summaryrefslogtreecommitdiff
path: root/ext/mcpat/cacti/htree2.cc
diff options
context:
space:
mode:
authorAnthony Gutierrez <atgutier@umich.edu>2014-04-01 12:44:30 -0400
committerAnthony Gutierrez <atgutier@umich.edu>2014-04-01 12:44:30 -0400
commite553a7bfa7f0eb47b78632cd63e6e1e814025c9a (patch)
treef69a8e3e0ed55b95bf276b6f857793b9ef7b6490 /ext/mcpat/cacti/htree2.cc
parent8d665ee166bf5476bb9b73a0016843ff9953c266 (diff)
downloadgem5-e553a7bfa7f0eb47b78632cd63e6e1e814025c9a.tar.xz
ext: add McPAT source
this patch adds the source for mcpat, a power, area, and timing modeling framework.
Diffstat (limited to 'ext/mcpat/cacti/htree2.cc')
-rw-r--r--ext/mcpat/cacti/htree2.cc641
1 files changed, 641 insertions, 0 deletions
diff --git a/ext/mcpat/cacti/htree2.cc b/ext/mcpat/cacti/htree2.cc
new file mode 100644
index 000000000..817ea6a7c
--- /dev/null
+++ b/ext/mcpat/cacti/htree2.cc
@@ -0,0 +1,641 @@
+/*****************************************************************************
+ * McPAT/CACTI
+ * SOFTWARE LICENSE AGREEMENT
+ * Copyright 2012 Hewlett-Packard Development Company, L.P.
+ * All Rights Reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.”
+ *
+ ***************************************************************************/
+
+
+
+#include <cassert>
+#include <iostream>
+
+#include "htree2.h"
+#include "wire.h"
+
+Htree2::Htree2(
+ enum Wire_type wire_model, double mat_w, double mat_h,
+ int a_bits, int d_inbits, int search_data_in, int d_outbits, int search_data_out, int bl, int wl, enum Htree_type htree_type,
+ bool uca_tree_, bool search_tree_, TechnologyParameter::DeviceType *dt)
+ :in_rise_time(0), out_rise_time(0),
+ tree_type(htree_type), mat_width(mat_w), mat_height(mat_h),
+ add_bits(a_bits), data_in_bits(d_inbits), search_data_in_bits(search_data_in),data_out_bits(d_outbits),
+ search_data_out_bits(search_data_out), ndbl(bl), ndwl(wl),
+ uca_tree(uca_tree_), search_tree(search_tree_), wt(wire_model), deviceType(dt)
+{
+ assert(ndbl >= 2 && ndwl >= 2);
+
+// if (ndbl == 1 && ndwl == 1)
+// {
+// delay = 0;
+// power.readOp.dynamic = 0;
+// power.readOp.leakage = 0;
+// area.w = mat_w;
+// area.h = mat_h;
+// return;
+// }
+// if (ndwl == 1) ndwl++;
+// if (ndbl == 1) ndbl++;
+
+ max_unpipelined_link_delay = 0; //TODO
+ min_w_nmos = g_tp.min_w_nmos_;
+ min_w_pmos = deviceType->n_to_p_eff_curr_drv_ratio * min_w_nmos;
+
+ switch (htree_type)
+ {
+ case Add_htree:
+ wire_bw = init_wire_bw = add_bits;
+ in_htree();
+ break;
+ case Data_in_htree:
+ wire_bw = init_wire_bw = data_in_bits;
+ in_htree();
+ break;
+ case Data_out_htree:
+ wire_bw = init_wire_bw = data_out_bits;
+ out_htree();
+ break;
+ case Search_in_htree:
+ wire_bw = init_wire_bw = search_data_in_bits;//in_search_tree is broad cast, out_htree is not.
+ in_htree();
+ break;
+ case Search_out_htree:
+ wire_bw = init_wire_bw = search_data_out_bits;
+ out_htree();
+ break;
+ default:
+ assert(0);
+ break;
+ }
+
+ power_bit = power;
+ power.readOp.dynamic *= init_wire_bw;
+
+ assert(power.readOp.dynamic >= 0);
+ assert(power.readOp.leakage >= 0);
+}
+
+
+
+// nand gate sizing calculation
+void Htree2::input_nand(double s1, double s2, double l_eff)
+{
+ Wire w1(wt, l_eff);
+ double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
+ // input capacitance of a repeater = input capacitance of nand.
+ double nsize = s1*(1 + pton_size)/(2 + pton_size);
+ nsize = (nsize < 1) ? 1 : nsize;
+
+ double tc = 2*tr_R_on(nsize*min_w_nmos, NCH, 1) *
+ (drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)*2 +
+ 2 * gate_C(s2*(min_w_nmos + min_w_pmos), 0));
+ delay+= horowitz (w1.out_rise_time, tc,
+ deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);
+ power.readOp.dynamic += 0.5 *
+ (2*drain_C_(pton_size * nsize*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ + 2*gate_C(s2*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (2*drain_C_(pton_size * nsize*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + drain_C_(nsize*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ + 2*gate_C(s2*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd * wire_bw ;
+ power.readOp.leakage += (wire_bw*cmos_Isub_leakage(min_w_nmos*(nsize*2), min_w_pmos * nsize * 2, 2, nand))*deviceType->Vdd;
+ power.readOp.gate_leakage += (wire_bw*cmos_Ig_leakage(min_w_nmos*(nsize*2), min_w_pmos * nsize * 2, 2, nand))*deviceType->Vdd;
+}
+
+
+
+// tristate buffer model consisting of not, nand, nor, and driver transistors
+void Htree2::output_buffer(double s1, double s2, double l_eff)
+{
+ Wire w1(wt, l_eff);
+ double pton_size = deviceType->n_to_p_eff_curr_drv_ratio;
+ // input capacitance of repeater = input capacitance of nand + nor.
+ double size = s1*(1 + pton_size)/(2 + pton_size + 1 + 2*pton_size);
+ double s_eff = //stage eff of a repeater in a wire
+ (gate_C(s2*(min_w_nmos + min_w_pmos), 0) + w1.wire_cap(l_eff*1e-6,true))/
+ gate_C(s2*(min_w_nmos + min_w_pmos), 0);
+ double tr_size = gate_C(s1*(min_w_nmos + min_w_pmos), 0) * 1/2/(s_eff*gate_C(min_w_pmos, 0));
+ size = (size < 1) ? 1 : size;
+
+ double res_nor = 2*tr_R_on(size*min_w_pmos, PCH, 1);
+ double res_ptrans = tr_R_on(tr_size*min_w_nmos, NCH, 1);
+ double cap_nand_out = drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)*2 +
+ gate_C(tr_size*min_w_pmos, 0);
+ double cap_ptrans_out = 2 *(drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)) +
+ gate_C(s1*(min_w_nmos + min_w_pmos), 0);
+
+ double tc = res_nor * cap_nand_out + (res_nor + res_ptrans) * cap_ptrans_out;
+
+
+ delay += horowitz (w1.out_rise_time, tc,
+ deviceType->Vth/deviceType->Vdd, deviceType->Vth/deviceType->Vdd, RISE);
+
+ //nand
+ power.readOp.dynamic += 0.5 *
+ (2*drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(tr_size*(min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (2*drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def) +
+ drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def) +
+ gate_C(tr_size*(min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //not
+ power.readOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //nor
+ power.readOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + 2*drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(tr_size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ (drain_C_(size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ + 2*drain_C_(size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def)
+ +gate_C(tr_size*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ //output transistor
+ power.readOp.dynamic += 0.5 *
+ ((drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def))*2
+ + gate_C(s1*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd;
+
+ power.searchOp.dynamic += 0.5 *
+ ((drain_C_(tr_size*min_w_pmos, PCH, 1, 1, g_tp.cell_h_def)
+ +drain_C_(tr_size*min_w_nmos, NCH, 1, 1, g_tp.cell_h_def))*2
+ + gate_C(s1*(min_w_nmos + min_w_pmos), 0)) *
+ deviceType->Vdd * deviceType->Vdd*init_wire_bw;
+
+ if(uca_tree) {
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+ //power.readOp.gate_leakage *=;
+ }
+ else {
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.leakage += cmos_Isub_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*tr_size*2, min_w_pmos*tr_size*2, 1, inv)*deviceType->Vdd*wire_bw;/*inverter + output tr*/
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nand)*deviceType->Vdd*wire_bw;//nand
+ power.readOp.gate_leakage += cmos_Ig_leakage(min_w_nmos*size*3, min_w_pmos*size*3, 2, nor)*deviceType->Vdd*wire_bw;//nor
+ //power.readOp.gate_leakage *=deviceType->Vdd*wire_bw;
+ }
+}
+
+
+
+/* calculates the input h-tree delay/power
+ * A nand gate is used at each node to
+ * limit the signal
+ * The area of an unbalanced htree (rows != columns)
+ * depends on how data is traversed.
+ * In the following function, if ( no. of rows < no. of columns),
+ * then data first traverse in excess hor. links until vertical
+ * and horizontal nodes are same.
+ * If no. of rows is bigger, then data traverse in
+ * a hor. link followed by a ver. link in a repeated
+ * fashion (similar to a balanced tree) until there are no
+ * hor. links left. After this it goes through the remaining vertical
+ * links.
+ */
+ void
+Htree2::in_htree()
+{
+ //temp var
+ double s1 = 0, s2 = 0, s3 = 0;
+ double l_eff = 0;
+ Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
+ double len = 0, ht = 0;
+ int option = 0;
+
+ int h = (int) _log2(ndwl/2); // horizontal nodes
+ int v = (int) _log2(ndbl/2); // vertical nodes
+ double len_temp;
+ double ht_temp;
+ if (uca_tree)
+ {//Sheng: this computation do not consider the wires that route from edge to middle.
+ ht_temp = (mat_height*ndbl/2 +/* since uca_tree models interbank tree, mat_height => bank height */
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,h))))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,v))))/2;
+ }
+ else
+ {
+ if (ndwl == ndbl) {
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndbl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else if (ndwl > ndbl) {
+ double excess_part = (_log2(ndwl/2) - _log2(ndbl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + + (search_data_in_bits + search_data_out_bits)) * ((ndbl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch *
+ (2*(1 - pow(0.5, h-v)) + pow(0.5, v-h) * v))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else {
+ double excess_part = (_log2(ndbl/2) - _log2(ndwl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * (h + 2*(1-pow(0.5, v-h))))/2;
+ }
+ }
+
+ area.h = ht_temp * 2;
+ area.w = len_temp * 2;
+ delay = 0;
+ power.readOp.dynamic = 0;
+ power.readOp.leakage = 0;
+ power.searchOp.dynamic =0;
+ len = len_temp;
+ ht = ht_temp/2;
+
+ while (v > 0 || h > 0)
+ {
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+
+ if (h > v)
+ {
+ //the iteration considers only one horizontal link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, len/2); // ver
+ len_temp = len;
+ len /= 2;
+ wtemp3 = 0;
+ h--;
+ option = 0;
+ }
+ else if (v>0 && h>0)
+ {
+ //considers one horizontal link and one vertical link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, ht); // ver
+ wtemp3 = new Wire(wt, len/2); // next hor
+ len_temp = len;
+ ht_temp = ht;
+ len /= 2;
+ ht /= 2;
+ v--;
+ h--;
+ option = 1;
+ }
+ else
+ {
+ // considers only one vertical link
+ assert(h == 0);
+ wtemp1 = new Wire(wt, ht); // ver
+ wtemp2 = new Wire(wt, ht/2); // hor
+ ht_temp = ht;
+ ht /= 2;
+ wtemp3 = 0;
+ v--;
+ option = 2;
+ }
+
+ delay += wtemp1->delay;
+ power.readOp.dynamic += wtemp1->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp1->power.readOp.dynamic*wire_bw;
+ power.readOp.leakage += wtemp1->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage*wire_bw;
+ if ((uca_tree == false && option == 2) || search_tree==true)
+ {
+ wire_bw*=2; // wire bandwidth doubles only for vertical branches
+ }
+
+ if (uca_tree == false)
+ {
+ if (len_temp > wtemp1->repeater_spacing)
+ {
+ s1 = wtemp1->repeater_size;
+ l_eff = wtemp1->repeater_spacing;
+ }
+ else
+ {
+ s1 = (len_temp/wtemp1->repeater_spacing) * wtemp1->repeater_size;
+ l_eff = len_temp;
+ }
+
+ if (ht_temp > wtemp2->repeater_spacing)
+ {
+ s2 = wtemp2->repeater_size;
+ }
+ else
+ {
+ s2 = (len_temp/wtemp2->repeater_spacing) * wtemp2->repeater_size;
+ }
+ // first level
+ input_nand(s1, s2, l_eff);
+ }
+
+
+ if (option != 1)
+ {
+ continue;
+ }
+
+ // second level
+ delay += wtemp2->delay;
+ power.readOp.dynamic += wtemp2->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp2->power.readOp.dynamic*wire_bw;
+ power.readOp.leakage += wtemp2->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+
+ if (uca_tree)
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ }
+ else
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ wire_bw*=2;
+
+ if (ht_temp > wtemp3->repeater_spacing)
+ {
+ s3 = wtemp3->repeater_size;
+ l_eff = wtemp3->repeater_spacing;
+ }
+ else
+ {
+ s3 = (len_temp/wtemp3->repeater_spacing) * wtemp3->repeater_size;
+ l_eff = ht_temp;
+ }
+
+ input_nand(s2, s3, l_eff);
+ }
+ }
+
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+}
+
+
+
+/* a tristate buffer is used to handle fan-ins
+ * The area of an unbalanced htree (rows != columns)
+ * depends on how data is traversed.
+ * In the following function, if ( no. of rows < no. of columns),
+ * then data first traverse in excess hor. links until vertical
+ * and horizontal nodes are same.
+ * If no. of rows is bigger, then data traverse in
+ * a hor. link followed by a ver. link in a repeated
+ * fashion (similar to a balanced tree) until there are no
+ * hor. links left. After this it goes through the remaining vertical
+ * links.
+ */
+void Htree2::out_htree()
+{
+ //temp var
+ double s1 = 0, s2 = 0, s3 = 0;
+ double l_eff = 0;
+ Wire *wtemp1 = 0, *wtemp2 = 0, *wtemp3 = 0;
+ double len = 0, ht = 0;
+ int option = 0;
+
+ int h = (int) _log2(ndwl/2);
+ int v = (int) _log2(ndbl/2);
+ double len_temp;
+ double ht_temp;
+ if (uca_tree)
+ {
+ ht_temp = (mat_height*ndbl/2 +/* since uca_tree models interbank tree, mat_height => bank height */
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,h))))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + data_in_bits + data_out_bits + (search_data_in_bits + search_data_out_bits)) * g_tp.wire_outside_mat.pitch *
+ 2 * (1-pow(0.5,v))))/2;
+ }
+ else
+ {
+ if (ndwl == ndbl) {
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits+ (search_data_in_bits + search_data_out_bits)) * (ndbl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+
+ }
+ else if (ndwl > ndbl) {
+ double excess_part = (_log2(ndwl/2) - _log2(ndbl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits)) * ((ndbl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch *
+ (2*(1 - pow(0.5, h-v)) + pow(0.5, v-h) * v))/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* (ndwl/2-1) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * v))/2;
+ }
+ else {
+ double excess_part = (_log2(ndbl/2) - _log2(ndwl/2));
+ ht_temp = ((mat_height*ndbl/2) +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ ((data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * h)
+ )/2;
+ len_temp = (mat_width*ndwl/2 +
+ ((add_bits + (search_data_in_bits + search_data_out_bits))* ((ndwl/2-1) + excess_part) * g_tp.wire_outside_mat.pitch) +
+ (data_in_bits + data_out_bits) * g_tp.wire_outside_mat.pitch * (h + 2*(1-pow(0.5, v-h))))/2;
+ }
+ }
+ area.h = ht_temp * 2;
+ area.w = len_temp * 2;
+ delay = 0;
+ power.readOp.dynamic = 0;
+ power.readOp.leakage = 0;
+ power.readOp.gate_leakage = 0;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ len = len_temp;
+ ht = ht_temp/2;
+
+ while (v > 0 || h > 0)
+ { //finds delay/power of each link in the tree
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+
+ if(h > v) {
+ //the iteration considers only one horizontal link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, len/2); // ver
+ len_temp = len;
+ len /= 2;
+ wtemp3 = 0;
+ h--;
+ option = 0;
+ }
+ else if (v>0 && h>0) {
+ //considers one horizontal link and one vertical link
+ wtemp1 = new Wire(wt, len); // hor
+ wtemp2 = new Wire(wt, ht); // ver
+ wtemp3 = new Wire(wt, len/2); // next hor
+ len_temp = len;
+ ht_temp = ht;
+ len /= 2;
+ ht /= 2;
+ v--;
+ h--;
+ option = 1;
+ }
+ else {
+ // considers only one vertical link
+ assert(h == 0);
+ wtemp1 = new Wire(wt, ht); // hor
+ wtemp2 = new Wire(wt, ht/2); // ver
+ ht_temp = ht;
+ ht /= 2;
+ wtemp3 = 0;
+ v--;
+ option = 2;
+ }
+ delay += wtemp1->delay;
+ power.readOp.dynamic += wtemp1->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp1->power.readOp.dynamic*init_wire_bw;
+ power.readOp.leakage += wtemp1->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp1->power.readOp.gate_leakage*wire_bw;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ if ((uca_tree == false && option == 2) || search_tree==true)
+ {
+ wire_bw*=2;
+ }
+
+ if (uca_tree == false)
+ {
+ if (len_temp > wtemp1->repeater_spacing)
+ {
+ s1 = wtemp1->repeater_size;
+ l_eff = wtemp1->repeater_spacing;
+ }
+ else
+ {
+ s1 = (len_temp/wtemp1->repeater_spacing) * wtemp1->repeater_size;
+ l_eff = len_temp;
+ }
+ if (ht_temp > wtemp2->repeater_spacing)
+ {
+ s2 = wtemp2->repeater_size;
+ }
+ else
+ {
+ s2 = (len_temp/wtemp2->repeater_spacing) * wtemp2->repeater_size;
+ }
+ // first level
+ output_buffer(s1, s2, l_eff);
+ }
+
+
+ if (option != 1)
+ {
+ continue;
+ }
+
+ // second level
+ delay += wtemp2->delay;
+ power.readOp.dynamic += wtemp2->power.readOp.dynamic;
+ power.searchOp.dynamic += wtemp2->power.readOp.dynamic*init_wire_bw;
+ power.readOp.leakage += wtemp2->power.readOp.leakage*wire_bw;
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ if (uca_tree)
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ }
+ else
+ {
+ power.readOp.leakage += (wtemp2->power.readOp.leakage*wire_bw);
+ power.readOp.gate_leakage += wtemp2->power.readOp.gate_leakage*wire_bw;
+ wire_bw*=2;
+
+ if (ht_temp > wtemp3->repeater_spacing)
+ {
+ s3 = wtemp3->repeater_size;
+ l_eff = wtemp3->repeater_spacing;
+ }
+ else
+ {
+ s3 = (len_temp/wtemp3->repeater_spacing) * wtemp3->repeater_size;
+ l_eff = ht_temp;
+ }
+
+ output_buffer(s2, s3, l_eff);
+ }
+ //cout<<"power.readOp.leakage"<<power.readOp.leakage<<endl;
+ //cout<<"power.readOp.gate_leakage"<<power.readOp.gate_leakage<<endl;
+ //cout<<"wtemp2->power.readOp.gate_leakage"<<wtemp2->power.readOp.gate_leakage<<endl;
+ }
+
+ if (wtemp1) delete wtemp1;
+ if (wtemp2) delete wtemp2;
+ if (wtemp3) delete wtemp3;
+}
+