summaryrefslogtreecommitdiff
path: root/src/arch/arm/insts/vfp.cc
diff options
context:
space:
mode:
authorGabe Black <gblack@eecs.umich.edu>2010-06-02 12:58:18 -0500
committerGabe Black <gblack@eecs.umich.edu>2010-06-02 12:58:18 -0500
commit362b747fdc18d653194441433b9961b87ff2bb80 (patch)
treecfe6cb9d5cfaa6233a9255d0f4047acb9691ba9f /src/arch/arm/insts/vfp.cc
parent35e35fc825ac1297ba5e1334ac177b0a40329110 (diff)
downloadgem5-362b747fdc18d653194441433b9961b87ff2bb80.tar.xz
ARM: Move code from vfp.hh to vfp.cc.
Diffstat (limited to 'src/arch/arm/insts/vfp.cc')
-rw-r--r--src/arch/arm/insts/vfp.cc856
1 files changed, 856 insertions, 0 deletions
diff --git a/src/arch/arm/insts/vfp.cc b/src/arch/arm/insts/vfp.cc
index a87d57925..163779715 100644
--- a/src/arch/arm/insts/vfp.cc
+++ b/src/arch/arm/insts/vfp.cc
@@ -84,3 +84,859 @@ FpRegRegRegOp::generateDisassembly(Addr pc, const SymbolTable *symtab) const
printReg(ss, op2 + FP_Base_DepTag);
return ss.str();
}
+
+namespace ArmISA
+{
+
+VfpSavedState
+prepFpState(uint32_t rMode)
+{
+ int roundingMode = fegetround();
+ feclearexcept(FeAllExceptions);
+ switch (rMode) {
+ case VfpRoundNearest:
+ fesetround(FeRoundNearest);
+ break;
+ case VfpRoundUpward:
+ fesetround(FeRoundUpward);
+ break;
+ case VfpRoundDown:
+ fesetround(FeRoundDown);
+ break;
+ case VfpRoundZero:
+ fesetround(FeRoundZero);
+ break;
+ }
+ return roundingMode;
+}
+
+void
+finishVfp(FPSCR &fpscr, VfpSavedState state)
+{
+ int exceptions = fetestexcept(FeAllExceptions);
+ bool underflow = false;
+ if (exceptions & FeInvalid) {
+ fpscr.ioc = 1;
+ }
+ if (exceptions & FeDivByZero) {
+ fpscr.dzc = 1;
+ }
+ if (exceptions & FeOverflow) {
+ fpscr.ofc = 1;
+ }
+ if (exceptions & FeUnderflow) {
+ underflow = true;
+ fpscr.ufc = 1;
+ }
+ if ((exceptions & FeInexact) && !(underflow && fpscr.fz)) {
+ fpscr.ixc = 1;
+ }
+ fesetround(state);
+}
+
+template <class fpType>
+fpType
+fixDest(FPSCR fpscr, fpType val, fpType op1)
+{
+ int fpClass = std::fpclassify(val);
+ fpType junk = 0.0;
+ if (fpClass == FP_NAN) {
+ const bool single = (sizeof(val) == sizeof(float));
+ const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
+ const bool nan = std::isnan(op1);
+ if (!nan || (fpscr.dn == 1)) {
+ val = bitsToFp(qnan, junk);
+ } else if (nan) {
+ val = bitsToFp(fpToBits(op1) | qnan, junk);
+ }
+ } else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
+ // Turn val into a zero with the correct sign;
+ uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
+ val = bitsToFp(fpToBits(val) & bitMask, junk);
+ feclearexcept(FeInexact);
+ feraiseexcept(FeUnderflow);
+ }
+ return val;
+}
+
+template
+float fixDest<float>(FPSCR fpscr, float val, float op1);
+template
+double fixDest<double>(FPSCR fpscr, double val, double op1);
+
+template <class fpType>
+fpType
+fixDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
+{
+ int fpClass = std::fpclassify(val);
+ fpType junk = 0.0;
+ if (fpClass == FP_NAN) {
+ const bool single = (sizeof(val) == sizeof(float));
+ const uint64_t qnan = single ? 0x7fc00000 : ULL(0x7ff8000000000000);
+ const bool nan1 = std::isnan(op1);
+ const bool nan2 = std::isnan(op2);
+ const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
+ const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
+ if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
+ val = bitsToFp(qnan, junk);
+ } else if (signal1) {
+ val = bitsToFp(fpToBits(op1) | qnan, junk);
+ } else if (signal2) {
+ val = bitsToFp(fpToBits(op2) | qnan, junk);
+ } else if (nan1) {
+ val = op1;
+ } else if (nan2) {
+ val = op2;
+ }
+ } else if (fpClass == FP_SUBNORMAL && fpscr.fz == 1) {
+ // Turn val into a zero with the correct sign;
+ uint64_t bitMask = ULL(0x1) << (sizeof(fpType) * 8 - 1);
+ val = bitsToFp(fpToBits(val) & bitMask, junk);
+ feclearexcept(FeInexact);
+ feraiseexcept(FeUnderflow);
+ }
+ return val;
+}
+
+template
+float fixDest<float>(FPSCR fpscr, float val, float op1, float op2);
+template
+double fixDest<double>(FPSCR fpscr, double val, double op1, double op2);
+
+template <class fpType>
+fpType
+fixDivDest(FPSCR fpscr, fpType val, fpType op1, fpType op2)
+{
+ fpType mid = fixDest(fpscr, val, op1, op2);
+ const bool single = (sizeof(fpType) == sizeof(float));
+ const fpType junk = 0.0;
+ if ((single && (val == bitsToFp(0x00800000, junk) ||
+ val == bitsToFp(0x80800000, junk))) ||
+ (!single && (val == bitsToFp(ULL(0x0010000000000000), junk) ||
+ val == bitsToFp(ULL(0x8010000000000000), junk)))
+ ) {
+ __asm__ __volatile__("" : "=m" (op1) : "m" (op1));
+ fesetround(FeRoundZero);
+ fpType temp = 0.0;
+ __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
+ temp = op1 / op2;
+ if (flushToZero(temp)) {
+ feraiseexcept(FeUnderflow);
+ if (fpscr.fz) {
+ feclearexcept(FeInexact);
+ mid = temp;
+ }
+ }
+ __asm__ __volatile__("" :: "m" (temp));
+ }
+ return mid;
+}
+
+template
+float fixDivDest<float>(FPSCR fpscr, float val, float op1, float op2);
+template
+double fixDivDest<double>(FPSCR fpscr, double val, double op1, double op2);
+
+float
+fixFpDFpSDest(FPSCR fpscr, double val)
+{
+ const float junk = 0.0;
+ float op1 = 0.0;
+ if (std::isnan(val)) {
+ uint64_t valBits = fpToBits(val);
+ uint32_t op1Bits = bits(valBits, 50, 29) |
+ (mask(9) << 22) |
+ (bits(valBits, 63) << 31);
+ op1 = bitsToFp(op1Bits, junk);
+ }
+ float mid = fixDest(fpscr, (float)val, op1);
+ if (fpscr.fz && fetestexcept(FeUnderflow | FeInexact) ==
+ (FeUnderflow | FeInexact)) {
+ feclearexcept(FeInexact);
+ }
+ if (mid == bitsToFp(0x00800000, junk) ||
+ mid == bitsToFp(0x80800000, junk)) {
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ fesetround(FeRoundZero);
+ float temp = 0.0;
+ __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
+ temp = val;
+ if (flushToZero(temp)) {
+ feraiseexcept(FeUnderflow);
+ if (fpscr.fz) {
+ feclearexcept(FeInexact);
+ mid = temp;
+ }
+ }
+ __asm__ __volatile__("" :: "m" (temp));
+ }
+ return mid;
+}
+
+double
+fixFpSFpDDest(FPSCR fpscr, float val)
+{
+ const double junk = 0.0;
+ double op1 = 0.0;
+ if (std::isnan(val)) {
+ uint32_t valBits = fpToBits(val);
+ uint64_t op1Bits = ((uint64_t)bits(valBits, 21, 0) << 29) |
+ (mask(12) << 51) |
+ ((uint64_t)bits(valBits, 31) << 63);
+ op1 = bitsToFp(op1Bits, junk);
+ }
+ double mid = fixDest(fpscr, (double)val, op1);
+ if (mid == bitsToFp(ULL(0x0010000000000000), junk) ||
+ mid == bitsToFp(ULL(0x8010000000000000), junk)) {
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ fesetround(FeRoundZero);
+ double temp = 0.0;
+ __asm__ __volatile__("" : "=m" (temp) : "m" (temp));
+ temp = val;
+ if (flushToZero(temp)) {
+ feraiseexcept(FeUnderflow);
+ if (fpscr.fz) {
+ feclearexcept(FeInexact);
+ mid = temp;
+ }
+ }
+ __asm__ __volatile__("" :: "m" (temp));
+ }
+ return mid;
+}
+
+float
+vcvtFpSFpH(FPSCR &fpscr, float op, float dest, bool top)
+{
+ float junk = 0.0;
+ uint32_t destBits = fpToBits(dest);
+ uint32_t opBits = fpToBits(op);
+ // Extract the operand.
+ bool neg = bits(opBits, 31);
+ uint32_t exponent = bits(opBits, 30, 23);
+ uint32_t oldMantissa = bits(opBits, 22, 0);
+ uint32_t mantissa = oldMantissa >> (23 - 10);
+ // Do the conversion.
+ uint32_t extra = oldMantissa & mask(23 - 10);
+ if (exponent == 0xff) {
+ if (oldMantissa != 0) {
+ // Nans.
+ if (bits(mantissa, 9) == 0) {
+ // Signalling nan.
+ fpscr.ioc = 1;
+ }
+ if (fpscr.ahp) {
+ mantissa = 0;
+ exponent = 0;
+ fpscr.ioc = 1;
+ } else if (fpscr.dn) {
+ mantissa = (1 << 9);
+ exponent = 0x1f;
+ neg = false;
+ } else {
+ exponent = 0x1f;
+ mantissa |= (1 << 9);
+ }
+ } else {
+ // Infinities.
+ exponent = 0x1F;
+ if (fpscr.ahp) {
+ fpscr.ioc = 1;
+ mantissa = 0x3ff;
+ } else {
+ mantissa = 0;
+ }
+ }
+ } else if (exponent == 0 && oldMantissa == 0) {
+ // Zero, don't need to do anything.
+ } else {
+ // Normalized or denormalized numbers.
+
+ bool inexact = (extra != 0);
+
+ if (exponent == 0) {
+ // Denormalized.
+
+ // If flush to zero is on, this shouldn't happen.
+ assert(fpscr.fz == 0);
+
+ // Check for underflow
+ if (inexact || fpscr.ufe)
+ fpscr.ufc = 1;
+
+ // Handle rounding.
+ unsigned mode = fpscr.rMode;
+ if ((mode == VfpRoundUpward && !neg && extra) ||
+ (mode == VfpRoundDown && neg && extra) ||
+ (mode == VfpRoundNearest &&
+ (extra > (1 << 9) ||
+ (extra == (1 << 9) && bits(mantissa, 0))))) {
+ mantissa++;
+ }
+
+ // See if the number became normalized after rounding.
+ if (mantissa == (1 << 10)) {
+ mantissa = 0;
+ exponent = 1;
+ }
+ } else {
+ // Normalized.
+
+ // We need to track the dropped bits differently since
+ // more can be dropped by denormalizing.
+ bool topOne = bits(extra, 12);
+ bool restZeros = bits(extra, 11, 0) == 0;
+
+ if (exponent <= (127 - 15)) {
+ // The result is too small. Denormalize.
+ mantissa |= (1 << 10);
+ while (mantissa && exponent <= (127 - 15)) {
+ restZeros = restZeros && !topOne;
+ topOne = bits(mantissa, 0);
+ mantissa = mantissa >> 1;
+ exponent++;
+ }
+ if (topOne || !restZeros)
+ inexact = true;
+ exponent = 0;
+ } else {
+ // Change bias.
+ exponent -= (127 - 15);
+ }
+
+ if (exponent == 0 && (inexact || fpscr.ufe)) {
+ // Underflow
+ fpscr.ufc = 1;
+ }
+
+ // Handle rounding.
+ unsigned mode = fpscr.rMode;
+ bool nonZero = topOne || !restZeros;
+ if ((mode == VfpRoundUpward && !neg && nonZero) ||
+ (mode == VfpRoundDown && neg && nonZero) ||
+ (mode == VfpRoundNearest && topOne &&
+ (!restZeros || bits(mantissa, 0)))) {
+ mantissa++;
+ }
+
+ // See if we rounded up and need to bump the exponent.
+ if (mantissa == (1 << 10)) {
+ mantissa = 0;
+ exponent++;
+ }
+
+ // Deal with overflow
+ if (fpscr.ahp) {
+ if (exponent >= 0x20) {
+ exponent = 0x1f;
+ mantissa = 0x3ff;
+ fpscr.ioc = 1;
+ // Supress inexact exception.
+ inexact = false;
+ }
+ } else {
+ if (exponent >= 0x1f) {
+ if ((mode == VfpRoundNearest) ||
+ (mode == VfpRoundUpward && !neg) ||
+ (mode == VfpRoundDown && neg)) {
+ // Overflow to infinity.
+ exponent = 0x1f;
+ mantissa = 0;
+ } else {
+ // Overflow to max normal.
+ exponent = 0x1e;
+ mantissa = 0x3ff;
+ }
+ fpscr.ofc = 1;
+ inexact = true;
+ }
+ }
+ }
+
+ if (inexact) {
+ fpscr.ixc = 1;
+ }
+ }
+ // Reassemble and install the result.
+ uint32_t result = bits(mantissa, 9, 0);
+ replaceBits(result, 14, 10, exponent);
+ if (neg)
+ result |= (1 << 15);
+ if (top)
+ replaceBits(destBits, 31, 16, result);
+ else
+ replaceBits(destBits, 15, 0, result);
+ return bitsToFp(destBits, junk);
+}
+
+float
+vcvtFpHFpS(FPSCR &fpscr, float op, bool top)
+{
+ float junk = 0.0;
+ uint32_t opBits = fpToBits(op);
+ // Extract the operand.
+ if (top)
+ opBits = bits(opBits, 31, 16);
+ else
+ opBits = bits(opBits, 15, 0);
+ // Extract the bitfields.
+ bool neg = bits(opBits, 15);
+ uint32_t exponent = bits(opBits, 14, 10);
+ uint32_t mantissa = bits(opBits, 9, 0);
+ // Do the conversion.
+ if (exponent == 0) {
+ if (mantissa != 0) {
+ // Normalize the value.
+ exponent = exponent + (127 - 15) + 1;
+ while (mantissa < (1 << 10)) {
+ mantissa = mantissa << 1;
+ exponent--;
+ }
+ }
+ mantissa = mantissa << (23 - 10);
+ } else if (exponent == 0x1f && !fpscr.ahp) {
+ // Infinities and nans.
+ exponent = 0xff;
+ if (mantissa != 0) {
+ // Nans.
+ mantissa = mantissa << (23 - 10);
+ if (bits(mantissa, 22) == 0) {
+ // Signalling nan.
+ fpscr.ioc = 1;
+ mantissa |= (1 << 22);
+ }
+ if (fpscr.dn) {
+ mantissa &= ~mask(22);
+ neg = false;
+ }
+ }
+ } else {
+ exponent = exponent + (127 - 15);
+ mantissa = mantissa << (23 - 10);
+ }
+ // Reassemble the result.
+ uint32_t result = bits(mantissa, 22, 0);
+ replaceBits(result, 30, 23, exponent);
+ if (neg)
+ result |= (1 << 31);
+ return bitsToFp(result, junk);
+}
+
+uint64_t
+vfpFpSToFixed(float val, bool isSigned, bool half,
+ uint8_t imm, bool rzero)
+{
+ int rmode = rzero ? FeRoundZero : fegetround();
+ __asm__ __volatile__("" : "=m" (rmode) : "m" (rmode));
+ fesetround(FeRoundNearest);
+ val = val * powf(2.0, imm);
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ fesetround(rmode);
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ float origVal = val;
+ val = rintf(val);
+ int fpType = std::fpclassify(val);
+ if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
+ if (fpType == FP_NAN) {
+ feraiseexcept(FeInvalid);
+ }
+ val = 0.0;
+ } else if (origVal != val) {
+ switch (rmode) {
+ case FeRoundNearest:
+ if (origVal - val > 0.5)
+ val += 1.0;
+ else if (val - origVal > 0.5)
+ val -= 1.0;
+ break;
+ case FeRoundDown:
+ if (origVal < val)
+ val -= 1.0;
+ break;
+ case FeRoundUpward:
+ if (origVal > val)
+ val += 1.0;
+ break;
+ }
+ feraiseexcept(FeInexact);
+ }
+
+ if (isSigned) {
+ if (half) {
+ if ((double)val < (int16_t)(1 << 15)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int16_t)(1 << 15);
+ }
+ if ((double)val > (int16_t)mask(15)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int16_t)mask(15);
+ }
+ return (int16_t)val;
+ } else {
+ if ((double)val < (int32_t)(1 << 31)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int32_t)(1 << 31);
+ }
+ if ((double)val > (int32_t)mask(31)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int32_t)mask(31);
+ }
+ return (int32_t)val;
+ }
+ } else {
+ if (half) {
+ if ((double)val < 0) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return 0;
+ }
+ if ((double)val > (mask(16))) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return mask(16);
+ }
+ return (uint16_t)val;
+ } else {
+ if ((double)val < 0) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return 0;
+ }
+ if ((double)val > (mask(32))) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return mask(32);
+ }
+ return (uint32_t)val;
+ }
+ }
+}
+
+float
+vfpUFixedToFpS(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
+{
+ fesetround(FeRoundNearest);
+ if (half)
+ val = (uint16_t)val;
+ float scale = powf(2.0, imm);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ return fixDivDest(fpscr, val / scale, (float)val, scale);
+}
+
+float
+vfpSFixedToFpS(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
+{
+ fesetround(FeRoundNearest);
+ if (half)
+ val = sext<16>(val & mask(16));
+ float scale = powf(2.0, imm);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ return fixDivDest(fpscr, val / scale, (float)val, scale);
+}
+
+uint64_t
+vfpFpDToFixed(double val, bool isSigned, bool half,
+ uint8_t imm, bool rzero)
+{
+ int rmode = rzero ? FeRoundZero : fegetround();
+ fesetround(FeRoundNearest);
+ val = val * pow(2.0, imm);
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ fesetround(rmode);
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (val) : "m" (val));
+ double origVal = val;
+ val = rint(val);
+ int fpType = std::fpclassify(val);
+ if (fpType == FP_SUBNORMAL || fpType == FP_NAN) {
+ if (fpType == FP_NAN) {
+ feraiseexcept(FeInvalid);
+ }
+ val = 0.0;
+ } else if (origVal != val) {
+ switch (rmode) {
+ case FeRoundNearest:
+ if (origVal - val > 0.5)
+ val += 1.0;
+ else if (val - origVal > 0.5)
+ val -= 1.0;
+ break;
+ case FeRoundDown:
+ if (origVal < val)
+ val -= 1.0;
+ break;
+ case FeRoundUpward:
+ if (origVal > val)
+ val += 1.0;
+ break;
+ }
+ feraiseexcept(FeInexact);
+ }
+ if (isSigned) {
+ if (half) {
+ if (val < (int16_t)(1 << 15)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int16_t)(1 << 15);
+ }
+ if (val > (int16_t)mask(15)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int16_t)mask(15);
+ }
+ return (int16_t)val;
+ } else {
+ if (val < (int32_t)(1 << 31)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int32_t)(1 << 31);
+ }
+ if (val > (int32_t)mask(31)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return (int32_t)mask(31);
+ }
+ return (int32_t)val;
+ }
+ } else {
+ if (half) {
+ if (val < 0) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return 0;
+ }
+ if (val > mask(16)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return mask(16);
+ }
+ return (uint16_t)val;
+ } else {
+ if (val < 0) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return 0;
+ }
+ if (val > mask(32)) {
+ feraiseexcept(FeInvalid);
+ feclearexcept(FeInexact);
+ return mask(32);
+ }
+ return (uint32_t)val;
+ }
+ }
+}
+
+double
+vfpUFixedToFpD(FPSCR fpscr, uint32_t val, bool half, uint8_t imm)
+{
+ fesetround(FeRoundNearest);
+ if (half)
+ val = (uint16_t)val;
+ double scale = pow(2.0, imm);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ return fixDivDest(fpscr, val / scale, (double)val, scale);
+}
+
+double
+vfpSFixedToFpD(FPSCR fpscr, int32_t val, bool half, uint8_t imm)
+{
+ fesetround(FeRoundNearest);
+ if (half)
+ val = sext<16>(val & mask(16));
+ double scale = pow(2.0, imm);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ feclearexcept(FeAllExceptions);
+ __asm__ __volatile__("" : "=m" (scale) : "m" (scale));
+ return fixDivDest(fpscr, val / scale, (double)val, scale);
+}
+
+template <class fpType>
+fpType
+FpOp::binaryOp(FPSCR &fpscr, fpType op1, fpType op2,
+ fpType (*func)(fpType, fpType),
+ bool flush, uint32_t rMode) const
+{
+ const bool single = (sizeof(fpType) == sizeof(float));
+ fpType junk = 0.0;
+
+ if (flush && flushToZero(op1, op2))
+ fpscr.idc = 1;
+ VfpSavedState state = prepFpState(rMode);
+ __asm__ __volatile__ ("" : "=m" (op1), "=m" (op2), "=m" (state)
+ : "m" (op1), "m" (op2), "m" (state));
+ fpType dest = func(op1, op2);
+ __asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
+
+ int fpClass = std::fpclassify(dest);
+ // Get NAN behavior right. This varies between x86 and ARM.
+ if (fpClass == FP_NAN) {
+ const bool single = (sizeof(fpType) == sizeof(float));
+ const uint64_t qnan =
+ single ? 0x7fc00000 : ULL(0x7ff8000000000000);
+ const bool nan1 = std::isnan(op1);
+ const bool nan2 = std::isnan(op2);
+ const bool signal1 = nan1 && ((fpToBits(op1) & qnan) != qnan);
+ const bool signal2 = nan2 && ((fpToBits(op2) & qnan) != qnan);
+ if ((!nan1 && !nan2) || (fpscr.dn == 1)) {
+ dest = bitsToFp(qnan, junk);
+ } else if (signal1) {
+ dest = bitsToFp(fpToBits(op1) | qnan, junk);
+ } else if (signal2) {
+ dest = bitsToFp(fpToBits(op2) | qnan, junk);
+ } else if (nan1) {
+ dest = op1;
+ } else if (nan2) {
+ dest = op2;
+ }
+ } else if (flush && flushToZero(dest)) {
+ feraiseexcept(FeUnderflow);
+ } else if ((
+ (single && (dest == bitsToFp(0x00800000, junk) ||
+ dest == bitsToFp(0x80800000, junk))) ||
+ (!single &&
+ (dest == bitsToFp(ULL(0x0010000000000000), junk) ||
+ dest == bitsToFp(ULL(0x8010000000000000), junk)))
+ ) && rMode != VfpRoundZero) {
+ /*
+ * Correct for the fact that underflow is detected -before- rounding
+ * in ARM and -after- rounding in x86.
+ */
+ fesetround(FeRoundZero);
+ __asm__ __volatile__ ("" : "=m" (op1), "=m" (op2)
+ : "m" (op1), "m" (op2));
+ fpType temp = func(op1, op2);
+ __asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
+ if (flush && flushToZero(temp)) {
+ dest = temp;
+ }
+ }
+ finishVfp(fpscr, state);
+ return dest;
+}
+
+template
+float FpOp::binaryOp(FPSCR &fpscr, float op1, float op2,
+ float (*func)(float, float),
+ bool flush, uint32_t rMode) const;
+template
+double FpOp::binaryOp(FPSCR &fpscr, double op1, double op2,
+ double (*func)(double, double),
+ bool flush, uint32_t rMode) const;
+
+template <class fpType>
+fpType
+FpOp::unaryOp(FPSCR &fpscr, fpType op1, fpType (*func)(fpType),
+ bool flush, uint32_t rMode) const
+{
+ const bool single = (sizeof(fpType) == sizeof(float));
+ fpType junk = 0.0;
+
+ if (flush && flushToZero(op1))
+ fpscr.idc = 1;
+ VfpSavedState state = prepFpState(rMode);
+ __asm__ __volatile__ ("" : "=m" (op1), "=m" (state)
+ : "m" (op1), "m" (state));
+ fpType dest = func(op1);
+ __asm__ __volatile__ ("" : "=m" (dest) : "m" (dest));
+
+ int fpClass = std::fpclassify(dest);
+ // Get NAN behavior right. This varies between x86 and ARM.
+ if (fpClass == FP_NAN) {
+ const bool single = (sizeof(fpType) == sizeof(float));
+ const uint64_t qnan =
+ single ? 0x7fc00000 : ULL(0x7ff8000000000000);
+ const bool nan = std::isnan(op1);
+ if (!nan || fpscr.dn == 1) {
+ dest = bitsToFp(qnan, junk);
+ } else if (nan) {
+ dest = bitsToFp(fpToBits(op1) | qnan, junk);
+ }
+ } else if (flush && flushToZero(dest)) {
+ feraiseexcept(FeUnderflow);
+ } else if ((
+ (single && (dest == bitsToFp(0x00800000, junk) ||
+ dest == bitsToFp(0x80800000, junk))) ||
+ (!single &&
+ (dest == bitsToFp(ULL(0x0010000000000000), junk) ||
+ dest == bitsToFp(ULL(0x8010000000000000), junk)))
+ ) && rMode != VfpRoundZero) {
+ /*
+ * Correct for the fact that underflow is detected -before- rounding
+ * in ARM and -after- rounding in x86.
+ */
+ fesetround(FeRoundZero);
+ __asm__ __volatile__ ("" : "=m" (op1) : "m" (op1));
+ fpType temp = func(op1);
+ __asm__ __volatile__ ("" : "=m" (temp) : "m" (temp));
+ if (flush && flushToZero(temp)) {
+ dest = temp;
+ }
+ }
+ finishVfp(fpscr, state);
+ return dest;
+}
+
+template
+float FpOp::unaryOp(FPSCR &fpscr, float op1, float (*func)(float),
+ bool flush, uint32_t rMode) const;
+template
+double FpOp::unaryOp(FPSCR &fpscr, double op1, double (*func)(double),
+ bool flush, uint32_t rMode) const;
+
+IntRegIndex
+VfpMacroOp::addStride(IntRegIndex idx, unsigned stride)
+{
+ if (wide) {
+ stride *= 2;
+ }
+ unsigned offset = idx % 8;
+ idx = (IntRegIndex)(idx - offset);
+ offset += stride;
+ idx = (IntRegIndex)(idx + (offset % 8));
+ return idx;
+}
+
+void
+VfpMacroOp::nextIdxs(IntRegIndex &dest, IntRegIndex &op1, IntRegIndex &op2)
+{
+ unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
+ assert(!inScalarBank(dest));
+ dest = addStride(dest, stride);
+ op1 = addStride(op1, stride);
+ if (!inScalarBank(op2)) {
+ op2 = addStride(op2, stride);
+ }
+}
+
+void
+VfpMacroOp::nextIdxs(IntRegIndex &dest, IntRegIndex &op1)
+{
+ unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
+ assert(!inScalarBank(dest));
+ dest = addStride(dest, stride);
+ if (!inScalarBank(op1)) {
+ op1 = addStride(op1, stride);
+ }
+}
+
+void
+VfpMacroOp::nextIdxs(IntRegIndex &dest)
+{
+ unsigned stride = (machInst.fpscrStride == 0) ? 1 : 2;
+ assert(!inScalarBank(dest));
+ dest = addStride(dest, stride);
+}
+
+}