diff options
author | Anthony Gutierrez <atgutier@umich.edu> | 2014-04-01 12:44:30 -0400 |
---|---|---|
committer | Anthony Gutierrez <atgutier@umich.edu> | 2014-04-01 12:44:30 -0400 |
commit | e553a7bfa7f0eb47b78632cd63e6e1e814025c9a (patch) | |
tree | f69a8e3e0ed55b95bf276b6f857793b9ef7b6490 /ext/mcpat/iocontrollers.cc | |
parent | 8d665ee166bf5476bb9b73a0016843ff9953c266 (diff) | |
download | gem5-e553a7bfa7f0eb47b78632cd63e6e1e814025c9a.tar.xz |
ext: add McPAT source
this patch adds the source for mcpat, a power, area, and timing modeling
framework.
Diffstat (limited to 'ext/mcpat/iocontrollers.cc')
-rw-r--r-- | ext/mcpat/iocontrollers.cc | 446 |
1 files changed, 446 insertions, 0 deletions
diff --git a/ext/mcpat/iocontrollers.cc b/ext/mcpat/iocontrollers.cc new file mode 100644 index 000000000..70b0f2dcb --- /dev/null +++ b/ext/mcpat/iocontrollers.cc @@ -0,0 +1,446 @@ +/***************************************************************************** + * McPAT + * SOFTWARE LICENSE AGREEMENT + * Copyright 2012 Hewlett-Packard Development Company, L.P. + * All Rights Reserved + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer; + * redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution; + * neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” + * + ***************************************************************************/ +#include <algorithm> +#include <cassert> +#include <cmath> +#include <iostream> +#include <string> + +#include "XML_Parse.h" +#include "basic_circuit.h" +#include "basic_components.h" +#include "const.h" +#include "io.h" +#include "iocontrollers.h" +#include "logic.h" +#include "parameter.h" + +/* +SUN Niagara 2 I/O power analysis: +total signal bits: 711 +Total FBDIMM bits: (14+10)*2*8= 384 +PCIe bits: (8 + 8)*2 = 32 +10Gb NIC: (4*2+4*2)*2 = 32 +Debug I/Os: 168 +Other I/Os: 711- 32-32 - 384 - 168 = 95 + +According to "Implementation of an 8-Core, 64-Thread, Power-Efficient SPARC Server on a Chip" +90% of I/Os are SerDers (the calucaltion is 384+64/(711-168)=83% about the same as the 90% reported in the paper) +--> around 80Pins are common I/Os. +Common I/Os consumes 71mW/Gb/s according to Cadence ChipEstimate @65nm +Niagara 2 I/O clock is 1/4 of core clock. --> 87pin (<--((711-168)*17%)) * 71mW/Gb/s *0.25*1.4Ghz = 2.17W + +Total dynamic power of FBDIMM, NIC, PCIe = 84*0.132 + 84*0.049*0.132 = 11.14 - 2.17 = 8.98 +Further, if assuming I/O logic power is about 50% of I/Os then Total energy of FBDIMM, NIC, PCIe = 11.14 - 2.17*1.5 = 7.89 + */ + +/* + * A bug in Cadence ChipEstimator: After update the clock rate in the clock tab, a user + * need to re-select the IP clock (the same clk) and then click Estimate. if not reselect + * the new clock rate may not be propogate into the IPs. + * + */ + +NIUController::NIUController(ParseXML *XML_interface,InputParameter* interface_ip_) +:XML(XML_interface), + interface_ip(*interface_ip_) + { + local_result = init_interface(&interface_ip); + + double frontend_area, phy_area, mac_area, SerDer_area; + double frontend_dyn, mac_dyn, SerDer_dyn; + double frontend_gates, mac_gates, SerDer_gates; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + double NMOS_sizing, PMOS_sizing; + + set_niu_param(); + + if (niup.type == 0) //high performance NIU + { + //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate using 65nm. + mac_area = (1.53 + 0.3)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on average of die photo from Niagara 2, ISSCC "An 800mW 10Gb Ethernet Transceiver in 0.13μm CMOS" + //and"A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique" Frontend is PCS + frontend_area = (9.8 + (6 + 18)*65/130*65/130)/3 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm. + //SerDer is very hard to scale + SerDer_area = (1.39 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065); + phy_area = frontend_area + SerDer_area; + //total area + area.set_area((mac_area + frontend_area + SerDer_area)*1e6); + //Power + //Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9); + mac_dyn = 2.19e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm + //Cadence ChipEstimate using 65nm soft IP; + frontend_dyn = 0.27e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; + //according to "A 100mW 9.6Gb/s Transceiver in 90nm CMOS..." ISSCC 2006 + //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm + SerDer_dyn = 0.01*10*sqrt(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2; + SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU + + //Cadence ChipEstimate using 65nm + mac_gates = 111700; + frontend_gates = 320000; + SerDer_gates = 200000; + NMOS_sizing = 5*g_tp.min_w_nmos_; + PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + + + } + else + {//Low power implementations are mostly from Cadence ChipEstimator; Ignore the multiple IP effect + // ---When there are multiple IP (same kind or not) selected, Cadence ChipEstimator results are not + // a simple summation of all IPs. Ignore this effect + mac_area = 0.24 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + frontend_area = 0.1 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065);//Frontend is the PCS layer + SerDer_area = 0.35 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Compare 130um implementation in "A 1.2-V-Only 900-mW 10 Gb Ethernet Transceiver and XAUI Interface With Robust VCO Tuning Technique" + //and the ChipEstimator XAUI PHY hard IP, confirm that even PHY can scale perfectly with the technology + //total area + area.set_area((mac_area + frontend_area + SerDer_area)*1e6); + //Power + //Cadence ChipEstimate using 65nm (mac, front_end are all energy. E=P*T = P/F = 1.37/1Ghz = 1.37e-9); + mac_dyn = 1.257e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; //2.19W@1GHz fully active according to Cadence ChipEstimate @65nm + //Cadence ChipEstimate using 65nm soft IP; + frontend_dyn = 0.6e-9*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0);//niup.clockRate; + //SerDer_dyn is power not energy, scaling from 216mw/10Gb/s @130nm + SerDer_dyn = 0.0216*10*(interface_ip.F_sz_um/0.13)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2; + SerDer_dyn /= niup.clockRate;//covert to energy per clock cycle of whole NIU + + mac_gates = 111700; + frontend_gates = 52000; + SerDer_gates = 199260; + + NMOS_sizing = g_tp.min_w_nmos_; + PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + + } + + power_t.readOp.dynamic = mac_dyn + frontend_dyn + SerDer_dyn; + power_t.readOp.leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device); + power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction; + power_t.readOp.gate_leakage = (mac_gates + frontend_gates + frontend_gates)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + } + +void NIUController::computeEnergy(bool is_tdp) +{ + if (is_tdp) + { + + + power = power_t; + power.readOp.dynamic *= niup.duty_cycle; + + } + else + { + rt_power = power_t; + rt_power.readOp.dynamic *= niup.perc_load; + } +} + +void NIUController::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + + if (is_tdp) + { + cout << "NIU:" << endl; + cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*niup.clockRate << " W" << endl; + cout << indent_str<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl; + cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*niup.clockRate << " W" << endl; + cout<<endl; + } + else + { + + } + +} + +void NIUController::set_niu_param() +{ + niup.clockRate = XML->sys.niu.clockrate; + niup.clockRate *= 1e6; + niup.num_units = XML->sys.niu.number_units; + niup.duty_cycle = XML->sys.niu.duty_cycle; + niup.perc_load = XML->sys.niu.total_load_perc; + niup.type = XML->sys.niu.type; +// niup.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6); +} + +PCIeController::PCIeController(ParseXML *XML_interface,InputParameter* interface_ip_) +:XML(XML_interface), + interface_ip(*interface_ip_) + { + local_result = init_interface(&interface_ip); + double frontend_area, phy_area, ctrl_area, SerDer_area; + double ctrl_dyn, frontend_dyn, SerDer_dyn; + double ctrl_gates,frontend_gates, SerDer_gates; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + double NMOS_sizing, PMOS_sizing; + + /* Assuming PCIe is bit-slice based architecture + * This is the reason for /8 in both area and power calculation + * to get per lane numbers + */ + + set_pcie_param(); + if (pciep.type == 0) //high performance NIU + { + //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate @ 65nm. + ctrl_area = (5.2 + 0.5)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm. + frontend_area = (5.2 + 0.1)/2 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on average of die photo from Niagara 2 and Cadence ChipEstimate hard IP @65nm. + //SerDer is very hard to scale + SerDer_area = (3.03 + 0.36) * (interface_ip.F_sz_um/0.065);//* (interface_ip.F_sz_um/0.065); + phy_area = frontend_area + SerDer_area; + //total area + //Power + //Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer + ctrl_dyn = 3.75e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0); + // //Cadence ChipEstimate using 65nm soft IP; + // frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0); + //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm + SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s + SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle + + //power_t.readOp.dynamic = (ctrl_dyn)*pciep.num_channels; + //Cadence ChipEstimate using 65nm + ctrl_gates = 900000/8*pciep.num_channels; + // frontend_gates = 120000/8; + // SerDer_gates = 200000/8; + NMOS_sizing = 5*g_tp.min_w_nmos_; + PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + } + else + { + ctrl_area = 0.412 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on average of die photo from Niagara 2, and Cadence ChipEstimate @ 65nm. + SerDer_area = 0.36 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //total area + //Power + //Cadence ChipEstimate using 65nm the controller includes everything: the PHY, the data link and transaction layer + ctrl_dyn = 2.21e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0); + // //Cadence ChipEstimate using 65nm soft IP; + // frontend_dyn = 0.27e-9/8*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0); + //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm + SerDer_dyn = 0.01*4*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2;//PCIe 2.0 max per lane speed is 4Gb/s + SerDer_dyn /= pciep.clockRate;//covert to energy per clock cycle + + //Cadence ChipEstimate using 65nm + ctrl_gates = 200000/8*pciep.num_channels; + // frontend_gates = 120000/8; + SerDer_gates = 200000/8*pciep.num_channels; + NMOS_sizing = g_tp.min_w_nmos_; + PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + + } + area.set_area(((ctrl_area + (pciep.withPHY? SerDer_area:0))/8*pciep.num_channels)*1e6); + power_t.readOp.dynamic = (ctrl_dyn + (pciep.withPHY? SerDer_dyn:0))*pciep.num_channels; + power_t.readOp.leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device); + power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction; + power_t.readOp.gate_leakage = (ctrl_gates + (pciep.withPHY? SerDer_gates:0))*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + } + +void PCIeController::computeEnergy(bool is_tdp) +{ + if (is_tdp) + { + + + power = power_t; + power.readOp.dynamic *= pciep.duty_cycle; + + } + else + { + rt_power = power_t; + rt_power.readOp.dynamic *= pciep.perc_load; + } +} + +void PCIeController::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + + if (is_tdp) + { + cout << "PCIe:" << endl; + cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic*pciep.clockRate << " W" << endl; + cout << indent_str<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl; + cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic*pciep.clockRate << " W" << endl; + cout<<endl; + } + else + { + + } + +} + +void PCIeController::set_pcie_param() +{ + pciep.clockRate = XML->sys.pcie.clockrate; + pciep.clockRate *= 1e6; + pciep.num_units = XML->sys.pcie.number_units; + pciep.num_channels = XML->sys.pcie.num_channels; + pciep.duty_cycle = XML->sys.pcie.duty_cycle; + pciep.perc_load = XML->sys.pcie.total_load_perc; + pciep.type = XML->sys.pcie.type; + pciep.withPHY = XML->sys.pcie.withPHY; +// pciep.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6); + +} + +FlashController::FlashController(ParseXML *XML_interface,InputParameter* interface_ip_) +:XML(XML_interface), + interface_ip(*interface_ip_) + { + local_result = init_interface(&interface_ip); + double frontend_area, phy_area, ctrl_area, SerDer_area; + double ctrl_dyn, frontend_dyn, SerDer_dyn; + double ctrl_gates,frontend_gates, SerDer_gates; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + double NMOS_sizing, PMOS_sizing; + + /* Assuming PCIe is bit-slice based architecture + * This is the reason for /8 in both area and power calculation + * to get per lane numbers + */ + + set_fc_param(); + if (fcp.type == 0) //high performance NIU + { + cout<<"Current McPAT does not support high performance flash contorller since even low power designs are enough for maintain throughput"<<endl; + exit(0); + NMOS_sizing = 5*g_tp.min_w_nmos_; + PMOS_sizing = 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + } + else + { + ctrl_area = 0.243 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //Area estimation based on Cadence ChipEstimate @ 65nm: NANDFLASH-CTRL from CAST + SerDer_area = 0.36/8 * (interface_ip.F_sz_um/0.065)* (interface_ip.F_sz_um/0.065); + //based On PCIe PHY TSMC65GP from Cadence ChipEstimate @ 65nm, it support 8x lanes with each lane + //speed up to 250MB/s (PCIe1.1x) This is already saturate the 200MB/s of the flash controller core above. + ctrl_gates = 129267; + SerDer_gates = 200000/8; + NMOS_sizing = g_tp.min_w_nmos_; + PMOS_sizing = g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; + + //Power + //Cadence ChipEstimate using 65nm the controller 125mW for every 200MB/s This is power not energy! + ctrl_dyn = 0.125*g_tp.peri_global.Vdd/1.1*g_tp.peri_global.Vdd/1.1*(interface_ip.F_sz_nm/65.0); + //SerDer_dyn is power not energy, scaling from 10mw/Gb/s @90nm + SerDer_dyn = 0.01*1.6*(interface_ip.F_sz_um/0.09)*g_tp.peri_global.Vdd/1.2*g_tp.peri_global.Vdd/1.2; + //max Per controller speed is 1.6Gb/s (200MB/s) + } + double number_channel = 1+(fcp.num_channels-1)*0.2; + area.set_area((ctrl_area + (fcp.withPHY? SerDer_area:0))*1e6*number_channel); + power_t.readOp.dynamic = (ctrl_dyn + (fcp.withPHY? SerDer_dyn:0))*number_channel; + power_t.readOp.leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Isub_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + double long_channel_device_reduction = longer_channel_device_reduction(Uncore_device); + power_t.readOp.longer_channel_leakage = power_t.readOp.leakage * long_channel_device_reduction; + power_t.readOp.gate_leakage = ((ctrl_gates + (fcp.withPHY? SerDer_gates:0))*number_channel)*cmos_Ig_leakage(NMOS_sizing, PMOS_sizing, 2, nand)*g_tp.peri_global.Vdd;//unit W + } + +void FlashController::computeEnergy(bool is_tdp) +{ + if (is_tdp) + { + + + power = power_t; + power.readOp.dynamic *= fcp.duty_cycle; + + } + else + { + rt_power = power_t; + rt_power.readOp.dynamic *= fcp.perc_load; + } +} + +void FlashController::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + + if (is_tdp) + { + cout << "Flash Controller:" << endl; + cout << indent_str<< "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str << "Peak Dynamic = " << power.readOp.dynamic << " W" << endl;//no multiply of clock since this is power already + cout << indent_str<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + //cout << indent_str<< "Subthreshold Leakage = " << power.readOp.longer_channel_leakage <<" W" << endl; + cout << indent_str<< "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str << "Runtime Dynamic = " << rt_power.readOp.dynamic << " W" << endl; + cout<<endl; + } + else + { + + } + +} + +void FlashController::set_fc_param() +{ +// fcp.clockRate = XML->sys.flashc.mc_clock; +// fcp.clockRate *= 1e6; + fcp.peakDataTransferRate = XML->sys.flashc.peak_transfer_rate; + fcp.num_channels = ceil(fcp.peakDataTransferRate/200); + fcp.num_mcs = XML->sys.flashc.number_mcs; + fcp.duty_cycle = XML->sys.flashc.duty_cycle; + fcp.perc_load = XML->sys.flashc.total_load_perc; + fcp.type = XML->sys.flashc.type; + fcp.withPHY = XML->sys.flashc.withPHY; +// flashcp.executionTime = XML->sys.total_cycles/(XML->sys.target_core_clockrate*1e6); + +} |