diff options
author | Radhika Jagtap <radhika.jagtap@arm.com> | 2016-12-19 10:32:40 +0000 |
---|---|---|
committer | Andreas Sandberg <andreas.sandberg@arm.com> | 2017-11-16 16:39:19 +0000 |
commit | 290a7e7c5c059c1309ca3d02ea3158e2ca9ac338 (patch) | |
tree | f04a5c7aa0f5247d467e1bb8b2139d0e11baf532 /ext/drampower/src/CmdHandlers.cc | |
parent | 0757bef15d934b22555c396bcbcb91c0a1dffbe5 (diff) | |
download | gem5-290a7e7c5c059c1309ca3d02ea3158e2ca9ac338.tar.xz |
ext, mem: Pull DRAMPower SHA 90d6290 and rebase
This patch syncs the DRAMPower library of gem5 to the
external github (https://github.com/ravenrd/DRAMPower).
The version pulled in is the commit:
90d6290f802c29b3de9e10233ceee22290907ce6
from 30th Oct. 2016.
This change also modifies the DRAM Ctrl interaction with the
DRAMPower, due to changes in the lib API in the above version.
Previously multiple functions were called to prepare the power
lib before calling the function that would calculate the enery. With
the new API, these functions are encompassed inside the function to
calculate the energy and therefore should now be removed from the
DRAM controller.
The other key difference is the introduction of a new function called
calcWindowEnergy which can be useful for any system that wants
to do measurements over intervals. For gem5 DRAM ctrl that means we
now need to accumulate the window energy measurements into the total
stat.
Change-Id: I3570fff2805962e166ff2a1a3217ebf2d5a197fb
Reviewed-by: Nikos Nikoleris <nikos.nikoleris@arm.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/5724
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Diffstat (limited to 'ext/drampower/src/CmdHandlers.cc')
-rw-r--r-- | ext/drampower/src/CmdHandlers.cc | 625 |
1 files changed, 625 insertions, 0 deletions
diff --git a/ext/drampower/src/CmdHandlers.cc b/ext/drampower/src/CmdHandlers.cc new file mode 100644 index 000000000..f99917d21 --- /dev/null +++ b/ext/drampower/src/CmdHandlers.cc @@ -0,0 +1,625 @@ +/* + * Copyright (c) 2012-2014, TU Delft + * Copyright (c) 2012-2014, TU Eindhoven + * Copyright (c) 2012-2014, TU Kaiserslautern + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * + * 3. Neither the name of the copyright holder nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS + * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A + * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED + * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + */ + +#include "CommandAnalysis.h" + +using std::cerr; +using std::endl; +using std::max; + +using namespace Data; + + +int64_t zero_guard(int64_t cycles_in, const char* warning) +{ + // Calculate max(0, cycles_in) + int64_t zero = 0; + if (warning != nullptr && cycles_in < 0) { + // This line is commented out for now, we will attempt to remove the situations where + // these warnings trigger later. + // cerr << "WARNING: " << warning << endl; + } + return max(zero, cycles_in); +} + +void CommandAnalysis::handleAct(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::ACT, timestamp, bank); + // If command is ACT - update number of acts, bank state of the + // target bank, first and latest activation cycle and the memory + // state. Update the number of precharged/idle-precharged cycles. + // If the bank is already active ignore the command and generate a + // warning. + if (isPrecharged(bank)) { + numberofactsBanks[bank]++; + + if (nActiveBanks() == 0) { + // Here a memory state transition to ACT is happening. Save the + // number of cycles in precharge state (increment the counter). + first_act_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "1 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + } + + bank_state[bank] = BANK_ACTIVE; + latest_act_cycle = timestamp; + } else { + printWarning("Bank is already active!", MemCommand::ACT, timestamp, bank); + } +} + +void CommandAnalysis::handleRd(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::RD, timestamp, bank); + // If command is RD - update number of reads and read cycle. Check + // for active idle cycles (if any). + if (isPrecharged(bank)) { + printWarning("Bank is not active!", MemCommand::RD, timestamp, bank); + } + numberofreadsBanks[bank]++; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + latest_read_cycle = timestamp; +} + +void CommandAnalysis::handleWr(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::WR, timestamp, bank); + // If command is WR - update number of writes and write cycle. Check + // for active idle cycles (if any). + if (isPrecharged(bank)) { + printWarning("Bank is not active!", MemCommand::WR, timestamp, bank); + } + numberofwritesBanks[bank]++; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + latest_write_cycle = timestamp; +} + +void CommandAnalysis::handleRef(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::REF, timestamp, bank); + // If command is REF - update number of refreshes, set bank state of + // all banks to ACT, set the last PRE cycles at RFC-RP cycles from + // timestamp, set the number of active cycles to RFC-RP and check + // for active and precharged cycles and idle active and idle + // precharged cycles before refresh. Change memory state to 0. + printWarningIfActive("One or more banks are active! REF requires all banks to be precharged.", MemCommand::REF, timestamp, bank); + numberofrefs++; + idle_pre_update(timestamp, latest_pre_cycle); + first_act_cycle = timestamp; + std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); + precycles += zero_guard(timestamp - last_pre_cycle, "2 last_pre_cycle is in the future."); + last_pre_cycle = timestamp + memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + latest_pre_cycle = last_pre_cycle; + actcycles += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + for (auto &e : actcyclesBanks) { + e += memSpec.memTimingSpec.RFC - memSpec.memTimingSpec.RP; + } + for (auto& bs : bank_state) { + bs = BANK_PRECHARGED; + } +} + +void CommandAnalysis::handleRefB(unsigned bank, int64_t timestamp) +{ + // A REFB command requires a previous PRE command. + if (isPrecharged(bank)) { + // This previous PRE command handler is also responsible for keeping the + // memory state updated. + // Here we consider that the memory state is not changed in order to keep + // things simple, since the transition from PRE to ACT state takes time. + numberofrefbBanks[bank]++; + // Length of the refresh: here we have an approximation, we consider tRP + // also as act cycles because the bank will be precharged (stable) after + // tRP. + actcyclesBanks[bank] += memSpec.memTimingSpec.RAS + memSpec.memTimingSpec.RP; + } else { + printWarning("Bank must be precharged for REFB!", MemCommand::REFB, timestamp, bank); + } +} + +void CommandAnalysis::handlePre(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PRE, timestamp, bank); + // If command is explicit PRE - update number of precharges, bank + // state of the target bank and last and latest precharge cycle. + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now + // (i.e., this is the last active bank). + // If the bank is already precharged ignore the command and generate a + // warning. + + // Precharge only if the target bank is active + if (bank_state[bank] == BANK_ACTIVE) { + numberofpresBanks[bank]++; + actcyclesBanks[bank] += zero_guard(timestamp - first_act_cycle_banks[bank], "first_act_cycle is in the future (bank)."); + // Since we got here, at least one bank is active + assert(nActiveBanks() != 0); + + if (nActiveBanks() == 1) { + // This is the last active bank. Therefore, here a memory state + // transition to PRE is happening. Let's increment the active cycle + // counter. + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + last_pre_cycle = timestamp; + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + } + + bank_state[bank] = BANK_PRECHARGED; + latest_pre_cycle = timestamp; + } else { + printWarning("Bank is already precharged!", MemCommand::PRE, timestamp, bank); + } +} + +void CommandAnalysis::handlePreA(unsigned bank, int64_t timestamp) +{ + printWarningIfPoweredDown("Command issued while in power-down mode.", MemCommand::PREA, timestamp, bank); + // If command is explicit PREA (precharge all banks) - update + // number of precharges by the number of active banks, update the bank + // state of all banks to PRE and set the precharge cycle (the cycle in + // which the memory state changes from ACT to PRE, aka last_pre_cycle). + // Calculate the number of active cycles if the memory was in the + // active state before, but there is a state transition to PRE now. + + if (nActiveBanks() > 0) { + // Active banks are being precharged + // At least one bank was active, therefore the current memory state is + // ACT. Since all banks are being precharged a memory state transition + // to PRE is happening. Add to the counter the amount of cycles the + // memory remained in the ACT state. + + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + last_pre_cycle = timestamp; + + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + // Active banks are being precharged + numberofpresBanks[b] += 1; + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + + latest_pre_cycle = timestamp; + // Reset the state for all banks to precharged. + for (auto& bs : bank_state) { + bs = BANK_PRECHARGED; + } + } else { + printWarning("All banks are already precharged!", MemCommand::PREA, timestamp, bank); + } +} + +void CommandAnalysis::handlePdnFAct(unsigned bank, int64_t timestamp) +{ + // If command is fast-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_F_ACT, timestamp, bank); + f_act_pdns++; + last_bank_state = bank_state; + pdn_cycle = timestamp; + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_F_ACT; +} + +void CommandAnalysis::handlePdnSAct(unsigned bank, int64_t timestamp) +{ + // If command is slow-exit active power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit active power-down. Save states of all the banks from + // the cycle before entering active power-down, to be returned to + // after powering-up. Update active and active idle cycles. + printWarningIfNotActive("All banks are precharged! Incorrect use of Active Power-Down.", MemCommand::PDN_S_ACT, timestamp, bank); + s_act_pdns++; + last_bank_state = bank_state; + pdn_cycle = timestamp; + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future."); + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)."); + } + } + idle_act_update(latest_read_cycle, latest_write_cycle, latest_act_cycle, timestamp); + mem_state = CommandAnalysis::MS_PDN_S_ACT; +} + +void CommandAnalysis::handlePdnFPre(unsigned bank, int64_t timestamp) +{ + // If command is fast-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // fast-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_F_PRE, timestamp, bank); + f_pre_pdns++; + pdn_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "3 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_F_PRE; +} + +void CommandAnalysis::handlePdnSPre(unsigned bank, int64_t timestamp) +{ + // If command is slow-exit precharged power-down - update number of + // power-downs, set the power-down cycle and the memory mode to + // slow-exit precahrged power-down. Update precharged and precharged + // idle cycles. + printWarningIfActive("One or more banks are active! Incorrect use of Precharged Power-Down.", MemCommand::PDN_S_PRE, timestamp, bank); + s_pre_pdns++; + pdn_cycle = timestamp; + precycles += zero_guard(timestamp - last_pre_cycle, "4 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_PDN_S_PRE; +} + +void CommandAnalysis::handlePupAct(int64_t timestamp) +{ + // If command is power-up in the active mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and first act cycle. Also, reset + // all the individual bank states to the respective saved states + // before entering power-down. + const MemTimingSpec& t = memSpec.memTimingSpec; + + if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + pup_act_cycles += t.XP; + latest_act_cycle = timestamp; + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + if (memSpec.memArchSpec.dll == false) { + pup_act_cycles += t.XP; + latest_act_cycle = timestamp; + } else { + pup_act_cycles += t.XPDLL - t.RCD; + latest_act_cycle = timestamp + zero_guard(t.XPDLL - (2 * t.RCD), "t.XPDLL - (2 * t.RCD) < 0"); + } + } else { + cerr << "Incorrect use of Active Power-Up!" << endl; + } + mem_state = MS_NOT_IN_PD; + bank_state = last_bank_state; + first_act_cycle = timestamp; + std::fill(first_act_cycle_banks.begin(), first_act_cycle_banks.end(), timestamp); +} + +void CommandAnalysis::handlePupPre(int64_t timestamp) +{ + // If command is power-up in the precharged mode - check the power-down + // exit-mode employed (fast or slow), update the number of power-down + // and power-up cycles and the latest and last pre cycle. + const MemTimingSpec& t = memSpec.memTimingSpec; + if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + pup_pre_cycles += t.XP; + latest_pre_cycle = timestamp; + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future."); + if (memSpec.memArchSpec.dll == false) { + pup_pre_cycles += t.XP; + latest_pre_cycle = timestamp; + } else { + pup_pre_cycles += t.XPDLL - t.RCD; + latest_pre_cycle = timestamp + zero_guard(t.XPDLL - t.RCD - t.RP, "t.XPDLL - t.RCD - t.RP"); + } + } else { + cerr << "Incorrect use of Precharged Power-Up!" << endl; + } + mem_state = MS_NOT_IN_PD; + last_pre_cycle = timestamp; +} + +void CommandAnalysis::handleSREn(unsigned bank, int64_t timestamp) +{ + // If command is self-refresh - update number of self-refreshes, + // set memory state to SREF, update precharge and idle precharge + // cycles and set the self-refresh cycle. + printWarningIfActive("One or more banks are active! SREF requires all banks to be precharged.", MemCommand::SREN, timestamp, bank); + numberofsrefs++; + sref_cycle = timestamp; + sref_cycle_window = timestamp; + sref_ref_pre_cycles_window = 0; + sref_ref_act_cycles_window = 0; + precycles += zero_guard(timestamp - last_pre_cycle, "5 last_pre_cycle is in the future."); + idle_pre_update(timestamp, latest_pre_cycle); + mem_state = CommandAnalysis::MS_SREF; +} + +void CommandAnalysis::handleSREx(unsigned bank, int64_t timestamp) +{ + // If command is self-refresh exit - update the number of self-refresh + // clock cycles, number of active and precharged auto-refresh clock + // cycles during self-refresh and self-refresh exit based on the number + // of cycles in the self-refresh mode and auto-refresh duration (RFC). + // Set the last and latest precharge cycle accordingly and set the + // memory state to 0. + const MemTimingSpec& t = memSpec.memTimingSpec; + if (mem_state != CommandAnalysis::MS_SREF) { + cerr << "Incorrect use of Self-Refresh Power-Up!" << endl; + } + // The total duration of self-refresh is given by the difference between + // the current clock cycle and the clock cycle of entering self-refresh. + int64_t sref_duration = timestamp - sref_cycle; + + // Negative or zero duration should never happen. + if (sref_duration <= 0) { + printWarning("Invalid Self-Refresh duration!", MemCommand::SREX, timestamp, bank); + sref_duration = 0; + } + + // The minimum time that the DRAM must remain in Self-Refresh is CKESR. + if (sref_duration < t.CKESR) { + printWarning("Self-Refresh duration < CKESR!", MemCommand::SREX, timestamp, bank); + } + + if (sref_duration >= t.RFC) { + /* + * Self-refresh Exit Context 1 (tSREF >= tRFC): + * The memory remained in self-refresh for a certain number of clock + * cycles greater than a refresh cycle time (RFC). Consequently, the + * initial auto-refresh accomplished. + * + * + * SREN # SREX + * | # ^ + * | # | + * |<------------------------- tSREF ----------...----->| + * | # | + * | Initial Auto-Refresh # | + * v # | + * ------------------------------------#-------...-----------------> t + * # + * <------------- tRFC --------------># + * <---- (tRFC - tRP) ----><-- tRP --># + * | | + * v v + * sref_ref_act_cycles sref_ref_pre_cycles + * + * + * Summary: + * sref_cycles += tSREF – tRFC + * sref_ref_act_cycles += tRFC - tRP + * sref_ref_pre_cycles += tRP + * spup_ref_act_cycles += 0 + * spup_ref_pre_cycles += 0 + * + */ + + // The initial auto-refresh consumes (IDD5 − IDD3N) over one refresh + // period (RFC) from the start of the self-refresh. + sref_ref_act_cycles += t.RFC - + t.RP - sref_ref_act_cycles_window; + sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; + last_pre_cycle = timestamp; + + // The IDD6 current is consumed for the time period spent in the + // self-refresh mode, which excludes the time spent in finishing the + // initial auto-refresh. + if (sref_cycle_window > sref_cycle + t.RFC) { + sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future."); + } else { + sref_cycles += zero_guard(timestamp - sref_cycle - t.RFC, "sref_cycle - t.RFC < 0"); + } + + // IDD2N current is consumed when exiting the self-refresh state. + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS; + latest_pre_cycle = timestamp + zero_guard(t.XS - t.RP, "t.XS - t.RP < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - t.RP, "t.XSDLL - t.RCD - t.RP < 0"); + } + + } else { + // Self-refresh Exit Context 2 (tSREF < tRFC): + // Exit self-refresh before the completion of the initial + // auto-refresh. + + // Number of active cycles needed by an auto-refresh. + int64_t ref_act_cycles = t.RFC - t.RP; + + if (sref_duration >= ref_act_cycles) { + /* + * Self-refresh Exit Context 2A (tSREF < tRFC && tSREF >= tRFC - tRP): + * The duration of self-refresh is equal or greater than the number + * of active cycles needed by the initial auto-refresh. + * + * + * SREN SREX + * | ^ # + * | | # + * |<------------------ tSREF --------------------->| # + * | | # + * | Initial Auto-Refresh # + * v | # + * -----------------------------------------------------------#--> t + * # + * <------------------------ tRFC --------------------------># + * <------------- (tRFC - tRP)--------------><----- tRP ----># + * | <-----><-------> + * v | | + * sref_ref_act_cycles v v + * sref_ref_pre_cycles spup_ref_pre_cycles + * + * + * Summary: + * sref_cycles += 0 + * sref_ref_act_cycles += tRFC - tRP + * sref_ref_pre_cycles += tSREF – (tRFC – tRP) + * spup_ref_act_cycles += 0 + * spup_ref_pre_cycles += tRP – sref_ref_pre_cycles + * + */ + + // Number of precharged cycles (zero <= pre_cycles < RP) + int64_t pre_cycles = sref_duration - ref_act_cycles - sref_ref_pre_cycles_window; + + sref_ref_act_cycles += ref_act_cycles - sref_ref_act_cycles_window; + sref_ref_pre_cycles += pre_cycles; + + // Number of precharged cycles during the self-refresh power-up. It + // is at maximum tRP (if pre_cycles is zero). + int64_t spup_pre = t.RP - pre_cycles; + + spup_ref_pre_cycles += spup_pre; + + last_pre_cycle = timestamp + spup_pre; + + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS - spup_pre; + latest_pre_cycle = timestamp + zero_guard(t.XS - spup_pre - t.RP, "t.XS - spup_pre - t.RP < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD - spup_pre; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_pre - t.RP, "t.XSDLL - t.RCD - spup_pre - t.RP"); + } + } else { + /* + * Self-refresh Exit Context 2B (tSREF < tRFC - tRP): + * self-refresh duration is shorter than the number of active cycles + * needed by the initial auto-refresh. + * + * + * SREN SREX + * | ^ # + * | | # + * |<-------------- tSREF ----------->| # + * | | # + * | Initial Auto-Refresh # + * v | # + * ------------------------------------------------------------#--> t + * # + * <------------------------ tRFC ---------------------------># + * <-------------- (tRFC - tRP)-------------><------ tRP ----># + * <--------------------------------><------><---------------> + * | | | + * v v v + * sref_ref_act_cycles spup_ref_act_cycles spup_ref_pre_cycles + * + * + * Summary: + * sref_cycles += 0 + * sref_ref_act_cycles += tSREF + * sref_ref_pre_cycles += 0 + * spup_ref_act_cycles += (tRFC – tRP) - tSREF + * spup_ref_pre_cycles += tRP + * + */ + + sref_ref_act_cycles += sref_duration - sref_ref_act_cycles_window; + + int64_t spup_act = (t.RFC - t.RP) - sref_duration; + + spup_ref_act_cycles += spup_act; + spup_ref_pre_cycles += t.RP; + + last_pre_cycle = timestamp + spup_act + t.RP; + if (memSpec.memArchSpec.dll == false) { + spup_cycles += t.XS - spup_act - t.RP; + latest_pre_cycle = timestamp + zero_guard(t.XS - spup_act - (2 * t.RP), "t.XS - spup_act - (2 * t.RP) < 0"); + } else { + spup_cycles += t.XSDLL - t.RCD - spup_act - t.RP; + latest_pre_cycle = timestamp + zero_guard(t.XSDLL - t.RCD - spup_act - (2 * t.RP), "t.XSDLL - t.RCD - spup_act - (2 * t.RP) < 0"); + } + } + } + mem_state = MS_NOT_IN_PD; +} + + +void CommandAnalysis::handleNopEnd(int64_t timestamp) +{ + // May be optionally used at the end of memory trace for better accuracy + // Update all counters based on completion of operations. + const MemTimingSpec& t = memSpec.memTimingSpec; + for (unsigned b = 0; b < num_banks; b++) { + if (bank_state[b] == BANK_ACTIVE) { + actcyclesBanks[b] += zero_guard(timestamp - first_act_cycle_banks[b], "first_act_cycle is in the future (bank)"); + } + } + + if (nActiveBanks() > 0 && mem_state == MS_NOT_IN_PD) { + actcycles += zero_guard(timestamp - first_act_cycle, "first_act_cycle is in the future"); + idle_act_update(latest_read_cycle, latest_write_cycle, + latest_act_cycle, timestamp); + } else if (nActiveBanks() == 0 && mem_state == MS_NOT_IN_PD) { + precycles += zero_guard(timestamp - last_pre_cycle, "6 last_pre_cycle is in the future"); + idle_pre_update(timestamp, latest_pre_cycle); + } else if (mem_state == CommandAnalysis::MS_PDN_F_ACT) { + f_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_S_ACT) { + s_act_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_F_PRE) { + f_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_PDN_S_PRE) { + s_pre_pdcycles += zero_guard(timestamp - pdn_cycle, "pdn_cycle is in the future"); + } else if (mem_state == CommandAnalysis::MS_SREF) { + auto rfc_minus_rp = (t.RFC - t.RP); + + if (timestamp > sref_cycle + t.RFC) { + if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { + sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; + sref_ref_act_cycles_window = rfc_minus_rp; + sref_cycle_window = sref_cycle + rfc_minus_rp; + } + if (sref_cycle_window <= sref_cycle + t.RFC) { + sref_ref_pre_cycles += t.RP - sref_ref_pre_cycles_window; + sref_ref_pre_cycles_window = t.RP; + sref_cycle_window = sref_cycle + t.RFC; + } + sref_cycles += zero_guard(timestamp - sref_cycle_window, "sref_cycle_window is in the future"); + } else if (timestamp > sref_cycle + rfc_minus_rp) { + + if (sref_cycle_window <= sref_cycle + rfc_minus_rp) { + sref_ref_act_cycles += rfc_minus_rp - sref_ref_act_cycles_window; + sref_ref_act_cycles_window = rfc_minus_rp; + sref_cycle_window = sref_cycle + rfc_minus_rp; + } + sref_ref_pre_cycles_window += timestamp - sref_cycle_window; + sref_ref_pre_cycles += timestamp - sref_cycle_window; + } else { + sref_ref_act_cycles_window += timestamp - sref_cycle_window; + sref_ref_act_cycles += timestamp - sref_cycle_window; + } + } +} |