summaryrefslogtreecommitdiff
path: root/ext/mcpat/array.cc
diff options
context:
space:
mode:
authorYasuko Eckert <yasuko.eckert@amd.com>2014-06-03 13:32:59 -0700
committerYasuko Eckert <yasuko.eckert@amd.com>2014-06-03 13:32:59 -0700
commit0deef376d96bfe0a3a2496714ac22471d9ee818a (patch)
tree43d383a5bc4315863240dd61f7a4077ce2ac86e7 /ext/mcpat/array.cc
parent1104199115a6ff5ed04f92ba6391f18728765014 (diff)
downloadgem5-0deef376d96bfe0a3a2496714ac22471d9ee818a.tar.xz
ext: McPAT interface changes and fixes
This patch includes software engineering changes and some generic bug fixes Joel Hestness and Yasuko Eckert made to McPAT 0.8. There are still known issues/concernts we did not have a chance to address in this patch. High-level changes in this patch include: 1) Making XML parsing modular and hierarchical: - Shift parsing responsibility into the components - Read XML in a (mostly) context-free recursive manner so that McPAT input files can contain arbitrary component hierarchies 2) Making power, energy, and area calculations a hierarchical and recursive process - Components track their subcomponents and recursively call compute functions in stages - Make C++ object hierarchy reflect inheritance of classes of components with similar structures - Simplify computeArea() and computeEnergy() functions to eliminate successive calls to calculate separate TDP vs. runtime energy - Remove Processor component (now unnecessary) and introduce a more abstract System component 3) Standardizing McPAT output across all components - Use a single, common data structure for storing and printing McPAT output - Recursively call print functions through component hierarchy 4) For caches, allow splitting data array and tag array reads and writes for better accuracy 5) Improving the usability of CACTI by printing more helpful warning and error messages 6) Minor: Impose more rigorous code style for clarity (more work still to be done) Overall, these changes greatly reduce the amount of replicated code, and they improve McPAT runtime and decrease memory footprint.
Diffstat (limited to 'ext/mcpat/array.cc')
-rw-r--r--ext/mcpat/array.cc386
1 files changed, 198 insertions, 188 deletions
diff --git a/ext/mcpat/array.cc b/ext/mcpat/array.cc
index 975f82fad..0e46afe03 100644
--- a/ext/mcpat/array.cc
+++ b/ext/mcpat/array.cc
@@ -2,6 +2,7 @@
* McPAT
* SOFTWARE LICENSE AGREEMENT
* Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * Copyright (c) 2010-2013 Advanced Micro Devices, Inc.
* All Rights Reserved
*
* Redistribution and use in source and binary forms, with or without
@@ -25,232 +26,242 @@
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
***************************************************************************/
-#define GLOBALVAR
-#include <cassert>
-#include <cmath>
#include <iostream>
+#include <math.h>
#include "area.h"
#include "array.h"
+#include "common.h"
#include "decoder.h"
-#include "globalvar.h"
#include "parameter.h"
using namespace std;
-ArrayST::ArrayST(const InputParameter *configure_interface,
- string _name,
- enum Device_ty device_ty_,
- bool opt_local_,
- enum Core_type core_ty_,
- bool _is_default)
-:l_ip(*configure_interface),
- name(_name),
- device_ty(device_ty_),
- opt_local(opt_local_),
- core_ty(core_ty_),
- is_default(_is_default)
- {
-
- if (l_ip.cache_sz<64) l_ip.cache_sz=64;
- l_ip.error_checking();//not only do the error checking but also fill some missing parameters
- optimize_array();
+double ArrayST::area_efficiency_threshold = 20.0;
+int ArrayST::ed = 0;
+//Fixed number, make sure timing can be satisfied.
+int ArrayST::delay_wt = 100;
+int ArrayST::cycle_time_wt = 1000;
+//Fixed number, This is used to exhaustive search for individual components.
+int ArrayST::area_wt = 10;
+//Fixed number, This is used to exhaustive search for individual components.
+int ArrayST::dynamic_power_wt = 10;
+int ArrayST::leakage_power_wt = 10;
+//Fixed number, make sure timing can be satisfied.
+int ArrayST::delay_dev = 1000000;
+int ArrayST::cycle_time_dev = 100;
+//Fixed number, This is used to exhaustive search for individual components.
+int ArrayST::area_dev = 1000000;
+//Fixed number, This is used to exhaustive search for individual components.
+int ArrayST::dynamic_power_dev = 1000000;
+int ArrayST::leakage_power_dev = 1000000;
+int ArrayST::cycle_time_dev_threshold = 10;
+
+
+ArrayST::ArrayST(XMLNode* _xml_data,
+ const InputParameter *configure_interface, string _name,
+ enum Device_ty device_ty_, double _clockRate,
+ bool opt_local_, enum Core_type core_ty_, bool _is_default)
+ : McPATComponent(_xml_data), l_ip(*configure_interface),
+ device_ty(device_ty_), opt_local(opt_local_), core_ty(core_ty_),
+ is_default(_is_default) {
+ name = _name;
+ clockRate = _clockRate;
+ if (l_ip.cache_sz < MIN_BUFFER_SIZE)
+ l_ip.cache_sz = MIN_BUFFER_SIZE;
+
+ if (!l_ip.error_checking(name)) {
+ exit(1);
+ }
-}
+ output_data.reset();
+ computeEnergy();
+ computeArea();
+}
-void ArrayST::compute_base_power()
- {
- //l_ip.out_w =l_ip.line_sz*8;
- local_result=cacti_interface(&l_ip);
+void ArrayST::compute_base_power() {
+ local_result = cacti_interface(&l_ip);
+}
- }
+void ArrayST::computeArea() {
+ area.set_area(local_result.area);
+ output_data.area = local_result.area / 1e6;
+}
-void ArrayST::optimize_array()
-{
- list<uca_org_t > candidate_solutions(0);
- list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
+void ArrayST::computeEnergy() {
+ list<uca_org_t > candidate_solutions(0);
+ list<uca_org_t >::iterator candidate_iter, min_dynamic_energy_iter;
- uca_org_t * temp_res = 0;
- local_result.valid=false;
+ uca_org_t* temp_res = NULL;
+ local_result.valid = false;
- double throughput=l_ip.throughput, latency=l_ip.latency;
- double area_efficiency_threshold = 20.0;
- bool throughput_overflow=true, latency_overflow=true;
- compute_base_power();
+ double throughput = l_ip.throughput;
+ double latency = l_ip.latency;
+ bool throughput_overflow = true;
+ bool latency_overflow = true;
+ compute_base_power();
- if ((local_result.cycle_time - throughput) <= 1e-10 )
- throughput_overflow=false;
- if ((local_result.access_time - latency)<= 1e-10)
- latency_overflow=false;
+ if ((local_result.cycle_time - throughput) <= 1e-10 )
+ throughput_overflow = false;
+ if ((local_result.access_time - latency) <= 1e-10)
+ latency_overflow = false;
- if (opt_for_clk && opt_local)
- {
- if (throughput_overflow || latency_overflow)
- {
- l_ip.ed=0;
+ if (opt_for_clk && opt_local) {
+ if (throughput_overflow || latency_overflow) {
+ l_ip.ed = ed;
- l_ip.delay_wt = 100;//Fixed number, make sure timing can be satisfied.
- l_ip.cycle_time_wt = 1000;
+ l_ip.delay_wt = delay_wt;
+ l_ip.cycle_time_wt = cycle_time_wt;
- l_ip.area_wt = 10;//Fixed number, This is used to exhaustive search for individual components.
- l_ip.dynamic_power_wt = 10;//Fixed number, This is used to exhaustive search for individual components.
- l_ip.leakage_power_wt = 10;
+ l_ip.area_wt = area_wt;
+ l_ip.dynamic_power_wt = dynamic_power_wt;
+ l_ip.leakage_power_wt = leakage_power_wt;
- l_ip.delay_dev = 1000000;//Fixed number, make sure timing can be satisfied.
- l_ip.cycle_time_dev = 100;
+ l_ip.delay_dev = delay_dev;
+ l_ip.cycle_time_dev = cycle_time_dev;
- l_ip.area_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components.
- l_ip.dynamic_power_dev = 1000000;//Fixed number, This is used to exhaustive search for individual components.
- l_ip.leakage_power_dev = 1000000;
+ l_ip.area_dev = area_dev;
+ l_ip.dynamic_power_dev = dynamic_power_dev;
+ l_ip.leakage_power_dev = leakage_power_dev;
- throughput_overflow=true; //Reset overflow flag before start optimization iterations
- latency_overflow=true;
+ //Reset overflow flag before start optimization iterations
+ throughput_overflow = true;
+ latency_overflow = true;
- temp_res = &local_result; //Clean up the result for optimized for ED^2P
- temp_res->cleanup();
- }
+ //Clean up the result for optimized for ED^2P
+ temp_res = &local_result;
+ temp_res->cleanup();
+ }
- while ((throughput_overflow || latency_overflow)&&l_ip.cycle_time_dev > 10)// && l_ip.delay_dev > 10
- {
- compute_base_power();
-
- l_ip.cycle_time_dev-=10;//This is the time_dev to be used for next iteration
-
- // from best area to worst area -->worst timing to best timing
- if ((((local_result.cycle_time - throughput) <= 1e-10 ) && (local_result.access_time - latency)<= 1e-10)||
- (local_result.data_array2->area_efficiency < area_efficiency_threshold && l_ip.assoc == 0))
- { //if no satisfiable solution is found,the most aggressive one is left
- candidate_solutions.push_back(local_result);
- //output_data_csv(candidate_solutions.back());
- if (((local_result.cycle_time - throughput) <= 1e-10) && ((local_result.access_time - latency)<= 1e-10))
- //ensure stop opt not because of cam
- {
- throughput_overflow=false;
- latency_overflow=false;
- }
-
- }
- else
- {
- //TODO: whether checking the partial satisfied results too, or just change the mark???
- if ((local_result.cycle_time - throughput) <= 1e-10)
- throughput_overflow=false;
- if ((local_result.access_time - latency)<= 1e-10)
- latency_overflow=false;
-
- if (l_ip.cycle_time_dev > 10)
- { //if not >10 local_result is the last result, it cannot be cleaned up
- temp_res = &local_result; //Only solutions not saved in the list need to be cleaned up
- temp_res->cleanup();
- }
- }
-// l_ip.cycle_time_dev-=10;
-// l_ip.delay_dev-=10;
+ while ((throughput_overflow || latency_overflow) &&
+ l_ip.cycle_time_dev > cycle_time_dev_threshold) {
+ compute_base_power();
+
+ //This is the time_dev to be used for next iteration
+ l_ip.cycle_time_dev -= cycle_time_dev_threshold;
+
+ // from best area to worst area -->worst timing to best timing
+ if ((((local_result.cycle_time - throughput) <= 1e-10 ) &&
+ (local_result.access_time - latency) <= 1e-10) ||
+ (local_result.data_array2->area_efficiency <
+ area_efficiency_threshold && l_ip.assoc == 0)) {
+ //if no satisfiable solution is found,the most aggressive one
+ //is left
+ candidate_solutions.push_back(local_result);
+ if (((local_result.cycle_time - throughput) <= 1e-10) &&
+ ((local_result.access_time - latency) <= 1e-10)) {
+ //ensure stop opt not because of cam
+ throughput_overflow = false;
+ latency_overflow = false;
+ }
+ } else {
+ if ((local_result.cycle_time - throughput) <= 1e-10)
+ throughput_overflow = false;
+ if ((local_result.access_time - latency) <= 1e-10)
+ latency_overflow = false;
+
+ //if not >10 local_result is the last result, it cannot be
+ //cleaned up
+ if (l_ip.cycle_time_dev > cycle_time_dev_threshold) {
+ //Only solutions not saved in the list need to be
+ //cleaned up
+ temp_res = &local_result;
+ temp_res->cleanup();
}
+ }
+ }
- if (l_ip.assoc > 0)
- {
- //For array structures except CAM and FA, Give warning but still provide a result with best timing found
- if (throughput_overflow==true)
- cout<< "Warning: " << name<<" array structure cannot satisfy throughput constraint." << endl;
- if (latency_overflow==true)
- cout<< "Warning: " << name<<" array structure cannot satisfy latency constraint." << endl;
+ if (l_ip.assoc > 0) {
+ //For array structures except CAM and FA, Give warning but still
+ //provide a result with best timing found
+ if (throughput_overflow == true)
+ cout << "Warning: " << name
+ << " array structure cannot satisfy throughput constraint."
+ << endl;
+ if (latency_overflow == true)
+ cout << "Warning: " << name
+ << " array structure cannot satisfy latency constraint."
+ << endl;
}
-// else
-// {
-// /*According to "Content-Addressable Memory (CAM) Circuits and
-// Architectures": A Tutorial and Survey
-// by Kostas Pagiamtzis et al.
-// CAM structures can be heavily pipelined and use look-ahead techniques,
-// therefore timing can be relaxed. But McPAT does not model the advanced
-// techniques. If continue optimizing, the area efficiency will be too low
-// */
-// //For CAM and FA, stop opt if area efficiency is too low
-// if (throughput_overflow==true)
-// cout<< "Warning: " <<" McPAT stopped optimization on throughput for "<< name
-// <<" array structure because its area efficiency is below "<<area_efficiency_threshold<<"% " << endl;
-// if (latency_overflow==true)
-// cout<< "Warning: " <<" McPAT stopped optimization on latency for "<< name
-// <<" array structure because its area efficiency is below "<<area_efficiency_threshold<<"% " << endl;
-// }
-
- //double min_dynamic_energy, min_dynamic_power, min_leakage_power, min_cycle_time;
- double min_dynamic_energy=BIGNUM;
- if (candidate_solutions.empty()==false)
- {
- local_result.valid=true;
- for (candidate_iter = candidate_solutions.begin(); candidate_iter != candidate_solutions.end(); ++candidate_iter)
-
- {
- if (min_dynamic_energy > (candidate_iter)->power.readOp.dynamic)
- {
- min_dynamic_energy = (candidate_iter)->power.readOp.dynamic;
- min_dynamic_energy_iter = candidate_iter;
- local_result = *(min_dynamic_energy_iter);
- //TODO: since results are reordered results and l_ip may miss match. Therefore, the final output spread sheets may show the miss match.
-
- }
- else
- {
- candidate_iter->cleanup() ;
- }
-
- }
+ double min_dynamic_energy = BIGNUM;
+ if (candidate_solutions.empty() == false) {
+ local_result.valid = true;
+ for (candidate_iter = candidate_solutions.begin();
+ candidate_iter != candidate_solutions.end();
+ ++candidate_iter) {
+ if (min_dynamic_energy >
+ (candidate_iter)->power.readOp.dynamic) {
+ min_dynamic_energy =
+ (candidate_iter)->power.readOp.dynamic;
+ min_dynamic_energy_iter = candidate_iter;
+ local_result = *(min_dynamic_energy_iter);
+ } else {
+ candidate_iter->cleanup() ;
+ }
+ }
- }
- candidate_solutions.clear();
- }
- double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty);
-
- double macro_layout_overhead = g_tp.macro_layout_overhead;
- double chip_PR_overhead = g_tp.chip_layout_overhead;
- double total_overhead = macro_layout_overhead*chip_PR_overhead;
- local_result.area *= total_overhead;
-
- //maintain constant power density
- double pppm_t[4] = {total_overhead,1,1,total_overhead};
-
- double sckRation = g_tp.sckt_co_eff;
- local_result.power.readOp.dynamic *= sckRation;
- local_result.power.writeOp.dynamic *= sckRation;
- local_result.power.searchOp.dynamic *= sckRation;
- local_result.power.readOp.leakage *= l_ip.nbanks;
- local_result.power.readOp.longer_channel_leakage =
- local_result.power.readOp.leakage*long_channel_device_reduction;
- local_result.power = local_result.power* pppm_t;
-
- local_result.data_array2->power.readOp.dynamic *= sckRation;
- local_result.data_array2->power.writeOp.dynamic *= sckRation;
- local_result.data_array2->power.searchOp.dynamic *= sckRation;
- local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
- local_result.data_array2->power.readOp.longer_channel_leakage =
- local_result.data_array2->power.readOp.leakage*long_channel_device_reduction;
- local_result.data_array2->power = local_result.data_array2->power* pppm_t;
-
-
- if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache)
- {
- local_result.tag_array2->power.readOp.dynamic *= sckRation;
- local_result.tag_array2->power.writeOp.dynamic *= sckRation;
- local_result.tag_array2->power.searchOp.dynamic *= sckRation;
- local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
- local_result.tag_array2->power.readOp.longer_channel_leakage =
- local_result.tag_array2->power.readOp.leakage*long_channel_device_reduction;
- local_result.tag_array2->power = local_result.tag_array2->power* pppm_t;
}
+ candidate_solutions.clear();
+ }
+ double long_channel_device_reduction =
+ longer_channel_device_reduction(device_ty, core_ty);
+
+ double macro_layout_overhead = g_tp.macro_layout_overhead;
+ double chip_PR_overhead = g_tp.chip_layout_overhead;
+ double total_overhead = macro_layout_overhead * chip_PR_overhead;
+ local_result.area *= total_overhead;
+
+ //maintain constant power density
+ double pppm_t[4] = {total_overhead, 1, 1, total_overhead};
+
+ double sckRation = g_tp.sckt_co_eff;
+ local_result.power.readOp.dynamic *= sckRation;
+ local_result.power.writeOp.dynamic *= sckRation;
+ local_result.power.searchOp.dynamic *= sckRation;
+ local_result.power.readOp.leakage *= l_ip.nbanks;
+ local_result.power.readOp.longer_channel_leakage =
+ local_result.power.readOp.leakage * long_channel_device_reduction;
+ local_result.power = local_result.power * pppm_t;
+
+ local_result.data_array2->power.readOp.dynamic *= sckRation;
+ local_result.data_array2->power.writeOp.dynamic *= sckRation;
+ local_result.data_array2->power.searchOp.dynamic *= sckRation;
+ local_result.data_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.data_array2->power.readOp.longer_channel_leakage =
+ local_result.data_array2->power.readOp.leakage *
+ long_channel_device_reduction;
+ local_result.data_array2->power = local_result.data_array2->power * pppm_t;
+
+
+ if (!(l_ip.pure_cam || l_ip.pure_ram || l_ip.fully_assoc) && l_ip.is_cache) {
+ local_result.tag_array2->power.readOp.dynamic *= sckRation;
+ local_result.tag_array2->power.writeOp.dynamic *= sckRation;
+ local_result.tag_array2->power.searchOp.dynamic *= sckRation;
+ local_result.tag_array2->power.readOp.leakage *= l_ip.nbanks;
+ local_result.tag_array2->power.readOp.longer_channel_leakage =
+ local_result.tag_array2->power.readOp.leakage *
+ long_channel_device_reduction;
+ local_result.tag_array2->power =
+ local_result.tag_array2->power * pppm_t;
+ }
+ power = local_result.power;
+
+ output_data.peak_dynamic_power = power.readOp.dynamic * clockRate;
+ output_data.subthreshold_leakage_power = power.readOp.leakage;
+ output_data.gate_leakage_power = power.readOp.gate_leakage;
}
void ArrayST::leakage_feedback(double temperature)
@@ -296,7 +307,6 @@ void ArrayST::leakage_feedback(double temperature)
}
}
-ArrayST:: ~ArrayST()
-{
- local_result.cleanup();
+ArrayST::~ArrayST() {
+ local_result.cleanup();
}