: dumpresetstats({{
- AlphaPseudo::dumpresetstats(xc->xcBase());
- }}, IsNonSpeculative);
- 0x43: m5checkpoint({{
- AlphaPseudo::m5checkpoint(xc->xcBase());
- }}, IsNonSpeculative);
- 0x50: m5readfile({{
- AlphaPseudo::readfile(xc->xcBase());
- }}, IsNonSpeculative);
- 0x51: m5break({{
- AlphaPseudo::debugbreak(xc->xcBase());
- }}, IsNonSpeculative);
- 0x52: m5switchcpu({{
- AlphaPseudo::switchcpu(xc->xcBase());
- }}, IsNonSpeculative);
- 0x53: m5addsymbol({{
- AlphaPseudo::addsymbol(xc->xcBase());
- }}, IsNonSpeculative);
-
- }
- }
-#endif
-}
+// The actual decoder
+##include "m5/arch/alpha/isa/decoder.isa"
diff --git a/arch/alpha/isa/mem.isa b/arch/alpha/isa/mem.isa
new file mode 100644
index 000000000..89296626c
--- /dev/null
+++ b/arch/alpha/isa/mem.isa
@@ -0,0 +1,441 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output header {{
+ /**
+ * Base class for general Alpha memory-format instructions.
+ */
+ class Memory : public AlphaStaticInst
+ {
+ protected:
+
+ /// Memory request flags. See mem_req_base.hh.
+ unsigned memAccessFlags;
+ /// Pointer to EAComp object.
+ const StaticInstPtr<AlphaISA> eaCompPtr;
+ /// Pointer to MemAcc object.
+ const StaticInstPtr<AlphaISA> memAccPtr;
+
+ /// Constructor
+ Memory(const char *mnem, MachInst _machInst, OpClass __opClass,
+ StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
+ StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ memAccessFlags(0), eaCompPtr(_eaCompPtr), memAccPtr(_memAccPtr)
+ {
+ }
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+
+ public:
+
+ const StaticInstPtr<AlphaISA> &eaCompInst() const { return eaCompPtr; }
+ const StaticInstPtr<AlphaISA> &memAccInst() const { return memAccPtr; }
+ };
+
+ /**
+ * Base class for memory-format instructions using a 32-bit
+ * displacement (i.e. most of them).
+ */
+ class MemoryDisp32 : public Memory
+ {
+ protected:
+ /// Displacement for EA calculation (signed).
+ int32_t disp;
+
+ /// Constructor.
+ MemoryDisp32(const char *mnem, MachInst _machInst, OpClass __opClass,
+ StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
+ StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
+ : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
+ disp(MEMDISP)
+ {
+ }
+ };
+
+
+ /**
+ * Base class for a few miscellaneous memory-format insts
+ * that don't interpret the disp field: wh64, fetch, fetch_m, ecb.
+ * None of these instructions has a destination register either.
+ */
+ class MemoryNoDisp : public Memory
+ {
+ protected:
+ /// Constructor
+ MemoryNoDisp(const char *mnem, MachInst _machInst, OpClass __opClass,
+ StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
+ StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr)
+ : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr)
+ {
+ }
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+
+output decoder {{
+ std::string
+ Memory::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ return csprintf("%-10s %c%d,%d(r%d)", mnemonic,
+ flags[IsFloating] ? 'f' : 'r', RA, MEMDISP, RB);
+ }
+
+ std::string
+ MemoryNoDisp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ return csprintf("%-10s (r%d)", mnemonic, RB);
+ }
+}};
+
+def format LoadAddress(code) {{
+ iop = InstObjParams(name, Name, 'MemoryDisp32', CodeBlock(code))
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ decode_block = BasicDecode.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+}};
+
+
+def template LoadStoreDeclare {{
+ /**
+ * Static instruction class for "%(mnemonic)s".
+ */
+ class %(class_name)s : public %(base_class)s
+ {
+ protected:
+
+ /**
+ * "Fake" effective address computation class for "%(mnemonic)s".
+ */
+ class EAComp : public %(base_class)s
+ {
+ public:
+ /// Constructor
+ EAComp(MachInst machInst);
+
+ %(BasicExecDeclare)s
+ };
+
+ /**
+ * "Fake" memory access instruction class for "%(mnemonic)s".
+ */
+ class MemAcc : public %(base_class)s
+ {
+ public:
+ /// Constructor
+ MemAcc(MachInst machInst);
+
+ %(BasicExecDeclare)s
+ };
+
+ public:
+
+ /// Constructor.
+ %(class_name)s(MachInst machInst);
+
+ %(BasicExecDeclare)s
+ };
+}};
+
+def template LoadStoreConstructor {{
+ /** TODO: change op_class to AddrGenOp or something (requires
+ * creating new member of OpClass enum in op_class.hh, updating
+ * config files, etc.). */
+ inline %(class_name)s::EAComp::EAComp(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s (EAComp)", machInst, IntAluOp)
+ {
+ %(ea_constructor)s;
+ }
+
+ inline %(class_name)s::MemAcc::MemAcc(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s (MemAcc)", machInst, %(op_class)s)
+ {
+ %(memacc_constructor)s;
+ }
+
+ inline %(class_name)s::%(class_name)s(MachInst machInst)
+ : %(base_class)s("%(mnemonic)s", machInst, %(op_class)s,
+ new EAComp(machInst), new MemAcc(machInst))
+ {
+ %(constructor)s;
+ }
+}};
+
+
+def template EACompExecute {{
+ Fault
+ %(class_name)s::EAComp::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_rd)s;
+ %(code)s;
+
+ if (fault == No_Fault) {
+ %(op_wb)s;
+ xc->setEA(EA);
+ }
+
+ return fault;
+ }
+}};
+
+def template MemAccExecute {{
+ Fault
+ %(class_name)s::MemAcc::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_nonmem_rd)s;
+ EA = xc->getEA();
+
+ if (fault == No_Fault) {
+ %(op_mem_rd)s;
+ %(code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(op_mem_wb)s;
+ }
+
+ if (fault == No_Fault) {
+ %(postacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(op_nonmem_wb)s;
+ }
+
+ return fault;
+ }
+}};
+
+
+def template LoadStoreExecute {{
+ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ %(op_mem_rd)s;
+ %(memacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(op_mem_wb)s;
+ }
+
+ if (fault == No_Fault) {
+ %(postacc_code)s;
+ }
+
+ if (fault == No_Fault) {
+ %(op_nonmem_wb)s;
+ }
+
+ return fault;
+ }
+}};
+
+
+def template PrefetchExecute {{
+ Fault %(class_name)s::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ Addr EA;
+ Fault fault = No_Fault;
+
+ %(fp_enable_check)s;
+ %(op_decl)s;
+ %(op_nonmem_rd)s;
+ %(ea_code)s;
+
+ if (fault == No_Fault) {
+ xc->prefetch(EA, memAccessFlags);
+ }
+
+ return No_Fault;
+ }
+}};
+
+// load instructions use Ra as dest, so check for
+// Ra == 31 to detect nops
+def template LoadNopCheckDecode {{
+ {
+ AlphaStaticInst *i = new %(class_name)s(machInst);
+ if (RA == 31) {
+ i = makeNop(i);
+ }
+ return i;
+ }
+}};
+
+
+// for some load instructions, Ra == 31 indicates a prefetch (not a nop)
+def template LoadPrefetchCheckDecode {{
+ {
+ if (RA != 31) {
+ return new %(class_name)s(machInst);
+ }
+ else {
+ return new %(class_name)sPrefetch(machInst);
+ }
+ }
+}};
+
+
+let {{
+def LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code = '',
+ base_class = 'MemoryDisp32', flags = [],
+ decode_template = BasicDecode,
+ exec_template = LoadStoreExecute):
+ # Segregate flags into instruction flags (handled by InstObjParams)
+ # and memory access flags (handled here).
+
+ # Would be nice to autogenerate this list, but oh well.
+ valid_mem_flags = ['LOCKED', 'NO_FAULT', 'EVICT_NEXT', 'PF_EXCLUSIVE']
+ mem_flags = [f for f in flags if f in valid_mem_flags]
+ inst_flags = [f for f in flags if f not in valid_mem_flags]
+
+ # add hook to get effective addresses into execution trace output.
+ ea_code += '\nif (traceData) { traceData->setAddr(EA); }\n'
+
+ # generate code block objects
+ ea_cblk = CodeBlock(ea_code)
+ memacc_cblk = CodeBlock(memacc_code)
+ postacc_cblk = CodeBlock(postacc_code)
+
+ # Some CPU models execute the memory operation as an atomic unit,
+ # while others want to separate them into an effective address
+ # computation and a memory access operation. As a result, we need
+ # to generate three StaticInst objects. Note that the latter two
+ # are nested inside the larger "atomic" one.
+
+ # generate InstObjParams for EAComp object
+ ea_iop = InstObjParams(name, Name, base_class, ea_cblk, inst_flags)
+
+ # generate InstObjParams for MemAcc object
+ memacc_iop = InstObjParams(name, Name, base_class, memacc_cblk, inst_flags)
+ # in the split execution model, the MemAcc portion is responsible
+ # for the post-access code.
+ memacc_iop.postacc_code = postacc_cblk.code
+
+ # generate InstObjParams for unified execution
+ cblk = CodeBlock(ea_code + memacc_code + postacc_code)
+ iop = InstObjParams(name, Name, base_class, cblk, inst_flags)
+
+ iop.ea_constructor = ea_cblk.constructor
+ iop.ea_code = ea_cblk.code
+ iop.memacc_constructor = memacc_cblk.constructor
+ iop.memacc_code = memacc_cblk.code
+ iop.postacc_code = postacc_cblk.code
+
+ if mem_flags:
+ s = '\n\tmemAccessFlags = ' + string.join(mem_flags, '|') + ';'
+ iop.constructor += s
+ memacc_iop.constructor += s
+
+ # (header_output, decoder_output, decode_block, exec_output)
+ return (LoadStoreDeclare.subst(iop), LoadStoreConstructor.subst(iop),
+ decode_template.subst(iop),
+ EACompExecute.subst(ea_iop)
+ + MemAccExecute.subst(memacc_iop)
+ + exec_template.subst(iop))
+}};
+
+
+def format LoadOrNop(ea_code, memacc_code, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
+ decode_template = LoadNopCheckDecode)
+}};
+
+
+// Note that the flags passed in apply only to the prefetch version
+def format LoadOrPrefetch(ea_code, memacc_code, *pf_flags) {{
+ # declare the load instruction object and generate the decode block
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code,
+ decode_template = LoadPrefetchCheckDecode)
+
+ # Declare the prefetch instruction object.
+
+ # convert flags from tuple to list to make them mutable
+ pf_flags = list(pf_flags) + ['IsMemRef', 'IsLoad', 'IsDataPrefetch', 'MemReadOp', 'NO_FAULT']
+
+ (pf_header_output, pf_decoder_output, _, pf_exec_output) = \
+ LoadStoreBase(name, Name + 'Prefetch', ea_code, '',
+ flags = pf_flags, exec_template = PrefetchExecute)
+
+ header_output += pf_header_output
+ decoder_output += pf_decoder_output
+ exec_output += pf_exec_output
+}};
+
+
+def format Store(ea_code, memacc_code, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags)
+}};
+
+
+def format StoreCond(ea_code, memacc_code, postacc_code, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code, postacc_code,
+ flags = flags)
+}};
+
+
+// Use 'MemoryNoDisp' as base: for wh64, fetch, ecb
+def format MiscPrefetch(ea_code, memacc_code, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name, ea_code, memacc_code, flags = flags,
+ base_class = 'MemoryNoDisp')
+}};
+
+
diff --git a/arch/alpha/isa/pal.isa b/arch/alpha/isa/pal.isa
new file mode 100644
index 000000000..9debffa38
--- /dev/null
+++ b/arch/alpha/isa/pal.isa
@@ -0,0 +1,260 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output header {{
+ /**
+ * Base class for emulated call_pal calls (used only in
+ * non-full-system mode).
+ */
+ class EmulatedCallPal : public AlphaStaticInst
+ {
+ protected:
+
+ /// Constructor.
+ EmulatedCallPal(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass)
+ {
+ }
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ std::string
+ EmulatedCallPal::generateDisassembly(Addr pc,
+ const SymbolTable *symtab) const
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%s %s", "call_pal", mnemonic);
+#else
+ return csprintf("%-10s %s", "call_pal", mnemonic);
+#endif
+ }
+}};
+
+def format EmulatedCallPal(code, *flags) {{
+ iop = InstObjParams(name, Name, 'EmulatedCallPal', CodeBlock(code), flags)
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ decode_block = BasicDecode.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+}};
+
+output header {{
+ /**
+ * Base class for full-system-mode call_pal instructions.
+ * Probably could turn this into a leaf class and get rid of the
+ * parser template.
+ */
+ class CallPalBase : public AlphaStaticInst
+ {
+ protected:
+ int palFunc; ///< Function code part of instruction
+ int palOffset; ///< Target PC, offset from IPR_PAL_BASE
+ bool palValid; ///< is the function code valid?
+ bool palPriv; ///< is this call privileged?
+
+ /// Constructor.
+ CallPalBase(const char *mnem, MachInst _machInst,
+ OpClass __opClass);
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ inline
+ CallPalBase::CallPalBase(const char *mnem, MachInst _machInst,
+ OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ palFunc(PALFUNC)
+ {
+ // From the 21164 HRM (paraphrased):
+ // Bit 7 of the function code (mask 0x80) indicates
+ // whether the call is privileged (bit 7 == 0) or
+ // unprivileged (bit 7 == 1). The privileged call table
+ // starts at 0x2000, the unprivielged call table starts at
+ // 0x3000. Bits 5-0 (mask 0x3f) are used to calculate the
+ // offset.
+ const int palPrivMask = 0x80;
+ const int palOffsetMask = 0x3f;
+
+ // Pal call is invalid unless all other bits are 0
+ palValid = ((machInst & ~(palPrivMask | palOffsetMask)) == 0);
+ palPriv = ((machInst & palPrivMask) == 0);
+ int shortPalFunc = (machInst & palOffsetMask);
+ // Add 1 to base to set pal-mode bit
+ palOffset = (palPriv ? 0x2001 : 0x3001) + (shortPalFunc << 6);
+ }
+
+ std::string
+ CallPalBase::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ return csprintf("%-10s %#x", "call_pal", palFunc);
+ }
+}};
+
+def format CallPal(code, *flags) {{
+ iop = InstObjParams(name, Name, 'CallPalBase', CodeBlock(code), flags)
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ decode_block = BasicDecode.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+}};
+
+////////////////////////////////////////////////////////////////////
+//
+// hw_ld, hw_st
+//
+
+output header {{
+ /**
+ * Base class for hw_ld and hw_st.
+ */
+ class HwLoadStore : public Memory
+ {
+ protected:
+
+ /// Displacement for EA calculation (signed).
+ int16_t disp;
+
+ /// Constructor
+ HwLoadStore(const char *mnem, MachInst _machInst, OpClass __opClass,
+ StaticInstPtr<AlphaISA> _eaCompPtr = nullStaticInstPtr,
+ StaticInstPtr<AlphaISA> _memAccPtr = nullStaticInstPtr);
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+
+output decoder {{
+ inline
+ HwLoadStore::HwLoadStore(const char *mnem, MachInst _machInst,
+ OpClass __opClass,
+ StaticInstPtr<AlphaISA> _eaCompPtr,
+ StaticInstPtr<AlphaISA> _memAccPtr)
+ : Memory(mnem, _machInst, __opClass, _eaCompPtr, _memAccPtr),
+ disp(HW_LDST_DISP)
+ {
+ memAccessFlags = 0;
+ if (HW_LDST_PHYS) memAccessFlags |= PHYSICAL;
+ if (HW_LDST_ALT) memAccessFlags |= ALTMODE;
+ if (HW_LDST_VPTE) memAccessFlags |= VPTE;
+ if (HW_LDST_LOCK) memAccessFlags |= LOCKED;
+ }
+
+ std::string
+ HwLoadStore::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%-10s r%d,%d(r%d)", mnemonic, RA, disp, RB);
+#else
+ // HW_LDST_LOCK and HW_LDST_COND are the same bit.
+ const char *lock_str =
+ (HW_LDST_LOCK) ? (flags[IsLoad] ? ",LOCK" : ",COND") : "";
+
+ return csprintf("%-10s r%d,%d(r%d)%s%s%s%s%s",
+ mnemonic, RA, disp, RB,
+ HW_LDST_PHYS ? ",PHYS" : "",
+ HW_LDST_ALT ? ",ALT" : "",
+ HW_LDST_QUAD ? ",QUAD" : "",
+ HW_LDST_VPTE ? ",VPTE" : "",
+ lock_str);
+#endif
+ }
+}};
+
+def format HwLoadStore(ea_code, memacc_code, class_ext, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
+ flags = flags, base_class = 'HwLoadStore')
+}};
+
+
+def format HwStoreCond(ea_code, memacc_code, postacc_code, class_ext, *flags) {{
+ (header_output, decoder_output, decode_block, exec_output) = \
+ LoadStoreBase(name, Name + class_ext, ea_code, memacc_code,
+ postacc_code, flags = flags, base_class = 'HwLoadStore')
+}};
+
+
+output header {{
+ /**
+ * Base class for hw_mfpr and hw_mtpr.
+ */
+ class HwMoveIPR : public AlphaStaticInst
+ {
+ protected:
+ /// Index of internal processor register.
+ int ipr_index;
+
+ /// Constructor
+ HwMoveIPR(const char *mnem, MachInst _machInst, OpClass __opClass)
+ : AlphaStaticInst(mnem, _machInst, __opClass),
+ ipr_index(HW_IPR_IDX)
+ {
+ }
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ std::string
+ HwMoveIPR::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ if (_numSrcRegs > 0) {
+ // must be mtpr
+ return csprintf("%-10s r%d,IPR(%#x)",
+ mnemonic, RA, ipr_index);
+ }
+ else {
+ // must be mfpr
+ return csprintf("%-10s IPR(%#x),r%d",
+ mnemonic, ipr_index, RA);
+ }
+ }
+}};
+
+def format HwMoveIPR(code) {{
+ iop = InstObjParams(name, Name, 'HwMoveIPR', CodeBlock(code),
+ ['IprAccessOp'])
+ header_output = BasicDeclare.subst(iop)
+ decoder_output = BasicConstructor.subst(iop)
+ decode_block = BasicDecode.subst(iop)
+ exec_output = BasicExecute.subst(iop)
+}};
+
+
diff --git a/arch/alpha/isa/unimp.isa b/arch/alpha/isa/unimp.isa
new file mode 100644
index 000000000..767888157
--- /dev/null
+++ b/arch/alpha/isa/unimp.isa
@@ -0,0 +1,165 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output header {{
+ /**
+ * Static instruction class for unimplemented instructions that
+ * cause simulator termination. Note that these are recognized
+ * (legal) instructions that the simulator does not support; the
+ * 'Unknown' class is used for unrecognized/illegal instructions.
+ * This is a leaf class.
+ */
+ class FailUnimplemented : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ FailUnimplemented(const char *_mnemonic, MachInst _machInst)
+ : AlphaStaticInst(_mnemonic, _machInst, No_OpClass)
+ {
+ // don't call execute() (which panics) if we're on a
+ // speculative path
+ flags[IsNonSpeculative] = true;
+ }
+
+ %(BasicExecDeclare)s
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+
+ /**
+ * Base class for unimplemented instructions that cause a warning
+ * to be printed (but do not terminate simulation). This
+ * implementation is a little screwy in that it will print a
+ * warning for each instance of a particular unimplemented machine
+ * instruction, not just for each unimplemented opcode. Should
+ * probably make the 'warned' flag a static member of the derived
+ * class.
+ */
+ class WarnUnimplemented : public AlphaStaticInst
+ {
+ private:
+ /// Have we warned on this instruction yet?
+ mutable bool warned;
+
+ public:
+ /// Constructor
+ WarnUnimplemented(const char *_mnemonic, MachInst _machInst)
+ : AlphaStaticInst(_mnemonic, _machInst, No_OpClass), warned(false)
+ {
+ // don't call execute() (which panics) if we're on a
+ // speculative path
+ flags[IsNonSpeculative] = true;
+ }
+
+ %(BasicExecDeclare)s
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
+output decoder {{
+ std::string
+ FailUnimplemented::generateDisassembly(Addr pc,
+ const SymbolTable *symtab) const
+ {
+ return csprintf("%-10s (unimplemented)", mnemonic);
+ }
+
+ std::string
+ WarnUnimplemented::generateDisassembly(Addr pc,
+ const SymbolTable *symtab) const
+ {
+#ifdef SS_COMPATIBLE_DISASSEMBLY
+ return csprintf("%-10s", mnemonic);
+#else
+ return csprintf("%-10s (unimplemented)", mnemonic);
+#endif
+ }
+}};
+
+output exec {{
+ Fault
+ FailUnimplemented::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ panic("attempt to execute unimplemented instruction '%s' "
+ "(inst 0x%08x, opcode 0x%x)", mnemonic, machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+
+ Fault
+ WarnUnimplemented::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ if (!warned) {
+ warn("instruction '%s' unimplemented\n", mnemonic);
+ warned = true;
+ }
+
+ return No_Fault;
+ }
+}};
+
+
+def format FailUnimpl() {{
+ iop = InstObjParams(name, 'FailUnimplemented')
+ decode_block = BasicDecodeWithMnemonic.subst(iop)
+}};
+
+def format WarnUnimpl() {{
+ iop = InstObjParams(name, 'WarnUnimplemented')
+ decode_block = BasicDecodeWithMnemonic.subst(iop)
+}};
+
+output header {{
+ /**
+ * Static instruction class for unknown (illegal) instructions.
+ * These cause simulator termination if they are executed in a
+ * non-speculative mode. This is a leaf class.
+ */
+ class Unknown : public AlphaStaticInst
+ {
+ public:
+ /// Constructor
+ Unknown(MachInst _machInst)
+ : AlphaStaticInst("unknown", _machInst, No_OpClass)
+ {
+ // don't call execute() (which panics) if we're on a
+ // speculative path
+ flags[IsNonSpeculative] = true;
+ }
+
+ %(BasicExecDeclare)s
+
+ std::string
+ generateDisassembly(Addr pc, const SymbolTable *symtab) const;
+ };
+}};
+
diff --git a/arch/alpha/isa/unknown.isa b/arch/alpha/isa/unknown.isa
new file mode 100644
index 000000000..6eba5b4f9
--- /dev/null
+++ b/arch/alpha/isa/unknown.isa
@@ -0,0 +1,52 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output decoder {{
+ std::string
+ Unknown::generateDisassembly(Addr pc, const SymbolTable *symtab) const
+ {
+ return csprintf("%-10s (inst 0x%x, opcode 0x%x)",
+ "unknown", machInst, OPCODE);
+ }
+}};
+
+output exec {{
+ Fault
+ Unknown::execute(%(CPU_exec_context)s *xc,
+ Trace::InstRecord *traceData) const
+ {
+ panic("attempt to execute unknown instruction "
+ "(inst 0x%08x, opcode 0x%x)", machInst, OPCODE);
+ return Unimplemented_Opcode_Fault;
+ }
+}};
+
+def format Unknown() {{
+ decode_block = 'return new Unknown(machInst);\n'
+}};
+
diff --git a/arch/alpha/isa/util.isa b/arch/alpha/isa/util.isa
new file mode 100644
index 000000000..9fbbf6636
--- /dev/null
+++ b/arch/alpha/isa/util.isa
@@ -0,0 +1,112 @@
+// -*- mode:c++ -*-
+
+// Copyright (c) 2003-2005 The Regents of The University of Michigan
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met: redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer;
+// redistributions in binary form must reproduce the above copyright
+// notice, this list of conditions and the following disclaimer in the
+// documentation and/or other materials provided with the distribution;
+// neither the name of the copyright holders nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+output exec {{
+
+ /// Return opa + opb, summing carry into third arg.
+ inline uint64_t
+ addc(uint64_t opa, uint64_t opb, int &carry)
+ {
+ uint64_t res = opa + opb;
+ if (res < opa || res < opb)
+ ++carry;
+ return res;
+ }
+
+ /// Multiply two 64-bit values (opa * opb), returning the 128-bit
+ /// product in res_hi and res_lo.
+ inline void
+ mul128(uint64_t opa, uint64_t opb, uint64_t &res_hi, uint64_t &res_lo)
+ {
+ // do a 64x64 --> 128 multiply using four 32x32 --> 64 multiplies
+ uint64_t opa_hi = opa<63:32>;
+ uint64_t opa_lo = opa<31:0>;
+ uint64_t opb_hi = opb<63:32>;
+ uint64_t opb_lo = opb<31:0>;
+
+ res_lo = opa_lo * opb_lo;
+
+ // The middle partial products logically belong in bit
+ // positions 95 to 32. Thus the lower 32 bits of each product
+ // sum into the upper 32 bits of the low result, while the
+ // upper 32 sum into the low 32 bits of the upper result.
+ uint64_t partial1 = opa_hi * opb_lo;
+ uint64_t partial2 = opa_lo * opb_hi;
+
+ uint64_t partial1_lo = partial1<31:0> << 32;
+ uint64_t partial1_hi = partial1<63:32>;
+ uint64_t partial2_lo = partial2<31:0> << 32;
+ uint64_t partial2_hi = partial2<63:32>;
+
+ // Add partial1_lo and partial2_lo to res_lo, keeping track
+ // of any carries out
+ int carry_out = 0;
+ res_lo = addc(partial1_lo, res_lo, carry_out);
+ res_lo = addc(partial2_lo, res_lo, carry_out);
+
+ // Now calculate the high 64 bits...
+ res_hi = (opa_hi * opb_hi) + partial1_hi + partial2_hi + carry_out;
+ }
+
+ /// Map 8-bit S-floating exponent to 11-bit T-floating exponent.
+ /// See Table 2-2 of Alpha AHB.
+ inline int
+ map_s(int old_exp)
+ {
+ int hibit = old_exp<7:>;
+ int lobits = old_exp<6:0>;
+
+ if (hibit == 1) {
+ return (lobits == 0x7f) ? 0x7ff : (0x400 | lobits);
+ }
+ else {
+ return (lobits == 0) ? 0 : (0x380 | lobits);
+ }
+ }
+
+ /// Convert a 32-bit S-floating value to the equivalent 64-bit
+ /// representation to be stored in an FP reg.
+ inline uint64_t
+ s_to_t(uint32_t s_val)
+ {
+ uint64_t tmp = s_val;
+ return (tmp<31:> << 63 // sign bit
+ | (uint64_t)map_s(tmp<30:23>) << 52 // exponent
+ | tmp<22:0> << 29); // fraction
+ }
+
+ /// Convert a 64-bit T-floating value to the equivalent 32-bit
+ /// S-floating representation to be stored in memory.
+ inline int32_t
+ t_to_s(uint64_t t_val)
+ {
+ return (t_val<63:62> << 30 // sign bit & hi exp bit
+ | t_val<58:29>); // rest of exp & fraction
+ }
+}};
+