diff options
author | Kevin Lim <ktlim@umich.edu> | 2006-04-22 18:26:48 -0400 |
---|---|---|
committer | Kevin Lim <ktlim@umich.edu> | 2006-04-22 18:26:48 -0400 |
commit | a8b03e4d017b66d7b5502a101ea5b7115827a107 (patch) | |
tree | 9e606dc41a9b84a574d6935e5718c8fe665cc32f /cpu/o3/iew_impl.hh | |
parent | c30f91c2f634a0b55a9b9b9145b1fbe605bb1a02 (diff) | |
download | gem5-a8b03e4d017b66d7b5502a101ea5b7115827a107.tar.xz |
Updates for O3 model.
arch/alpha/isa/decoder.isa:
Make IPR accessing instructions serializing so they are not issued incorrectly in the O3 model.
arch/alpha/isa/pal.isa:
Allow IPR instructions to have flags.
base/traceflags.py:
Include new trace flags from the two new CPU models.
cpu/SConscript:
Create the templates for the split mem accessor methods. Also include the new files from the new models (the Ozone model will be checked in next).
cpu/base_dyn_inst.cc:
cpu/base_dyn_inst.hh:
Update to the BaseDynInst for the new models.
--HG--
extra : convert_revision : cc82db9c72ec3e29cea4c3fdff74a3843e287a35
Diffstat (limited to 'cpu/o3/iew_impl.hh')
-rw-r--r-- | cpu/o3/iew_impl.hh | 1360 |
1 files changed, 1008 insertions, 352 deletions
diff --git a/cpu/o3/iew_impl.hh b/cpu/o3/iew_impl.hh index 85217dd10..21eb7dcf8 100644 --- a/cpu/o3/iew_impl.hh +++ b/cpu/o3/iew_impl.hh @@ -29,59 +29,84 @@ // @todo: Fix the instantaneous communication among all the stages within // iew. There's a clear delay between issue and execute, yet backwards // communication happens simultaneously. -// Update the statuses for each stage. #include <queue> #include "base/timebuf.hh" +#include "cpu/o3/fu_pool.hh" #include "cpu/o3/iew.hh" +using namespace std; + template<class Impl> -SimpleIEW<Impl>::WritebackEvent::WritebackEvent(DynInstPtr &_inst, - SimpleIEW<Impl> *_iew) - : Event(&mainEventQueue, CPU_Tick_Pri), inst(_inst), iewStage(_iew) +DefaultIEW<Impl>::LdWritebackEvent::LdWritebackEvent(DynInstPtr &_inst, + DefaultIEW<Impl> *_iew) + : Event(&mainEventQueue), inst(_inst), iewStage(_iew) { this->setFlags(Event::AutoDelete); } template<class Impl> void -SimpleIEW<Impl>::WritebackEvent::process() +DefaultIEW<Impl>::LdWritebackEvent::process() { - DPRINTF(IEW, "IEW: WRITEBACK EVENT!!!!\n"); + DPRINTF(IEW, "Load writeback event [sn:%lli]\n", inst->seqNum); + DPRINTF(Activity, "Activity: Ld Writeback event [sn:%lli]\n", inst->seqNum); + + //iewStage->ldstQueue.removeMSHR(inst->threadNumber,inst->seqNum); + + iewStage->wakeCPU(); + + if (inst->isSquashed()) { + inst = NULL; + return; + } + + if (!inst->isExecuted()) { + inst->setExecuted(); + + // Execute again to copy data to proper place. + if (inst->isStore()) { + inst->completeAcc(); + } + } // Need to insert instruction into queue to commit iewStage->instToCommit(inst); - // Need to execute second half of the instruction, do actual writing to - // registers and such - inst->execute(); + + //wroteToTimeBuffer = true; + iewStage->activityThisCycle(); + + inst = NULL; } template<class Impl> const char * -SimpleIEW<Impl>::WritebackEvent::description() +DefaultIEW<Impl>::LdWritebackEvent::description() { - return "LSQ writeback event"; + return "Load writeback event"; } template<class Impl> -SimpleIEW<Impl>::SimpleIEW(Params ¶ms) +DefaultIEW<Impl>::DefaultIEW(Params *params) : // Just make this time buffer really big for now + // @todo: Make this into a parameter. issueToExecQueue(5, 5), instQueue(params), ldstQueue(params), - commitToIEWDelay(params.commitToIEWDelay), - renameToIEWDelay(params.renameToIEWDelay), - issueToExecuteDelay(params.issueToExecuteDelay), - issueReadWidth(params.issueWidth), - issueWidth(params.issueWidth), - executeWidth(params.executeWidth) -{ - DPRINTF(IEW, "IEW: executeIntWidth: %i.\n", params.executeIntWidth); - _status = Idle; - _issueStatus = Idle; - _exeStatus = Idle; - _wbStatus = Idle; + fuPool(params->fuPool), + commitToIEWDelay(params->commitToIEWDelay), + renameToIEWDelay(params->renameToIEWDelay), + issueToExecuteDelay(params->issueToExecuteDelay), + issueReadWidth(params->issueWidth), + issueWidth(params->issueWidth), + executeWidth(params->executeWidth), + numThreads(params->numberOfThreads) +{ + DPRINTF(IEW, "executeIntWidth: %i.\n", params->executeIntWidth); + _status = Active; + exeStatus = Running; + wbStatus = Idle; // Setup wire to read instructions coming from issue. fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay); @@ -89,15 +114,36 @@ SimpleIEW<Impl>::SimpleIEW(Params ¶ms) // Instruction queue needs the queue between issue and execute. instQueue.setIssueToExecuteQueue(&issueToExecQueue); + instQueue.setIEW(this); ldstQueue.setIEW(this); + + for (int i=0; i < numThreads; i++) { + dispatchStatus[i] = Running; + stalls[i].commit = false; + fetchRedirect[i] = false; + } + + updateLSQNextCycle = false; + + // @todo: Make into a parameter + skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth; +} + +template <class Impl> +std::string +DefaultIEW<Impl>::name() const +{ + return cpu->name() + ".iew"; } template <class Impl> void -SimpleIEW<Impl>::regStats() +DefaultIEW<Impl>::regStats() { instQueue.regStats(); + //ldstQueue.regStats(); + iewIdleCycles .name(name() + ".iewIdleCycles") .desc("Number of cycles IEW is idle"); @@ -140,6 +186,10 @@ SimpleIEW<Impl>::regStats() .name(name() + ".iewIQFullEvents") .desc("Number of times the IQ has become full, causing a stall"); + iewLSQFullEvents + .name(name() + ".iewLSQFullEvents") + .desc("Number of times the LSQ has become full, causing a stall"); + iewExecutedInsts .name(name() + ".iewExecutedInsts") .desc("Number of executed instructions"); @@ -163,24 +213,51 @@ SimpleIEW<Impl>::regStats() predictedTakenIncorrect .name(name() + ".predictedTakenIncorrect") .desc("Number of branches that were predicted taken incorrectly"); + + predictedNotTakenIncorrect + .name(name() + ".predictedNotTakenIncorrect") + .desc("Number of branches that were predicted not taken incorrectly"); + + branchMispredicts + .name(name() + ".branchMispredicts") + .desc("Number of branch mispredicts detected at execute"); + + branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect; +} + +template<class Impl> +void +DefaultIEW<Impl>::initStage() +{ + for (int tid=0; tid < numThreads; tid++) { + toRename->iewInfo[tid].usedIQ = true; + toRename->iewInfo[tid].freeIQEntries = + instQueue.numFreeEntries(tid); + + toRename->iewInfo[tid].usedLSQ = true; + toRename->iewInfo[tid].freeLSQEntries = + ldstQueue.numFreeEntries(tid); + } } template<class Impl> void -SimpleIEW<Impl>::setCPU(FullCPU *cpu_ptr) +DefaultIEW<Impl>::setCPU(FullCPU *cpu_ptr) { - DPRINTF(IEW, "IEW: Setting CPU pointer.\n"); + DPRINTF(IEW, "Setting CPU pointer.\n"); cpu = cpu_ptr; instQueue.setCPU(cpu_ptr); ldstQueue.setCPU(cpu_ptr); + + cpu->activateStage(FullCPU::IEWIdx); } template<class Impl> void -SimpleIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) +DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) { - DPRINTF(IEW, "IEW: Setting time buffer pointer.\n"); + DPRINTF(IEW, "Setting time buffer pointer.\n"); timeBuffer = tb_ptr; // Setup wire to read information from time buffer, from commit. @@ -189,15 +266,17 @@ SimpleIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr) // Setup wire to write information back to previous stages. toRename = timeBuffer->getWire(0); + toFetch = timeBuffer->getWire(0); + // Instruction queue also needs main time buffer. instQueue.setTimeBuffer(tb_ptr); } template<class Impl> void -SimpleIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) +DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) { - DPRINTF(IEW, "IEW: Setting rename queue pointer.\n"); + DPRINTF(IEW, "Setting rename queue pointer.\n"); renameQueue = rq_ptr; // Setup wire to read information from rename queue. @@ -206,9 +285,9 @@ SimpleIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr) template<class Impl> void -SimpleIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) +DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) { - DPRINTF(IEW, "IEW: Setting IEW queue pointer.\n"); + DPRINTF(IEW, "Setting IEW queue pointer.\n"); iewQueue = iq_ptr; // Setup wire to write instructions to commit. @@ -217,355 +296,900 @@ SimpleIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr) template<class Impl> void -SimpleIEW<Impl>::setRenameMap(RenameMap *rm_ptr) +DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr) +{ + DPRINTF(IEW, "Setting active threads list pointer.\n"); + activeThreads = at_ptr; + + ldstQueue.setActiveThreads(at_ptr); + instQueue.setActiveThreads(at_ptr); +} + +template<class Impl> +void +DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr) { - DPRINTF(IEW, "IEW: Setting rename map pointer.\n"); - renameMap = rm_ptr; + DPRINTF(IEW, "Setting scoreboard pointer.\n"); + scoreboard = sb_ptr; } +#if 0 template<class Impl> void -SimpleIEW<Impl>::squash() +DefaultIEW<Impl>::setPageTable(PageTable *pt_ptr) { - DPRINTF(IEW, "IEW: Squashing all instructions.\n"); - _status = Squashing; + ldstQueue.setPageTable(pt_ptr); +} +#endif + +template<class Impl> +void +DefaultIEW<Impl>::squash(unsigned tid) +{ + DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n", + tid); // Tell the IQ to start squashing. - instQueue.squash(); + instQueue.squash(tid); // Tell the LDSTQ to start squashing. - ldstQueue.squash(fromCommit->commitInfo.doneSeqNum); + ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum,tid); + + updatedQueues = true; + + // Clear the skid buffer in case it has any data in it. + while (!skidBuffer[tid].empty()) { + + if (skidBuffer[tid].front()->isLoad() || + skidBuffer[tid].front()->isStore() ) { + toRename->iewInfo[tid].dispatchedToLSQ++; + } + + toRename->iewInfo[tid].dispatched++; + + skidBuffer[tid].pop(); + } + + while (!insts[tid].empty()) { + if (insts[tid].front()->isLoad() || + insts[tid].front()->isStore() ) { + toRename->iewInfo[tid].dispatchedToLSQ++; + } + + toRename->iewInfo[tid].dispatched++; + + insts[tid].pop(); + } } template<class Impl> void -SimpleIEW<Impl>::squashDueToBranch(DynInstPtr &inst) +DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid) { - DPRINTF(IEW, "IEW: Squashing from a specific instruction, PC: %#x.\n", - inst->PC); - // Perhaps leave the squashing up to the ROB stage to tell it when to - // squash? - _status = Squashing; + DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x " + "[sn:%i].\n", tid, inst->readPC(), inst->seqNum); // Tell rename to squash through the time buffer. - toCommit->squash = true; - // Also send PC update information back to prior stages. - toCommit->squashedSeqNum = inst->seqNum; - toCommit->mispredPC = inst->readPC(); - toCommit->nextPC = inst->readNextPC(); - toCommit->branchMispredict = true; + toCommit->squash[tid] = true; + toCommit->squashedSeqNum[tid] = inst->seqNum; + toCommit->mispredPC[tid] = inst->readPC(); + toCommit->nextPC[tid] = inst->readNextPC(); + toCommit->branchMispredict[tid] = true; // Prediction was incorrect, so send back inverse. - toCommit->branchTaken = inst->readNextPC() != + toCommit->branchTaken[tid] = inst->readNextPC() != (inst->readPC() + sizeof(TheISA::MachInst)); + + toCommit->includeSquashInst[tid] = false; + //toCommit->iewSquashNum[tid] = inst->seqNum; + + wroteToTimeBuffer = true; } template<class Impl> void -SimpleIEW<Impl>::squashDueToMem(DynInstPtr &inst) +DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid) { - DPRINTF(IEW, "IEW: Squashing from a specific instruction, PC: %#x.\n", - inst->PC); - // Perhaps leave the squashing up to the ROB stage to tell it when to - // squash? - _status = Squashing; + DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, " + "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum); // Tell rename to squash through the time buffer. - toCommit->squash = true; - // Also send PC update information back to prior stages. - toCommit->squashedSeqNum = inst->seqNum; - toCommit->nextPC = inst->readNextPC(); + toCommit->squash[tid] = true; + toCommit->squashedSeqNum[tid] = inst->seqNum; + toCommit->nextPC[tid] = inst->readNextPC(); + + toCommit->includeSquashInst[tid] = false; + //toCommit->iewSquashNum[tid] = inst->seqNum; + + wroteToTimeBuffer = true; } template<class Impl> void -SimpleIEW<Impl>::block() +DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid) { - DPRINTF(IEW, "IEW: Blocking.\n"); - // Set the status to Blocked. - _status = Blocked; + DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, " + "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum); + + toCommit->squash[tid] = true; + toCommit->squashedSeqNum[tid] = inst->seqNum; + toCommit->nextPC[tid] = inst->readPC(); + + toCommit->includeSquashInst[tid] = true; + + ldstQueue.setLoadBlockedHandled(tid); + + wroteToTimeBuffer = true; +} + +template<class Impl> +void +DefaultIEW<Impl>::block(unsigned tid) +{ + DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid); + + if (dispatchStatus[tid] != Blocked && + dispatchStatus[tid] != Unblocking) { + toRename->iewBlock[tid] = true; + wroteToTimeBuffer = true; + } // Add the current inputs to the skid buffer so they can be // reprocessed when this stage unblocks. - skidBuffer.push(*fromRename); + skidInsert(tid); - // Note that this stage only signals previous stages to stall when - // it is the cause of the stall originates at this stage. Otherwise - // the previous stages are expected to check all possible stall signals. + // Set the status to Blocked. + dispatchStatus[tid] = Blocked; } template<class Impl> -inline void -SimpleIEW<Impl>::unblock() +void +DefaultIEW<Impl>::unblock(unsigned tid) { - // Check if there's information in the skid buffer. If there is, then - // set status to unblocking, otherwise set it directly to running. - DPRINTF(IEW, "IEW: Reading instructions out of the skid " - "buffer.\n"); - // Remove the now processed instructions from the skid buffer. - skidBuffer.pop(); - - // If there's still information in the skid buffer, then - // continue to tell previous stages to stall. They will be - // able to restart once the skid buffer is empty. - if (!skidBuffer.empty()) { - toRename->iewInfo.stall = true; - } else { - DPRINTF(IEW, "IEW: Stage is done unblocking.\n"); - _status = Running; + DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid " + "buffer %u.\n",tid, tid); + + // If the skid bufffer is empty, signal back to previous stages to unblock. + // Also switch status to running. + if (skidBuffer[tid].empty()) { + toRename->iewUnblock[tid] = true; + wroteToTimeBuffer = true; + DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid); + dispatchStatus[tid] = Running; } } template<class Impl> void -SimpleIEW<Impl>::wakeDependents(DynInstPtr &inst) +DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst) { instQueue.wakeDependents(inst); } +template<class Impl> +void +DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst) +{ + instQueue.rescheduleMemInst(inst); +} template<class Impl> void -SimpleIEW<Impl>::instToCommit(DynInstPtr &inst) +DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst) { + instQueue.replayMemInst(inst); +} + +template<class Impl> +void +DefaultIEW<Impl>::instToCommit(DynInstPtr &inst) +{ + // First check the time slot that this instruction will write + // to. If there are free write ports at the time, then go ahead + // and write the instruction to that time. If there are not, + // keep looking back to see where's the first time there's a + // free slot. What happens if you run out of free spaces? + // For now naively assume that all instructions take one cycle. + // Otherwise would have to look into the time buffer based on the + // latency of the instruction. + while ((*iewQueue)[wbCycle].insts[wbNumInst]) { + ++wbNumInst; + if (wbNumInst == issueWidth) { + ++wbCycle; + wbNumInst = 0; + } + + assert(wbCycle < 5); + } + // Add finished instruction to queue to commit. + (*iewQueue)[wbCycle].insts[wbNumInst] = inst; + (*iewQueue)[wbCycle].size++; } template <class Impl> +unsigned +DefaultIEW<Impl>::validInstsFromRename() +{ + unsigned inst_count = 0; + + for (int i=0; i<fromRename->size; i++) { + if (!fromRename->insts[i]->squashed) + inst_count++; + } + + return inst_count; +} + +template<class Impl> void -SimpleIEW<Impl>::dispatchInsts() -{ - //////////////////////////////////////// - // DISPATCH/ISSUE stage - //////////////////////////////////////// - - //Put into its own function? - //Add instructions to IQ if there are any instructions there - - // Check if there are any instructions coming from rename, and we're. - // not squashing. - if (fromRename->size > 0) { - int insts_to_add = fromRename->size; - - // Loop through the instructions, putting them in the instruction - // queue. - for (int inst_num = 0; inst_num < insts_to_add; ++inst_num) - { - DynInstPtr inst = fromRename->insts[inst_num]; - - // Make sure there's a valid instruction there. - assert(inst); - - DPRINTF(IEW, "IEW: Issue: Adding PC %#x to IQ.\n", - inst->readPC()); - - // Be sure to mark these instructions as ready so that the - // commit stage can go ahead and execute them, and mark - // them as issued so the IQ doesn't reprocess them. - if (inst->isSquashed()) { - ++iewDispSquashedInsts; - continue; - } else if (instQueue.isFull()) { - DPRINTF(IEW, "IEW: Issue: IQ has become full.\n"); - // Call function to start blocking. - block(); - // Tell previous stage to stall. - toRename->iewInfo.stall = true; - - ++iewIQFullEvents; - break; - } else if (inst->isLoad()) { - DPRINTF(IEW, "IEW: Issue: Memory instruction " - "encountered, adding to LDSTQ.\n"); - - // Reserve a spot in the load store queue for this - // memory access. - ldstQueue.insertLoad(inst); - - ++iewDispLoadInsts; - } else if (inst->isStore()) { - ldstQueue.insertStore(inst); +DefaultIEW<Impl>::skidInsert(unsigned tid) +{ + DynInstPtr inst = NULL; - ++iewDispStoreInsts; - } else if (inst->isNonSpeculative()) { - DPRINTF(IEW, "IEW: Issue: Nonspeculative instruction " - "encountered, skipping.\n"); + while (!insts[tid].empty()) { + inst = insts[tid].front(); - // Same hack as with stores. - inst->setCanCommit(); + insts[tid].pop(); + + DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into " + "dispatch skidBuffer %i\n",tid, inst->seqNum, + inst->readPC(),tid); + + skidBuffer[tid].push(inst); + } + + assert(skidBuffer[tid].size() <= skidBufferMax && + "Skidbuffer Exceeded Max Size"); +} + +template<class Impl> +int +DefaultIEW<Impl>::skidCount() +{ + int max=0; + + list<unsigned>::iterator threads = (*activeThreads).begin(); + + while (threads != (*activeThreads).end()) { + unsigned thread_count = skidBuffer[*threads++].size(); + if (max < thread_count) + max = thread_count; + } + + return max; +} + +template<class Impl> +bool +DefaultIEW<Impl>::skidsEmpty() +{ + list<unsigned>::iterator threads = (*activeThreads).begin(); + + while (threads != (*activeThreads).end()) { + if (!skidBuffer[*threads++].empty()) + return false; + } + + return true; +} + +template <class Impl> +void +DefaultIEW<Impl>::updateStatus() +{ + bool any_unblocking = false; + + list<unsigned>::iterator threads = (*activeThreads).begin(); + + threads = (*activeThreads).begin(); + + while (threads != (*activeThreads).end()) { + unsigned tid = *threads++; + + if (dispatchStatus[tid] == Unblocking) { + any_unblocking = true; + break; + } + } + + // If there are no ready instructions waiting to be scheduled by the IQ, + // and there's no stores waiting to write back, and dispatch is not + // unblocking, then there is no internal activity for the IEW stage. + if (_status == Active && !instQueue.hasReadyInsts() && + !ldstQueue.willWB() && !any_unblocking) { + DPRINTF(IEW, "IEW switching to idle\n"); + + deactivateStage(); + + _status = Inactive; + } else if (_status == Inactive && (instQueue.hasReadyInsts() || + ldstQueue.willWB() || + any_unblocking)) { + // Otherwise there is internal activity. Set to active. + DPRINTF(IEW, "IEW switching to active\n"); + + activateStage(); + + _status = Active; + } +} + +template <class Impl> +void +DefaultIEW<Impl>::resetEntries() +{ + instQueue.resetEntries(); + ldstQueue.resetEntries(); +} + +template <class Impl> +void +DefaultIEW<Impl>::readStallSignals(unsigned tid) +{ + if (fromCommit->commitBlock[tid]) { + stalls[tid].commit = true; + } + + if (fromCommit->commitUnblock[tid]) { + assert(stalls[tid].commit); + stalls[tid].commit = false; + } +} + +template <class Impl> +bool +DefaultIEW<Impl>::checkStall(unsigned tid) +{ + bool ret_val(false); + + if (stalls[tid].commit) { + DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid); + ret_val = true; + } else if (instQueue.isFull(tid)) { + DPRINTF(IEW,"[tid:%i]: Stall: IQ is full.\n",tid); + ret_val = true; + } else if (ldstQueue.isFull(tid)) { + DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid); + + if (ldstQueue.numLoads(tid) > 0 ) { + + DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n", + tid,ldstQueue.getLoadHeadSeqNum(tid)); + } + + if (ldstQueue.numStores(tid) > 0) { + + DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n", + tid,ldstQueue.getStoreHeadSeqNum(tid)); + } + + ret_val = true; + } else if (ldstQueue.isStalled(tid)) { + DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid); + ret_val = true; + } + + return ret_val; +} + +template <class Impl> +void +DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid) +{ + // Check if there's a squash signal, squash if there is + // Check stall signals, block if there is. + // If status was Blocked + // if so then go to unblocking + // If status was Squashing + // check if squashing is not high. Switch to running this cycle. + + readStallSignals(tid); + + if (fromCommit->commitInfo[tid].squash) { + squash(tid); + + if (dispatchStatus[tid] == Blocked || + dispatchStatus[tid] == Unblocking) { + toRename->iewUnblock[tid] = true; + wroteToTimeBuffer = true; + } + + dispatchStatus[tid] = Squashing; + + fetchRedirect[tid] = false; + return; + } + + if (fromCommit->commitInfo[tid].robSquashing) { + DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n"); + + dispatchStatus[tid] = Squashing; + + return; + } + + if (checkStall(tid)) { + block(tid); + dispatchStatus[tid] = Blocked; + return; + } + + if (dispatchStatus[tid] == Blocked) { + // Status from previous cycle was blocked, but there are no more stall + // conditions. Switch over to unblocking. + DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n", + tid); + + dispatchStatus[tid] = Unblocking; + + unblock(tid); + + return; + } + + if (dispatchStatus[tid] == Squashing) { + // Switch status to running if rename isn't being told to block or + // squash this cycle. + DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n", + tid); + + dispatchStatus[tid] = Running; + + return; + } +} + +template <class Impl> +void +DefaultIEW<Impl>::sortInsts() +{ + int insts_from_rename = fromRename->size; + + for (int i = 0; i < numThreads; i++) + assert(insts[i].empty()); + + for (int i = 0; i < insts_from_rename; ++i) { + insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]); + } +} + +template <class Impl> +void +DefaultIEW<Impl>::wakeCPU() +{ + cpu->wakeCPU(); +} + +template <class Impl> +void +DefaultIEW<Impl>::activityThisCycle() +{ + DPRINTF(Activity, "Activity this cycle.\n"); + cpu->activityThisCycle(); +} + +template <class Impl> +inline void +DefaultIEW<Impl>::activateStage() +{ + DPRINTF(Activity, "Activating stage.\n"); + cpu->activateStage(FullCPU::IEWIdx); +} + +template <class Impl> +inline void +DefaultIEW<Impl>::deactivateStage() +{ + DPRINTF(Activity, "Deactivating stage.\n"); + cpu->deactivateStage(FullCPU::IEWIdx); +} + +template<class Impl> +void +DefaultIEW<Impl>::dispatch(unsigned tid) +{ + // If status is Running or idle, + // call dispatchInsts() + // If status is Unblocking, + // buffer any instructions coming from rename + // continue trying to empty skid buffer + // check if stall conditions have passed + + if (dispatchStatus[tid] == Blocked) { + ++iewBlockCycles; + + } else if (dispatchStatus[tid] == Squashing) { + ++iewSquashCycles; + } + + // Dispatch should try to dispatch as many instructions as its bandwidth + // will allow, as long as it is not currently blocked. + if (dispatchStatus[tid] == Running || + dispatchStatus[tid] == Idle) { + DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run " + "dispatch.\n", tid); + + dispatchInsts(tid); + } else if (dispatchStatus[tid] == Unblocking) { + // Make sure that the skid buffer has something in it if the + // status is unblocking. + assert(!skidsEmpty()); + + // If the status was unblocking, then instructions from the skid + // buffer were used. Remove those instructions and handle + // the rest of unblocking. + dispatchInsts(tid); + + ++iewUnblockCycles; + + if (validInstsFromRename() && dispatchedAllInsts) { + // Add the current inputs to the skid buffer so they can be + // reprocessed when this stage unblocks. + skidInsert(tid); + } + + unblock(tid); + } +} + +template <class Impl> +void +DefaultIEW<Impl>::dispatchInsts(unsigned tid) +{ + dispatchedAllInsts = true; + + // Obtain instructions from skid buffer if unblocking, or queue from rename + // otherwise. + std::queue<DynInstPtr> &insts_to_dispatch = + dispatchStatus[tid] == Unblocking ? + skidBuffer[tid] : insts[tid]; + + int insts_to_add = insts_to_dispatch.size(); + + DynInstPtr inst; + bool add_to_iq = false; + int dis_num_inst = 0; + + // Loop through the instructions, putting them in the instruction + // queue. + for ( ; dis_num_inst < insts_to_add && + dis_num_inst < issueReadWidth; + ++dis_num_inst) + { + inst = insts_to_dispatch.front(); + + if (dispatchStatus[tid] == Unblocking) { + DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid " + "buffer\n", tid); + } + + // Make sure there's a valid instruction there. + assert(inst); - // Specificall insert it as nonspeculative. + DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to " + "IQ.\n", + tid, inst->readPC(), inst->seqNum, inst->threadNumber); + + // Be sure to mark these instructions as ready so that the + // commit stage can go ahead and execute them, and mark + // them as issued so the IQ doesn't reprocess them. + // ------------- + // @TODO: What happens if the ldstqueue is full? + // Do we process the other instructions? + + // Check for squashed instructions. + if (inst->isSquashed()) { + DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, " + "not adding to IQ.\n", tid); + + ++iewDispSquashedInsts; + + insts_to_dispatch.pop(); + + //Tell Rename That An Instruction has been processed + if (inst->isLoad() || inst->isStore()) { + toRename->iewInfo[tid].dispatchedToLSQ++; + } + toRename->iewInfo[tid].dispatched++; + + continue; + } + + // Check for full conditions. + if (instQueue.isFull(tid)) { + DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid); + + // Call function to start blocking. + block(tid); + + // Set unblock to false. Special case where we are using + // skidbuffer (unblocking) instructions but then we still + // get full in the IQ. + toRename->iewUnblock[tid] = false; + + dispatchedAllInsts = false; + + ++iewIQFullEvents; + break; + } else if (ldstQueue.isFull(tid)) { + DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid); + + // Call function to start blocking. + block(tid); + + // Set unblock to false. Special case where we are using + // skidbuffer (unblocking) instructions but then we still + // get full in the IQ. + toRename->iewUnblock[tid] = false; + + dispatchedAllInsts = false; + + ++iewLSQFullEvents; + break; + } + + // Otherwise issue the instruction just fine. + if (inst->isLoad()) { + DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " + "encountered, adding to LSQ.\n", tid); + + // Reserve a spot in the load store queue for this + // memory access. + ldstQueue.insertLoad(inst); + + ++iewDispLoadInsts; + + add_to_iq = true; + + toRename->iewInfo[tid].dispatchedToLSQ++; + } else if (inst->isStore()) { + DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction " + "encountered, adding to LSQ.\n", tid); + + ldstQueue.insertStore(inst); + + ++iewDispStoreInsts; + + if (inst->isNonSpeculative()) { + inst->setCanCommit(); instQueue.insertNonSpec(inst); + add_to_iq = false; ++iewDispNonSpecInsts; + } else { + add_to_iq = true; + } - continue; - } else if (inst->isNop()) { - DPRINTF(IEW, "IEW: Issue: Nop instruction encountered " - ", skipping.\n"); + toRename->iewInfo[tid].dispatchedToLSQ++; +#if FULL_SYSTEM + } else if (inst->isMemBarrier() || inst->isWriteBarrier()) { + inst->setCanCommit(); + instQueue.insertBarrier(inst); + add_to_iq = false; +#endif + } else if (inst->isNonSpeculative()) { + DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction " + "encountered, skipping.\n", tid); - inst->setIssued(); - inst->setExecuted(); - inst->setCanCommit(); + // Same hack as with stores. + inst->setCanCommit(); - instQueue.advanceTail(inst); + // Specifically insert it as nonspeculative. + instQueue.insertNonSpec(inst); - continue; - } else if (inst->isExecuted()) { - assert(0 && "Instruction shouldn't be executed.\n"); - DPRINTF(IEW, "IEW: Issue: Executed branch encountered, " - "skipping.\n"); + ++iewDispNonSpecInsts; - inst->setIssued(); - inst->setCanCommit(); + add_to_iq = false; + } else if (inst->isNop()) { + DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, " + "skipping.\n", tid); - instQueue.advanceTail(inst); + inst->setIssued(); + inst->setExecuted(); + inst->setCanCommit(); - continue; - } + instQueue.advanceTail(inst); + + add_to_iq = false; + } else if (inst->isExecuted()) { + assert(0 && "Instruction shouldn't be executed.\n"); + DPRINTF(IEW, "Issue: Executed branch encountered, " + "skipping.\n"); - // If the instruction queue is not full, then add the - // instruction. - instQueue.insert(fromRename->insts[inst_num]); + inst->setIssued(); + inst->setCanCommit(); - ++iewDispatchedInsts; + instQueue.advanceTail(inst); + + add_to_iq = false; + } else { + add_to_iq = true; } + + // If the instruction queue is not full, then add the + // instruction. + if (add_to_iq) { + instQueue.insert(inst); + } + + insts_to_dispatch.pop(); + + toRename->iewInfo[tid].dispatched++; + + ++iewDispatchedInsts; + } + + if (!insts_to_dispatch.empty()) { + DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n"); + block(tid); + toRename->iewUnblock[tid] = false; } + + if (dispatchStatus[tid] == Idle && dis_num_inst) { + dispatchStatus[tid] = Running; + + updatedQueues = true; + } + + dis_num_inst = 0; } template <class Impl> void -SimpleIEW<Impl>::executeInsts() +DefaultIEW<Impl>::printAvailableInsts() { - //////////////////////////////////////// - //EXECUTE/WRITEBACK stage - //////////////////////////////////////// + int inst = 0; + + cout << "Available Instructions: "; + + while (fromIssue->insts[inst]) { + + if (inst%3==0) cout << "\n\t"; + + cout << "PC: " << fromIssue->insts[inst]->readPC() + << " TN: " << fromIssue->insts[inst]->threadNumber + << " SN: " << fromIssue->insts[inst]->seqNum << " | "; - //Put into its own function? - //Similarly should probably have separate execution for int vs FP. - // Above comment is handled by the issue queue only issuing a valid - // mix of int/fp instructions. - //Actually okay to just have one execution, buuuuuut will need - //somewhere that defines the execution latency of all instructions. - // @todo: Move to the FU pool used in the current full cpu. + inst++; - int fu_usage = 0; - bool fetch_redirect = false; - int inst_slot = 0; - int time_slot = 0; + } + + cout << "\n"; +} + +template <class Impl> +void +DefaultIEW<Impl>::executeInsts() +{ + //bool fetch_redirect[(*activeThreads).size()]; + wbNumInst = 0; + wbCycle = 0; + + list<unsigned>::iterator threads = (*activeThreads).begin(); + + while (threads != (*activeThreads).end()) { + unsigned tid = *threads++; + fetchRedirect[tid] = false; + } + +#if 0 + printAvailableInsts(); +#endif // Execute/writeback any instructions that are available. - for (int inst_num = 0; - fu_usage < executeWidth && /* Haven't exceeded available FU's. */ - inst_num < issueWidth && - fromIssue->insts[inst_num]; + int inst_num = 0; + for ( ; inst_num < issueWidth && /* Haven't exceeded issue bandwidth */ + fromIssue->insts[inst_num]; ++inst_num) { - DPRINTF(IEW, "IEW: Execute: Executing instructions from IQ.\n"); + DPRINTF(IEW, "Execute: Executing instructions from IQ.\n"); // Get instruction from issue's queue. DynInstPtr inst = fromIssue->insts[inst_num]; - DPRINTF(IEW, "IEW: Execute: Processing PC %#x.\n", inst->readPC()); + DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n", + inst->readPC(), inst->threadNumber,inst->seqNum); // Check if the instruction is squashed; if so then skip it // and don't count it towards the FU usage. if (inst->isSquashed()) { - DPRINTF(IEW, "IEW: Execute: Instruction was squashed.\n"); + DPRINTF(IEW, "Execute: Instruction was squashed.\n"); // Consider this instruction executed so that commit can go // ahead and retire the instruction. inst->setExecuted(); - toCommit->insts[inst_num] = inst; + // Not sure if I should set this here or just let commit try to + // commit any squashed instructions. I like the latter a bit more. + inst->setCanCommit(); ++iewExecSquashedInsts; continue; } - inst->setExecuted(); - - // If an instruction is executed, then count it towards FU usage. - ++fu_usage; + Fault fault = NoFault; // Execute instruction. // Note that if the instruction faults, it will be handled // at the commit stage. - if (inst->isMemRef()) { - DPRINTF(IEW, "IEW: Execute: Calculating address for memory " + if (inst->isMemRef() && + (!inst->isDataPrefetch() && !inst->isInstPrefetch())) { + DPRINTF(IEW, "Execute: Calculating address for memory " "reference.\n"); // Tell the LDSTQ to execute this instruction (if it is a load). if (inst->isLoad()) { - ldstQueue.executeLoad(inst); + // Loads will mark themselves as executed, and their writeback + // event adds the instruction to the queue to commit + fault = ldstQueue.executeLoad(inst); ++iewExecLoadInsts; } else if (inst->isStore()) { ldstQueue.executeStore(inst); ++iewExecStoreInsts; + + // If the store had a fault then it may not have a mem req + if (inst->req && !(inst->req->flags & LOCKED)) { + inst->setExecuted(); + + instToCommit(inst); + } + // Store conditionals will mark themselves as executed, and + // their writeback event will add the instruction to the queue + // to commit. } else { - panic("IEW: Unexpected memory type!\n"); + panic("Unexpected memory type!\n"); } } else { inst->execute(); ++iewExecutedInsts; - } - // First check the time slot that this instruction will write - // to. If there are free write ports at the time, then go ahead - // and write the instruction to that time. If there are not, - // keep looking back to see where's the first time there's a - // free slot. What happens if you run out of free spaces? - // For now naively assume that all instructions take one cycle. - // Otherwise would have to look into the time buffer based on the - // latency of the instruction. - (*iewQueue)[time_slot].insts[inst_slot]; - while ((*iewQueue)[time_slot].insts[inst_slot]) { - if (inst_slot < issueWidth) { - ++inst_slot; - } else { - ++time_slot; - inst_slot = 0; - } + inst->setExecuted(); - assert(time_slot < 5); + instToCommit(inst); } - // May actually have to work this out, especially with loads and stores - - // Add finished instruction to queue to commit. - (*iewQueue)[time_slot].insts[inst_slot] = inst; - (*iewQueue)[time_slot].size++; - // Check if branch was correct. This check happens after the // instruction is added to the queue because even if the branch // is mispredicted, the branch instruction itself is still valid. // Only handle this if there hasn't already been something that // redirects fetch in this group of instructions. - if (!fetch_redirect) { + + // This probably needs to prioritize the redirects if a different + // scheduler is used. Currently the scheduler schedules the oldest + // instruction first, so the branch resolution order will be correct. + unsigned tid = inst->threadNumber; + + if (!fetchRedirect[tid]) { + if (inst->mispredicted()) { - fetch_redirect = true; + fetchRedirect[tid] = true; - DPRINTF(IEW, "IEW: Execute: Branch mispredict detected.\n"); - DPRINTF(IEW, "IEW: Execute: Redirecting fetch to PC: %#x.\n", + DPRINTF(IEW, "Execute: Branch mispredict detected.\n"); + DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n", inst->nextPC); // If incorrect, then signal the ROB that it must be squashed. - squashDueToBranch(inst); + squashDueToBranch(inst, tid); if (inst->predTaken()) { predictedTakenIncorrect++; + } else { + predictedNotTakenIncorrect++; } - } else if (ldstQueue.violation()) { - fetch_redirect = true; + } else if (ldstQueue.violation(tid)) { + fetchRedirect[tid] = true; - // Get the DynInst that caused the violation. - DynInstPtr violator = ldstQueue.getMemDepViolator(); + // Get the DynInst that caused the violation. Note that this + // clears the violation signal. + DynInstPtr violator; + violator = ldstQueue.getMemDepViolator(tid); - DPRINTF(IEW, "IEW: LDSTQ detected a violation. Violator PC: " + DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: " "%#x, inst PC: %#x. Addr is: %#x.\n", violator->readPC(), inst->readPC(), inst->physEffAddr); @@ -573,164 +1197,196 @@ SimpleIEW<Impl>::executeInsts() instQueue.violation(inst, violator); // Squash. - squashDueToMem(inst); + squashDueToMemOrder(inst,tid); ++memOrderViolationEvents; + } else if (ldstQueue.loadBlocked(tid) && + !ldstQueue.isLoadBlockedHandled(tid)) { + fetchRedirect[tid] = true; + + DPRINTF(IEW, "Load operation couldn't execute because the " + "memory system is blocked. PC: %#x [sn:%lli]\n", + inst->readPC(), inst->seqNum); + + squashDueToMemBlocked(inst, tid); } } } + + if (inst_num) { + if (exeStatus == Idle) { + exeStatus = Running; + } + + updatedQueues = true; + + cpu->activityThisCycle(); + } + + // Need to reset this in case a writeback event needs to write into the + // iew queue. That way the writeback event will write into the correct + // spot in the queue. + wbNumInst = 0; } -template<class Impl> +template <class Impl> void -SimpleIEW<Impl>::tick() +DefaultIEW<Impl>::writebackInsts() { - // Considering putting all the state-determining stuff in this section. + // Loop through the head of the time buffer and wake any dependents. + // These instructions are about to write back. In the simple model + // this loop can really happen within the previous loop, but when + // instructions have actual latencies, this loop must be separate. + // Also mark scoreboard that this instruction is finally complete. + // Either have IEW have direct access to rename map, or have this as + // part of backwards communication. + for (int inst_num = 0; inst_num < issueWidth && + toCommit->insts[inst_num]; inst_num++) { + DynInstPtr inst = toCommit->insts[inst_num]; + DPRINTF(IEW, "Sending instructions to commit, PC %#x.\n", + inst->readPC()); + + // Some instructions will be sent to commit without having + // executed because they need commit to handle them. + // E.g. Uncached loads have not actually executed when they + // are first sent to commit. Instead commit must tell the LSQ + // when it's ready to execute the uncached load. + if (!inst->isSquashed() && inst->isExecuted()) { + instQueue.wakeDependents(inst); + + for (int i = 0; i < inst->numDestRegs(); i++) { + //mark as Ready + DPRINTF(IEW,"Setting Destination Register %i\n", + inst->renamedDestRegIdx(i)); + scoreboard->setReg(inst->renamedDestRegIdx(i)); + } + } + } +} + +template<class Impl> +void +DefaultIEW<Impl>::tick() +{ // Try to fill up issue queue with as many instructions as bandwidth // allows. - // Decode should try to execute as many instructions as its bandwidth - // will allow, as long as it is not currently blocked. + wbNumInst = 0; + wbCycle = 0; - // Check if the stage is in a running status. - if (_status != Blocked && _status != Squashing) { - DPRINTF(IEW, "IEW: Status is not blocked, attempting to run " - "stage.\n"); - iew(); + wroteToTimeBuffer = false; + updatedQueues = false; - // If it's currently unblocking, check to see if it should switch - // to running. - if (_status == Unblocking) { - unblock(); + sortInsts(); - ++iewUnblockCycles; - } - } else if (_status == Squashing) { + list<unsigned>::iterator threads = (*activeThreads).begin(); - DPRINTF(IEW, "IEW: Still squashing.\n"); + // Check stall and squash signals. + while (threads != (*activeThreads).end()) { + unsigned tid = *threads++; - // Check if stage should remain squashing. Stop squashing if the - // squash signal clears. - if (!fromCommit->commitInfo.squash && - !fromCommit->commitInfo.robSquashing) { - DPRINTF(IEW, "IEW: Done squashing, changing status to " - "running.\n"); + DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid); - _status = Running; - instQueue.stopSquash(); - } else { - instQueue.doSquash(); - } + checkSignalsAndUpdate(tid); + dispatch(tid); - ++iewSquashCycles; - } else if (_status == Blocked) { - // Continue to tell previous stage to stall. - toRename->iewInfo.stall = true; - - // Check if possible stall conditions have cleared. - if (!fromCommit->commitInfo.stall && - !instQueue.isFull()) { - DPRINTF(IEW, "IEW: Stall signals cleared, going to unblock.\n"); - _status = Unblocking; - } + } - // If there's still instructions coming from rename, continue to - // put them on the skid buffer. - if (fromRename->size == 0) { - block(); - } + if (exeStatus != Squashing) { + executeInsts(); - if (fromCommit->commitInfo.squash || - fromCommit->commitInfo.robSquashing) { - squash(); - } + writebackInsts(); - ++iewBlockCycles; + // Have the instruction queue try to schedule any ready instructions. + // (In actuality, this scheduling is for instructions that will + // be executed next cycle.) + instQueue.scheduleReadyInsts(); + + // Also should advance its own time buffers if the stage ran. + // Not the best place for it, but this works (hopefully). + issueToExecQueue.advance(); } - // @todo: Maybe put these at the beginning, so if it's idle it can - // return early. - // Write back number of free IQ entries here. - toRename->iewInfo.freeIQEntries = instQueue.numFreeEntries(); + bool broadcast_free_entries = false; + + if (updatedQueues || exeStatus == Running || updateLSQNextCycle) { + exeStatus = Idle; + updateLSQNextCycle = false; + + broadcast_free_entries = true; + } + // Writeback any stores using any leftover bandwidth. ldstQueue.writebackStores(); + // Free function units marked as being freed this cycle. + fuPool->processFreeUnits(); + // Check the committed load/store signals to see if there's a load // or store to commit. Also check if it's being told to execute a // nonspeculative instruction. // This is pretty inefficient... - if (!fromCommit->commitInfo.squash && - !fromCommit->commitInfo.robSquashing) { - ldstQueue.commitStores(fromCommit->commitInfo.doneSeqNum); - ldstQueue.commitLoads(fromCommit->commitInfo.doneSeqNum); - } - if (fromCommit->commitInfo.nonSpecSeqNum != 0) { - instQueue.scheduleNonSpec(fromCommit->commitInfo.nonSpecSeqNum); - } + threads = (*activeThreads).begin(); + while (threads != (*activeThreads).end()) { + unsigned tid = (*threads++); - DPRINTF(IEW, "IEW: IQ has %i free entries.\n", - instQueue.numFreeEntries()); -} + DPRINTF(IEW,"Processing [tid:%i]\n",tid); -template<class Impl> -void -SimpleIEW<Impl>::iew() -{ - // Might want to put all state checks in the tick() function. - // Check if being told to stall from commit. - if (fromCommit->commitInfo.stall) { - block(); - return; - } else if (fromCommit->commitInfo.squash || - fromCommit->commitInfo.robSquashing) { - // Also check if commit is telling this stage to squash. - squash(); - return; - } + if (fromCommit->commitInfo[tid].doneSeqNum != 0 && + !fromCommit->commitInfo[tid].squash && + !fromCommit->commitInfo[tid].robSquashing) { - dispatchInsts(); + ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid); - // Have the instruction queue try to schedule any ready instructions. - instQueue.scheduleReadyInsts(); + ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid); - executeInsts(); + updateLSQNextCycle = true; + instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid); + } - // Loop through the head of the time buffer and wake any dependents. - // These instructions are about to write back. In the simple model - // this loop can really happen within the previous loop, but when - // instructions have actual latencies, this loop must be separate. - // Also mark scoreboard that this instruction is finally complete. - // Either have IEW have direct access to rename map, or have this as - // part of backwards communication. - for (int inst_num = 0; inst_num < issueWidth && - toCommit->insts[inst_num]; inst_num++) - { - DynInstPtr inst = toCommit->insts[inst_num]; + if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) { - DPRINTF(IEW, "IEW: Sending instructions to commit, PC %#x.\n", - inst->readPC()); + //DPRINTF(IEW,"NonspecInst from thread %i",tid); + if (fromCommit->commitInfo[tid].uncached) { + instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad); + } else { + instQueue.scheduleNonSpec( + fromCommit->commitInfo[tid].nonSpecSeqNum); + } + } - if(!inst->isSquashed()) { - instQueue.wakeDependents(inst); + if (broadcast_free_entries) { + toFetch->iewInfo[tid].iqCount = + instQueue.getCount(tid); + toFetch->iewInfo[tid].ldstqCount = + ldstQueue.getCount(tid); - for (int i = 0; i < inst->numDestRegs(); i++) - { - renameMap->markAsReady(inst->renamedDestRegIdx(i)); - } + toRename->iewInfo[tid].usedIQ = true; + toRename->iewInfo[tid].freeIQEntries = + instQueue.numFreeEntries(); + toRename->iewInfo[tid].usedLSQ = true; + toRename->iewInfo[tid].freeLSQEntries = + ldstQueue.numFreeEntries(tid); + + wroteToTimeBuffer = true; } + + DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n", + tid, toRename->iewInfo[tid].dispatched); + + //thread_queue.pop(); } - // Also should advance its own time buffers if the stage ran. - // Not the best place for it, but this works (hopefully). - issueToExecQueue.advance(); -} + DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i). " + "LSQ has %i free entries.\n", + instQueue.numFreeEntries(), instQueue.hasReadyInsts(), + ldstQueue.numFreeEntries()); -#if !FULL_SYSTEM -template<class Impl> -void -SimpleIEW<Impl>::lsqWriteback() -{ - ldstQueue.writebackAllInsts(); + updateStatus(); + + if (wroteToTimeBuffer) { + DPRINTF(Activity, "Activity this cycle.\n"); + cpu->activityThisCycle(); + } } -#endif |