diff options
author | Anthony Gutierrez <atgutier@umich.edu> | 2014-04-01 12:44:30 -0400 |
---|---|---|
committer | Anthony Gutierrez <atgutier@umich.edu> | 2014-04-01 12:44:30 -0400 |
commit | e553a7bfa7f0eb47b78632cd63e6e1e814025c9a (patch) | |
tree | f69a8e3e0ed55b95bf276b6f857793b9ef7b6490 /ext/mcpat/logic.cc | |
parent | 8d665ee166bf5476bb9b73a0016843ff9953c266 (diff) | |
download | gem5-e553a7bfa7f0eb47b78632cd63e6e1e814025c9a.tar.xz |
ext: add McPAT source
this patch adds the source for mcpat, a power, area, and timing modeling
framework.
Diffstat (limited to 'ext/mcpat/logic.cc')
-rw-r--r-- | ext/mcpat/logic.cc | 1014 |
1 files changed, 1014 insertions, 0 deletions
diff --git a/ext/mcpat/logic.cc b/ext/mcpat/logic.cc new file mode 100644 index 000000000..11519d863 --- /dev/null +++ b/ext/mcpat/logic.cc @@ -0,0 +1,1014 @@ +/***************************************************************************** + * McPAT + * SOFTWARE LICENSE AGREEMENT + * Copyright 2012 Hewlett-Packard Development Company, L.P. + * All Rights Reserved + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer; + * redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution; + * neither the name of the copyright holders nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” + * + ***************************************************************************/ + +#include "logic.h" + + +//selection_logic +selection_logic::selection_logic( + bool _is_default, + int win_entries_, + int issue_width_, + const InputParameter *configure_interface, + enum Device_ty device_ty_, + enum Core_type core_ty_) + //const ParseXML *_XML_interface) + :is_default(_is_default), + win_entries(win_entries_), + issue_width(issue_width_), + device_ty(device_ty_), + core_ty(core_ty_) + { + //uca_org_t result2; + l_ip=*configure_interface; + local_result = init_interface(&l_ip); + //init_tech_params(l_ip.F_sz_um, false); + //win_entries=numIBEntries;//IQentries; + //issue_width=issueWidth; + selection_power(); + double sckRation = g_tp.sckt_co_eff; + power.readOp.dynamic *= sckRation; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + + double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + } + +void selection_logic::selection_power() +{//based on cost effective superscalar processor TR pp27-31 + double Ctotal, Cor, Cpencode; + int num_arbiter; + double WSelORn, WSelORprequ, WSelPn, WSelPp, WSelEnn, WSelEnp; + + //TODO: the 0.8um process data is used. + WSelORn = 12.5 * l_ip.F_sz_um;//this was 10 micron for the 0.8 micron process + WSelORprequ = 50 * l_ip.F_sz_um;//this was 40 micron for the 0.8 micron process + WSelPn = 12.5 * l_ip.F_sz_um;//this was 10mcron for the 0.8 micron process + WSelPp = 18.75 * l_ip.F_sz_um;//this was 15 micron for the 0.8 micron process + WSelEnn = 6.25 * l_ip.F_sz_um;//this was 5 micron for the 0.8 micron process + WSelEnp = 12.5 * l_ip.F_sz_um;//this was 10 micron for the 0.8 micron process + + + Ctotal=0; + num_arbiter=1; + while(win_entries > 4) + { + win_entries = (int)ceil((double)win_entries / 4.0); + num_arbiter += win_entries; + } + //the 4-input OR logic to generate anyreq + Cor = 4 * drain_C_(WSelORn,NCH,1,1, g_tp.cell_h_def) + drain_C_(WSelORprequ,PCH,1,1, g_tp.cell_h_def); + power.readOp.gate_leakage = cmos_Ig_leakage(WSelORn, WSelORprequ, 4, nor)*g_tp.peri_global.Vdd; + + //The total capacity of the 4-bit priority encoder + Cpencode = drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,1, 1, g_tp.cell_h_def) + + 2*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,2, 1, g_tp.cell_h_def) + + 3*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,3, 1, g_tp.cell_h_def) + + 4*drain_C_(WSelPn,NCH,1, 1, g_tp.cell_h_def) + drain_C_(WSelPp,PCH,4, 1, g_tp.cell_h_def) +//precompute priority logic + 2*4*gate_C(WSelEnn+WSelEnp,20.0)+ + 4*drain_C_(WSelEnn,NCH,1, 1, g_tp.cell_h_def) + 2*4*drain_C_(WSelEnp,PCH,1, 1, g_tp.cell_h_def)+//enable logic + (2*4+2*3+2*2+2)*gate_C(WSelPn+WSelPp,10.0);//requests signal + + Ctotal += issue_width * num_arbiter*(Cor+Cpencode); + + power.readOp.dynamic = Ctotal*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*2;//2 means the abitration signal need to travel round trip + power.readOp.leakage = issue_width * num_arbiter * + (cmos_Isub_leakage(WSelPn, WSelPp, 2, nor)/*approximate precompute with a nor gate*///grant1p + + cmos_Isub_leakage(WSelPn, WSelPp, 3, nor)//grant2p + + cmos_Isub_leakage(WSelPn, WSelPp, 4, nor)//grant3p + + cmos_Isub_leakage(WSelEnn, WSelEnp, 2, nor)*4//enable logic + + cmos_Isub_leakage(WSelEnn, WSelEnp, 1, inv)*2*3//for each grant there are two inverters, there are 3 grant sIsubnals + )*g_tp.peri_global.Vdd; + power.readOp.gate_leakage = issue_width * num_arbiter * + (cmos_Ig_leakage(WSelPn, WSelPp, 2, nor)/*approximate precompute with a nor gate*///grant1p + + cmos_Ig_leakage(WSelPn, WSelPp, 3, nor)//grant2p + + cmos_Ig_leakage(WSelPn, WSelPp, 4, nor)//grant3p + + cmos_Ig_leakage(WSelEnn, WSelEnp, 2, nor)*4//enable logic + + cmos_Ig_leakage(WSelEnn, WSelEnp, 1, inv)*2*3//for each grant there are two inverters, there are 3 grant signals + )*g_tp.peri_global.Vdd; +} + + +dep_resource_conflict_check::dep_resource_conflict_check( + const InputParameter *configure_interface, + const CoreDynParam & dyn_p_, + int compare_bits_, + bool _is_default) + : l_ip(*configure_interface), + coredynp(dyn_p_), + compare_bits(compare_bits_), + is_default(_is_default) +{ + Wcompn = 25 * l_ip.F_sz_um;//this was 20.0 micron for the 0.8 micron process + Wevalinvp = 25 * l_ip.F_sz_um;//this was 20.0 micron for the 0.8 micron process + Wevalinvn = 100 * l_ip.F_sz_um;//this was 80.0 mcron for the 0.8 micron process + Wcomppreequ = 50 * l_ip.F_sz_um;//this was 40.0 micron for the 0.8 micron process + WNORn = 6.75 * l_ip.F_sz_um;//this was 5.4 micron for the 0.8 micron process + WNORp = 38.125 * l_ip.F_sz_um;//this was 30.5 micron for the 0.8 micron process + + local_result = init_interface(&l_ip); + + if (coredynp.core_ty==Inorder) + compare_bits += 16 + 8 + 8;//TODO: opcode bits + log(shared resources) + REG TAG BITS-->opcode comparator + else + compare_bits += 16 + 8 + 8; + + conflict_check_power(); + double sckRation = g_tp.sckt_co_eff; + power.readOp.dynamic *= sckRation; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + +} + +void dep_resource_conflict_check::conflict_check_power() +{ + double Ctotal; + int num_comparators; + num_comparators = 3*((coredynp.decodeW) * (coredynp.decodeW)-coredynp.decodeW);//2(N*N-N) is used for source to dest comparison, (N*N-N) is used for dest to dest comparision. + //When decode-width ==1, no dcl logic + + Ctotal = num_comparators * compare_cap(); + //printf("%i,%s\n",XML_interface->sys.core[0].predictor.predictor_entries,XML_interface->sys.core[0].predictor.prediction_scheme); + + power.readOp.dynamic=Ctotal*/*CLOCKRATE*/g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/*AF*/; + power.readOp.leakage=num_comparators*compare_bits*2*simplified_nmos_leakage(Wcompn, false); + + double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + power.readOp.gate_leakage=num_comparators*compare_bits*2*cmos_Ig_leakage(Wcompn, 0, 2, nmos); + +} + +/* estimate comparator power consumption (this comparator is similar + to the tag-match structure in a CAM */ +double dep_resource_conflict_check::compare_cap() +{ + double c1, c2; + + WNORp = WNORp * compare_bits/2.0;//resize the big NOR gate at the DCL according to fan in. + /* bottom part of comparator */ + c2 = (compare_bits)*(drain_C_(Wcompn,NCH,1,1, g_tp.cell_h_def)+drain_C_(Wcompn,NCH,2,1, g_tp.cell_h_def))+ + drain_C_(Wevalinvp,PCH,1,1, g_tp.cell_h_def) + drain_C_(Wevalinvn,NCH,1,1, g_tp.cell_h_def); + + /* top part of comparator */ + c1 = (compare_bits)*(drain_C_(Wcompn,NCH,1,1, g_tp.cell_h_def)+drain_C_(Wcompn,NCH,2,1, g_tp.cell_h_def)+ + drain_C_(Wcomppreequ,NCH,1,1, g_tp.cell_h_def)) + gate_C(WNORn + WNORp,10.0) + + drain_C_(WNORp,NCH,2,1, g_tp.cell_h_def) + compare_bits*drain_C_(WNORn,NCH,2,1, g_tp.cell_h_def); + return(c1 + c2); + +} + +void dep_resource_conflict_check::leakage_feedback(double temperature) +{ + l_ip.temp = (unsigned int)round(temperature/10.0)*10; + uca_org_t init_result = init_interface(&l_ip); // init_result is dummy + + // This is part of conflict_check_power() + int num_comparators = 3*((coredynp.decodeW) * (coredynp.decodeW)-coredynp.decodeW);//2(N*N-N) is used for source to dest comparison, (N*N-N) is used for dest to dest comparision. + power.readOp.leakage=num_comparators*compare_bits*2*simplified_nmos_leakage(Wcompn, false); + + double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + power.readOp.gate_leakage=num_comparators*compare_bits*2*cmos_Ig_leakage(Wcompn, 0, 2, nmos); +} + +//TODO: add inverter and transmission gate base DFF. + +DFFCell::DFFCell( + bool _is_dram, + double _WdecNANDn, + double _WdecNANDp, + double _cell_load, + const InputParameter *configure_interface) +:is_dram(_is_dram), +cell_load(_cell_load), +WdecNANDn(_WdecNANDn), +WdecNANDp(_WdecNANDp) +{//this model is based on the NAND2 based DFF. + l_ip=*configure_interface; +// area.set_area(730*l_ip.F_sz_um*l_ip.F_sz_um); + area.set_area(5*compute_gate_area(NAND, 2,WdecNANDn,WdecNANDp, g_tp.cell_h_def) + + compute_gate_area(NAND, 2,WdecNANDn,WdecNANDn, g_tp.cell_h_def)); + + +} + + +double DFFCell::fpfp_node_cap(unsigned int fan_in, unsigned int fan_out) +{ + double Ctotal = 0; + //printf("WdecNANDn = %E\n", WdecNANDn); + + /* part 1: drain cap of NAND gate */ + Ctotal += drain_C_(WdecNANDn, NCH, 2, 1, g_tp.cell_h_def, is_dram) + fan_in * drain_C_(WdecNANDp, PCH, 1, 1, g_tp.cell_h_def, is_dram); + + /* part 2: gate cap of NAND gates */ + Ctotal += fan_out * gate_C(WdecNANDn + WdecNANDp, 0, is_dram); + + return Ctotal; +} + + +void DFFCell::compute_DFF_cell() +{ + double c1, c2, c3, c4, c5, c6; + /* node 5 and node 6 are identical to node 1 in capacitance */ + c1 = c5 = c6 = fpfp_node_cap(2, 1); + c2 = fpfp_node_cap(2, 3); + c3 = fpfp_node_cap(3, 2); + c4 = fpfp_node_cap(2, 2); + + //cap-load of the clock signal in each Dff, actually the clock signal only connected to one NAND2 + clock_cap= 2 * gate_C(WdecNANDn + WdecNANDp, 0, is_dram); + e_switch.readOp.dynamic += (c4 + c1 + c2 + c3 + c5 + c6 + 2*cell_load)*0.5*g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;; + + /* no 1/2 for e_keep and e_clock because clock signal switches twice in one cycle */ + e_keep_1.readOp.dynamic += c3 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd ; + e_keep_0.readOp.dynamic += c2 * g_tp.peri_global.Vdd * g_tp.peri_global.Vdd ; + e_clock.readOp.dynamic += clock_cap* g_tp.peri_global.Vdd * g_tp.peri_global.Vdd;; + + /* static power */ + e_switch.readOp.leakage += (cmos_Isub_leakage(WdecNANDn, WdecNANDp, 2, nand)*5//5 NAND2 and 1 NAND3 in a DFF + + cmos_Isub_leakage(WdecNANDn, WdecNANDn, 3, nand))*g_tp.peri_global.Vdd; + e_switch.readOp.gate_leakage += (cmos_Ig_leakage(WdecNANDn, WdecNANDp, 2, nand)*5//5 NAND2 and 1 NAND3 in a DFF + + cmos_Ig_leakage(WdecNANDn, WdecNANDn, 3, nand))*g_tp.peri_global.Vdd; + //printf("leakage =%E\n",cmos_Ileak(1, is_dram) ); +} + +Pipeline::Pipeline( + const InputParameter *configure_interface, + const CoreDynParam & dyn_p_, + enum Device_ty device_ty_, + bool _is_core_pipeline, + bool _is_default) +: l_ip(*configure_interface), + coredynp(dyn_p_), + device_ty(device_ty_), + is_core_pipeline(_is_core_pipeline), + is_default(_is_default), + num_piperegs(0.0) + + { + local_result = init_interface(&l_ip); + if (!coredynp.Embedded) + process_ind = true; + else + process_ind = false; + WNANDn = (process_ind)? 25 * l_ip.F_sz_um : g_tp.min_w_nmos_ ;//this was 20 micron for the 0.8 micron process + WNANDp = (process_ind)? 37.5 * l_ip.F_sz_um : g_tp.min_w_nmos_*pmos_to_nmos_sz_ratio();//this was 30 micron for the 0.8 micron process + load_per_pipeline_stage = 2*gate_C(WNANDn + WNANDp, 0, false); + compute(); + +} + +void Pipeline::compute() +{ + compute_stage_vector(); + DFFCell pipe_reg(false, WNANDn,WNANDp, load_per_pipeline_stage, &l_ip); + pipe_reg.compute_DFF_cell(); + + double clock_power_pipereg = num_piperegs * pipe_reg.e_clock.readOp.dynamic; + //******************pipeline power: currently, we average all the possibilities of the states of DFFs in the pipeline. A better way to do it is to consider + //the harming distance of two consecutive signals, However McPAT does not have plan to do this in near future as it focuses on worst case power. + double pipe_reg_power = num_piperegs * (pipe_reg.e_switch.readOp.dynamic+pipe_reg.e_keep_0.readOp.dynamic+pipe_reg.e_keep_1.readOp.dynamic)/3+clock_power_pipereg; + double pipe_reg_leakage = num_piperegs * pipe_reg.e_switch.readOp.leakage; + double pipe_reg_gate_leakage = num_piperegs * pipe_reg.e_switch.readOp.gate_leakage; + power.readOp.dynamic +=pipe_reg_power; + power.readOp.leakage +=pipe_reg_leakage; + power.readOp.gate_leakage +=pipe_reg_gate_leakage; + area.set_area(num_piperegs * pipe_reg.area.get_area()); + + double long_channel_device_reduction = longer_channel_device_reduction(device_ty, coredynp.core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + + + double sckRation = g_tp.sckt_co_eff; + power.readOp.dynamic *= sckRation; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + double macro_layout_overhead = g_tp.macro_layout_overhead; + if (!coredynp.Embedded) + area.set_area(area.get_area()*macro_layout_overhead); +} + +void Pipeline::compute_stage_vector() +{ + double num_stages, tot_stage_vector, per_stage_vector; + int opcode_length = coredynp.x86? coredynp.micro_opcode_length:coredynp.opcode_length; + //Hthread = thread_clock_gated? 1:num_thread; + + if (!is_core_pipeline) + { + num_piperegs=l_ip.pipeline_stages*l_ip.per_stage_vector;//The number of pipeline stages are calculated based on the achievable throughput and required throughput + } + else + { + if (coredynp.core_ty==Inorder) + { + /* assume 6 pipe stages and try to estimate bits per pipe stage */ + /* pipe stage 0/IF */ + num_piperegs += coredynp.pc_width*2*coredynp.num_hthreads; + /* pipe stage IF/ID */ + num_piperegs += coredynp.fetchW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads; + /* pipe stage IF/ThreadSEL */ + if (coredynp.multithreaded) num_piperegs += coredynp.num_hthreads*coredynp.perThreadState; //8 bit thread states + /* pipe stage ID/EXE */ + num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width + pow(2.0,opcode_length)+ 2*coredynp.int_data_width)*coredynp.num_hthreads; + /* pipe stage EXE/MEM */ + num_piperegs += coredynp.issueW*(3 * coredynp.arch_ireg_width + pow(2.0,opcode_length) + 8*2*coredynp.int_data_width/*+2*powers (2,reg_length)*/); + /* pipe stage MEM/WB the 2^opcode_length means the total decoded signal for the opcode*/ + num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length) + 8*2*coredynp.int_data_width/*+2*powers (2,reg_length)*/); +// /* pipe stage 5/6 */ +// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/*+2*powers (2,reg_length)*/); +// /* pipe stage 6/7 */ +// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/*+2*powers (2,reg_length)*/); +// /* pipe stage 7/8 */ +// num_piperegs += issueWidth*(data_width + powers (2,opcode_length)/**2*powers (2,reg_length)*/); +// /* assume 50% extra in control signals (rule of thumb) */ + num_stages=6; + + } + else + { + /* assume 12 stage pipe stages and try to estimate bits per pipe stage */ + /*OOO: Fetch, decode, rename, IssueQ, dispatch, regread, EXE, MEM, WB, CM */ + + /* pipe stage 0/1F*/ + num_piperegs += coredynp.pc_width*2*coredynp.num_hthreads ;//PC and Next PC + /* pipe stage IF/ID */ + num_piperegs += coredynp.fetchW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads;//PC is used to feed branch predictor in ID + /* pipe stage 1D/Renaming*/ + num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width)*coredynp.num_hthreads;//PC is for branch exe in later stage. + /* pipe stage Renaming/wire_drive */ + num_piperegs += coredynp.decodeW*(coredynp.instruction_length + coredynp.pc_width); + /* pipe stage Renaming/IssueQ */ + num_piperegs += coredynp.issueW*(coredynp.instruction_length + coredynp.pc_width + 3*coredynp.phy_ireg_width)*coredynp.num_hthreads;//3*coredynp.phy_ireg_width means 2 sources and 1 dest + /* pipe stage IssueQ/Dispatch */ + num_piperegs += coredynp.issueW*(coredynp.instruction_length + 3 * coredynp.phy_ireg_width); + /* pipe stage Dispatch/EXE */ + + num_piperegs += coredynp.issueW*(3 * coredynp.phy_ireg_width + coredynp.pc_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/); + /* 2^opcode_length means the total decoded signal for the opcode*/ + num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/); + /*2 source operands in EXE; Assume 2EXE stages* since we do not really distinguish OP*/ + num_piperegs += coredynp.issueW*(2*coredynp.int_data_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/); + /* pipe stage EXE/MEM, data need to be read/write, address*/ + num_piperegs += coredynp.issueW*(coredynp.int_data_width + coredynp.v_address_width + pow(2.0,opcode_length)/*+2*powers (2,reg_length)*/);//memory Opcode still need to be passed + /* pipe stage MEM/WB; result data, writeback regs */ + num_piperegs += coredynp.issueW*(coredynp.int_data_width + coredynp.phy_ireg_width /* powers (2,opcode_length) + (2,opcode_length)+2*powers (2,reg_length)*/); + /* pipe stage WB/CM ; result data, regs need to be updated, address for resolve memory ops in ROB's top*/ + num_piperegs += coredynp.commitW*(coredynp.int_data_width + coredynp.v_address_width + coredynp.phy_ireg_width/*+ powers (2,opcode_length)*2*powers (2,reg_length)*/)*coredynp.num_hthreads; +// if (multithreaded) +// { +// +// } + num_stages=12; + + } + + /* assume 50% extra in control registers and interrupt registers (rule of thumb) */ + num_piperegs = num_piperegs * 1.5; + tot_stage_vector=num_piperegs; + per_stage_vector=tot_stage_vector/num_stages; + + if (coredynp.core_ty==Inorder) + { + if (coredynp.pipeline_stages>6) + num_piperegs= per_stage_vector*coredynp.pipeline_stages; + } + else//OOO + { + if (coredynp.pipeline_stages>12) + num_piperegs= per_stage_vector*coredynp.pipeline_stages; + } + } + +} + +FunctionalUnit::FunctionalUnit(ParseXML *XML_interface, int ithCore_, InputParameter* interface_ip_,const CoreDynParam & dyn_p_, enum FU_type fu_type_) +:XML(XML_interface), + ithCore(ithCore_), + interface_ip(*interface_ip_), + coredynp(dyn_p_), + fu_type(fu_type_) +{ + double area_t;//, leakage, gate_leakage; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + clockRate = coredynp.clockRate; + executionTime = coredynp.executionTime; + + //XML_interface=_XML_interface; + uca_org_t result2; + result2 = init_interface(&interface_ip); + if (XML->sys.Embedded) + { + if (fu_type == FPU) + { + num_fu=coredynp.num_fpus; + //area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 + area_t = 4.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2 The base number + //4.47 contains both VFP and NEON processing unit, VFP is about 40% and NEON is about 60% + if (g_ip->F_sz_nm>90) + area_t = 4.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + //energy = 0.3529/10*1e-9;//this is the energy(nJ) for a FP instruction in FPU usually it can have up to 20 cycles. +// base_energy = coredynp.core_ty==Inorder? 0: 89e-3*3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) +// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + base_energy = 0; + per_access_energy = 1.15/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per Hz energy(nJ) + //FPU power from Sandia's processor sizing tech report + FU_height=(18667*num_fu)*interface_ip.F_sz_um;//FPU from Sun's data + } + else if (fu_type == ALU) + { + num_fu=coredynp.num_alus; + area_t = 280*260*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; +// base_energy = coredynp.core_ty==Inorder? 0:89e-3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) +// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + base_energy = 0; + per_access_energy = 1.15/3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ) + FU_height=(6222*num_fu)*interface_ip.F_sz_um;//integer ALU + + } + else if (fu_type == MUL) + { + num_fu=coredynp.num_muls; + area_t = 280*260*3*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; +// base_energy = coredynp.core_ty==Inorder? 0:89e-3*2; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) +// base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + base_energy = 0; + per_access_energy = 1.15*2/3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ), coefficient based on Wattch + FU_height=(9334*num_fu )*interface_ip.F_sz_um;//divider/mul from Sun's data + } + else + { + cout<<"Unknown Functional Unit Type"<<endl; + exit(0); + } + per_access_energy *=0.5;//According to ARM data embedded processor has much lower per acc energy + } + else + { + if (fu_type == FPU) + { + num_fu=coredynp.num_fpus; + //area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 + area_t = 8.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2 + if (g_ip->F_sz_nm>90) + area_t = 8.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + //energy = 0.3529/10*1e-9;//this is the energy(nJ) for a FP instruction in FPU usually it can have up to 20 cycles. + base_energy = coredynp.core_ty==Inorder? 0: 89e-3*3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) + base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + per_access_energy = 1.15*3/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per op energy(nJ) + FU_height=(38667*num_fu)*interface_ip.F_sz_um;//FPU from Sun's data + } + else if (fu_type == ALU) + { + num_fu=coredynp.num_alus; + area_t = 280*260*2*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; + base_energy = coredynp.core_ty==Inorder? 0:89e-3; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) + base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + per_access_energy = 1.15/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ) + FU_height=(6222*num_fu)*interface_ip.F_sz_um;//integer ALU + + } + else if (fu_type == MUL) + { + num_fu=coredynp.num_muls; + area_t = 280*260*2*3*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; + base_energy = coredynp.core_ty==Inorder? 0:89e-3*2; //W The base energy of ALU average numbers from Intel 4G and 773Mhz (Wattch) + base_energy *=(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2); + per_access_energy = 1.15*2/1e9/4/1.3/1.3*g_tp.peri_global.Vdd*g_tp.peri_global.Vdd*(g_ip->F_sz_nm/90.0);//(g_tp.peri_global.Vdd*g_tp.peri_global.Vdd/1.2/1.2);//0.00649*1e-9; //This is per cycle energy(nJ), coefficient based on Wattch + FU_height=(9334*num_fu )*interface_ip.F_sz_um;//divider/mul from Sun's data + } + else + { + cout<<"Unknown Functional Unit Type"<<endl; + exit(0); + } + } + //IEXEU, simple ALU and FPU + // double C_ALU, C_EXEU, C_FPU; //Lum Equivalent capacitance of IEXEU and FPU. Based on Intel and Sun 90nm process fabracation. + // + // C_ALU = 0.025e-9;//F + // C_EXEU = 0.05e-9; //F + // C_FPU = 0.35e-9;//F + area.set_area(area_t*num_fu); + leakage *= num_fu; + gate_leakage *=num_fu; + double macro_layout_overhead = g_tp.macro_layout_overhead; +// if (!XML->sys.Embedded) + area.set_area(area.get_area()*macro_layout_overhead); +} + +void FunctionalUnit::computeEnergy(bool is_tdp) +{ + double pppm_t[4] = {1,1,1,1}; + double FU_duty_cycle; + if (is_tdp) + { + + + set_pppm(pppm_t, 2, 2, 2, 2);//2 means two source operands needs to be passed for each int instruction. + if (fu_type == FPU) + { + stats_t.readAc.access = num_fu; + tdp_stats = stats_t; + FU_duty_cycle = coredynp.FPU_duty_cycle; + } + else if (fu_type == ALU) + { + stats_t.readAc.access = 1*num_fu; + tdp_stats = stats_t; + FU_duty_cycle = coredynp.ALU_duty_cycle; + } + else if (fu_type == MUL) + { + stats_t.readAc.access = num_fu; + tdp_stats = stats_t; + FU_duty_cycle = coredynp.MUL_duty_cycle; + } + + //power.readOp.dynamic = base_energy/clockRate + energy*stats_t.readAc.access; + power.readOp.dynamic = per_access_energy*stats_t.readAc.access + base_energy/clockRate; + double sckRation = g_tp.sckt_co_eff; + power.readOp.dynamic *= sckRation*FU_duty_cycle; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + + power.readOp.leakage = leakage; + power.readOp.gate_leakage = gate_leakage; + double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + + } + else + { + if (fu_type == FPU) + { + stats_t.readAc.access = XML->sys.core[ithCore].fpu_accesses; + rtp_stats = stats_t; + } + else if (fu_type == ALU) + { + stats_t.readAc.access = XML->sys.core[ithCore].ialu_accesses; + rtp_stats = stats_t; + } + else if (fu_type == MUL) + { + stats_t.readAc.access = XML->sys.core[ithCore].mul_accesses; + rtp_stats = stats_t; + } + + //rt_power.readOp.dynamic = base_energy*executionTime + energy*stats_t.readAc.access; + rt_power.readOp.dynamic = per_access_energy*stats_t.readAc.access + base_energy*executionTime; + double sckRation = g_tp.sckt_co_eff; + rt_power.readOp.dynamic *= sckRation; + rt_power.writeOp.dynamic *= sckRation; + rt_power.searchOp.dynamic *= sckRation; + + } + + +} + +void FunctionalUnit::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + +// cout << indent_str_next << "Results Broadcast Bus Area = " << bypass->area.get_area() *1e-6 << " mm^2" << endl; + if (is_tdp) + { + if (fu_type == FPU) + { + cout << indent_str << "Floating Point Units (FPUs) (Count: "<< coredynp.num_fpus <<" ):" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl; +// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl; + cout << indent_str_next<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl; + cout <<endl; + } + else if (fu_type == ALU) + { + cout << indent_str << "Integer ALUs (Count: "<< coredynp.num_alus <<" ):" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl; +// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl; + cout << indent_str_next<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl; + cout <<endl; + } + else if (fu_type == MUL) + { + cout << indent_str << "Complex ALUs (Mul/Div) (Count: "<< coredynp.num_muls <<" ):" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6 << " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl; +// cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage << " W" << endl; + cout << indent_str_next<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl; + cout <<endl; + + } + + } + else + { + } + +} + +void FunctionalUnit::leakage_feedback(double temperature) +{ + // Update the temperature and initialize the global interfaces. + interface_ip.temp = (unsigned int)round(temperature/10.0)*10; + + uca_org_t init_result = init_interface(&interface_ip); // init_result is dummy + + // This is part of FunctionalUnit() + double area_t, leakage, gate_leakage; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + + if (fu_type == FPU) + { + area_t = 4.47*1e6*(g_ip->F_sz_nm*g_ip->F_sz_nm/90.0/90.0);//this is um^2 The base number + if (g_ip->F_sz_nm>90) + area_t = 4.47*1e6*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + } + else if (fu_type == ALU) + { + area_t = 280*260*2*num_fu*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; + } + else if (fu_type == MUL) + { + area_t = 280*260*2*3*num_fu*g_tp.scaling_factor.logic_scaling_co_eff;//this is um^2 ALU + MUl + leakage = area_t *(g_tp.scaling_factor.core_tx_density)*cmos_Isub_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2;//unit W + gate_leakage = area_t*(g_tp.scaling_factor.core_tx_density)*cmos_Ig_leakage(20*g_tp.min_w_nmos_, 20*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd/2; + } + else + { + cout<<"Unknown Functional Unit Type"<<endl; + exit(1); + } + + power.readOp.leakage = leakage*num_fu; + power.readOp.gate_leakage = gate_leakage*num_fu; + power.readOp.longer_channel_leakage = longer_channel_device_reduction(Core_device, coredynp.core_ty); +} + +UndiffCore::UndiffCore(ParseXML* XML_interface, int ithCore_, InputParameter* interface_ip_, const CoreDynParam & dyn_p_, bool exist_, bool embedded_) +:XML(XML_interface), + ithCore(ithCore_), + interface_ip(*interface_ip_), + coredynp(dyn_p_), + core_ty(coredynp.core_ty), + embedded(XML->sys.Embedded), + pipeline_stage(coredynp.pipeline_stages), + num_hthreads(coredynp.num_hthreads), + issue_width(coredynp.issueW), + exist(exist_) +// is_default(_is_default) +{ + if (!exist) return; + double undifferentiated_core=0; + double core_tx_density=0; + double pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + double undifferentiated_core_coe; + //XML_interface=_XML_interface; + uca_org_t result2; + result2 = init_interface(&interface_ip); + + //Compute undifferentiated core area at 90nm. + if (embedded==false) + { + //Based on the results of polynomial/log curve fitting based on undifferentiated core of Niagara, Niagara2, Merom, Penyrn, Prescott, Opteron die measurements + if (core_ty==OOO) + { + //undifferentiated_core = (0.0764*pipeline_stage*pipeline_stage -2.3685*pipeline_stage + 10.405);//OOO + undifferentiated_core = (3.57*log(pipeline_stage)-1.2643)>0?(3.57*log(pipeline_stage)-1.2643):0; + } + else if (core_ty==Inorder) + { + //undifferentiated_core = (0.1238*pipeline_stage + 7.2572)*0.9;//inorder + undifferentiated_core = (-2.19*log(pipeline_stage)+6.55)>0?(-2.19*log(pipeline_stage)+6.55):0; + } + else + { + cout<<"invalid core type"<<endl; + exit(0); + } + undifferentiated_core *= (1+ logtwo(num_hthreads)* 0.0716); + } + else + { + //Based on the results in paper "parametrized processor models" Sandia Labs + if (XML->sys.opt_clockrate) + undifferentiated_core_coe = 0.05; + else + undifferentiated_core_coe = 0; + undifferentiated_core = (0.4109* pipeline_stage - 0.776)*undifferentiated_core_coe; + undifferentiated_core *= (1+ logtwo(num_hthreads)* 0.0426); + } + + undifferentiated_core *= g_tp.scaling_factor.logic_scaling_co_eff*1e6;//change from mm^2 to um^2 + core_tx_density = g_tp.scaling_factor.core_tx_density; + //undifferentiated_core = 3*1e6; + //undifferentiated_core *= g_tp.scaling_factor.logic_scaling_co_eff;//(g_ip->F_sz_um*g_ip->F_sz_um/0.09/0.09)*; + power.readOp.leakage = undifferentiated_core*(core_tx_density)*cmos_Isub_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd;//unit W + power.readOp.gate_leakage = undifferentiated_core*(core_tx_density)*cmos_Ig_leakage(5*g_tp.min_w_nmos_, 5*g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, 1, inv)*g_tp.peri_global.Vdd; + + double long_channel_device_reduction = longer_channel_device_reduction(Core_device, coredynp.core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + area.set_area(undifferentiated_core); + + scktRatio = g_tp.sckt_co_eff; + power.readOp.dynamic *= scktRatio; + power.writeOp.dynamic *= scktRatio; + power.searchOp.dynamic *= scktRatio; + macro_PR_overhead = g_tp.macro_layout_overhead; + area.set_area(area.get_area()*macro_PR_overhead); + + + +// double vt=g_tp.peri_global.Vth; +// double velocity_index=1.1; +// double c_in=gate_C(g_tp.min_w_nmos_, g_tp.min_w_nmos_*pmos_to_nmos_sizing_r , 0.0, false); +// double c_out= drain_C_(g_tp.min_w_nmos_, NCH, 2, 1, g_tp.cell_h_def, false) + drain_C_(g_tp.min_w_nmos_*pmos_to_nmos_sizing_r, PCH, 1, 1, g_tp.cell_h_def, false) + c_in; +// double w_nmos=g_tp.min_w_nmos_; +// double w_pmos=g_tp.min_w_nmos_*pmos_to_nmos_sizing_r; +// double i_on_n=1.0; +// double i_on_p=1.0; +// double i_on_n_in=1.0; +// double i_on_p_in=1; +// double vdd=g_tp.peri_global.Vdd; + +// power.readOp.sc=shortcircuit_simple(vt, velocity_index, c_in, c_out, w_nmos,w_pmos, i_on_n, i_on_p,i_on_n_in, i_on_p_in, vdd); +// power.readOp.dynamic=c_out*vdd*vdd/2; + +// cout<<power.readOp.dynamic << "dynamic" <<endl; +// cout<<power.readOp.sc << "sc" << endl; + +// power.readOp.sc=shortcircuit(vt, velocity_index, c_in, c_out, w_nmos,w_pmos, i_on_n, i_on_p,i_on_n_in, i_on_p_in, vdd); +// power.readOp.dynamic=c_out*vdd*vdd/2; +// +// cout<<power.readOp.dynamic << "dynamic" <<endl; +// cout<<power.readOp.sc << "sc" << endl; + + + +} + + +void UndiffCore::displayEnergy(uint32_t indent,int plevel,bool is_tdp) +{ + string indent_str(indent, ' '); + string indent_str_next(indent+2, ' '); + bool long_channel = XML->sys.longer_channel_device; + + if (is_tdp) + { + cout << indent_str << "UndiffCore:" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl; + //cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl; + cout << indent_str_next<< "Subthreshold Leakage = " + << (long_channel? power.readOp.longer_channel_leakage:power.readOp.leakage) <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + //cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl; + cout <<endl; + } + else + { + cout << indent_str << "UndiffCore:" << endl; + cout << indent_str_next << "Area = " << area.get_area()*1e-6<< " mm^2" << endl; + cout << indent_str_next << "Peak Dynamic = " << power.readOp.dynamic*clockRate << " W" << endl; + cout << indent_str_next << "Subthreshold Leakage = " << power.readOp.leakage <<" W" << endl; + cout << indent_str_next << "Gate Leakage = " << power.readOp.gate_leakage << " W" << endl; + //cout << indent_str_next << "Runtime Dynamic = " << rt_power.readOp.dynamic/executionTime << " W" << endl; + cout <<endl; + } + +} + +inst_decoder::inst_decoder( + bool _is_default, + const InputParameter *configure_interface, + int opcode_length_, + int num_decoders_, + bool x86_, + enum Device_ty device_ty_, + enum Core_type core_ty_) +:is_default(_is_default), + opcode_length(opcode_length_), + num_decoders(num_decoders_), + x86(x86_), + device_ty(device_ty_), + core_ty(core_ty_) + { + /* + * Instruction decoder is different from n to 2^n decoders + * that are commonly used in row decoders in memory arrays. + * The RISC instruction decoder is typically a very simple device. + * We can decode an instruction by simply + * separating the machine word into small parts using wire slices + * The RISC instruction decoder can be approximate by the n to 2^n decoders, + * although this approximation usually underestimate power since each decoded + * instruction normally has more than 1 active signal. + * + * However, decoding a CISC instruction word is much more difficult + * than the RISC case. A CISC decoder is typically set up as a state machine. + * The machine reads the opcode field to determine + * what type of instruction it is, + * and where the other data values are. + * The instruction word is read in piece by piece, + * and decisions are made at each stage as to + * how the remainder of the instruction word will be read. + * (sequencer and ROM are usually needed) + * An x86 decoder can be even more complex since + * it involve both decoding instructions into u-ops and + * merge u-ops when doing micro-ops fusion. + */ + bool is_dram=false; + double pmos_to_nmos_sizing_r; + double load_nmos_width, load_pmos_width; + double C_driver_load, R_wire_load; + Area cell; + + l_ip=*configure_interface; + local_result = init_interface(&l_ip); + cell.h =g_tp.cell_h_def; + cell.w =g_tp.cell_h_def; + + num_decoder_segments = (int)ceil(opcode_length/18.0); + if (opcode_length > 18) opcode_length = 18; + num_decoded_signals= (int)pow(2.0,opcode_length); + pmos_to_nmos_sizing_r = pmos_to_nmos_sz_ratio(); + load_nmos_width=g_tp.max_w_nmos_ /2; + load_pmos_width= g_tp.max_w_nmos_ * pmos_to_nmos_sizing_r; + C_driver_load = 1024*gate_C(load_nmos_width + load_pmos_width, 0, is_dram); //TODO: this number 1024 needs to be revisited + R_wire_load = 3000*l_ip.F_sz_um * g_tp.wire_outside_mat.R_per_um; + + final_dec = new Decoder( + num_decoded_signals, + false, + C_driver_load, + R_wire_load, + false/*is_fa*/, + false/*is_dram*/, + false/*wl_tr*/, //to use peri device + cell); + + PredecBlk * predec_blk1 = new PredecBlk( + num_decoded_signals, + final_dec, + 0,//Assuming predec and dec are back to back + 0, + 1,//Each Predec only drives one final dec + false/*is_dram*/, + true); + PredecBlk * predec_blk2 = new PredecBlk( + num_decoded_signals, + final_dec, + 0,//Assuming predec and dec are back to back + 0, + 1,//Each Predec only drives one final dec + false/*is_dram*/, + false); + + PredecBlkDrv * predec_blk_drv1 = new PredecBlkDrv(0, predec_blk1, false); + PredecBlkDrv * predec_blk_drv2 = new PredecBlkDrv(0, predec_blk2, false); + + pre_dec = new Predec(predec_blk_drv1, predec_blk_drv2); + + double area_decoder = final_dec->area.get_area() * num_decoded_signals * num_decoder_segments*num_decoders; + //double w_decoder = area_decoder / area.get_h(); + double area_pre_dec = (predec_blk_drv1->area.get_area() + + predec_blk_drv2->area.get_area() + + predec_blk1->area.get_area() + + predec_blk2->area.get_area())* + num_decoder_segments*num_decoders; + area.set_area(area.get_area()+ area_decoder + area_pre_dec); + double macro_layout_overhead = g_tp.macro_layout_overhead; + double chip_PR_overhead = g_tp.chip_layout_overhead; + area.set_area(area.get_area()*macro_layout_overhead*chip_PR_overhead); + + inst_decoder_delay_power(); + + double sckRation = g_tp.sckt_co_eff; + power.readOp.dynamic *= sckRation; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + + double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; + +} + +void inst_decoder::inst_decoder_delay_power() +{ + + double dec_outrisetime; + double inrisetime=0, outrisetime; + double pppm_t[4] = {1,1,1,1}; + double squencer_passes = x86?2:1; + + outrisetime = pre_dec->compute_delays(inrisetime); + dec_outrisetime = final_dec->compute_delays(outrisetime); + set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments, squencer_passes*num_decoder_segments, num_decoder_segments); + power = power + pre_dec->power*pppm_t; + set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments*num_decoded_signals, + num_decoder_segments*num_decoded_signals, squencer_passes*num_decoder_segments); + power = power + final_dec->power*pppm_t; +} +void inst_decoder::leakage_feedback(double temperature) +{ + l_ip.temp = (unsigned int)round(temperature/10.0)*10; + uca_org_t init_result = init_interface(&l_ip); // init_result is dummy + + final_dec->leakage_feedback(temperature); + pre_dec->leakage_feedback(temperature); + + double pppm_t[4] = {1,1,1,1}; + double squencer_passes = x86?2:1; + + set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments, squencer_passes*num_decoder_segments, num_decoder_segments); + power = pre_dec->power*pppm_t; + + set_pppm(pppm_t, squencer_passes*num_decoder_segments, num_decoder_segments*num_decoded_signals,num_decoder_segments*num_decoded_signals, squencer_passes*num_decoder_segments); + power = power + final_dec->power*pppm_t; + + double sckRation = g_tp.sckt_co_eff; + + power.readOp.dynamic *= sckRation; + power.writeOp.dynamic *= sckRation; + power.searchOp.dynamic *= sckRation; + + double long_channel_device_reduction = longer_channel_device_reduction(device_ty,core_ty); + power.readOp.longer_channel_leakage = power.readOp.leakage*long_channel_device_reduction; +} + +inst_decoder::~inst_decoder() +{ + local_result.cleanup(); + + delete final_dec; + + delete pre_dec->blk1; + delete pre_dec->blk2; + delete pre_dec->drv1; + delete pre_dec->drv2; + delete pre_dec; +} |