summaryrefslogtreecommitdiff
path: root/src/arch/x86/isa/formats
diff options
context:
space:
mode:
authorGabe Black <gblack@eecs.umich.edu>2007-04-04 14:31:59 +0000
committerGabe Black <gblack@eecs.umich.edu>2007-04-04 14:31:59 +0000
commit4285990a96bad869bc1046f28f99cf7f4b5c8de0 (patch)
tree80b92e77e93ef76d5b8a154ad71813727e6e2be9 /src/arch/x86/isa/formats
parent7f5409f2babd4fe26c364aedf7faf4cdcb0eb3f0 (diff)
downloadgem5-4285990a96bad869bc1046f28f99cf7f4b5c8de0.tar.xz
Reworking how x86's isa description works. I'm adopting the following definitions to make figuring out what's what a little easier:
MicroOp: A single operation actually implemented in hardware. MacroOp: A collection of microops which are executed as a unit. Instruction: An architected instruction which can be implemented with a macroop or a microop. --HG-- extra : convert_revision : 1cfc8409cc686c75220767839f55a30551aa6f13
Diffstat (limited to 'src/arch/x86/isa/formats')
-rw-r--r--src/arch/x86/isa/formats/multi.isa147
1 files changed, 11 insertions, 136 deletions
diff --git a/src/arch/x86/isa/formats/multi.isa b/src/arch/x86/isa/formats/multi.isa
index 9fceec2b0..7ad5ecd48 100644
--- a/src/arch/x86/isa/formats/multi.isa
+++ b/src/arch/x86/isa/formats/multi.isa
@@ -61,151 +61,26 @@
//
let {{
- # This builds either a regular or macro op to implement the sequence of
- # ops we give it.
- def genInst(name, Name, ops):
- # If we can implement this instruction with exactly one microop, just
- # use that directly.
- newStmnt = ''
- if len(ops) == 1:
- decode_block = "return (X86StaticInst *)(%s);" % \
- ops[0].getAllocator()
- return ('', '', decode_block, '')
- else:
- # Build a macroop to contain the sequence of microops we've
- # been given.
- return genMacroOp(name, Name, ops)
+ def doInst(name, Name, opTypeSet):
+ if not instDict.has_key(Name):
+ raise Exception, "Unrecognized instruction: %s" % Name
+ inst = instDict[Name]()
+ return inst.emit(opTypeSet)
}};
-let {{
- # This code builds up a decode block which decodes based on switchval.
- # vals is a dict which matches case values with what should be decoded to.
- # builder is called on the exploded contents of "vals" values to generate
- # whatever code should be used.
- def doMultiOp(name, Name, builder, switchVal, vals, default = None):
- header_output = ''
- decoder_output = ''
- decode_block = 'switch(%s) {\n' % switchVal
- exec_output = ''
- for (val, todo) in vals.items():
- (new_header_output,
- new_decoder_output,
- new_decode_block,
- new_exec_output) = builder(name, Name, *todo)
- header_output += new_header_output
- decoder_output += new_decoder_output
- decode_block += '\tcase %s: %s\n' % (val, new_decode_block)
- exec_output += new_exec_output
- if default:
- (new_header_output,
- new_decoder_output,
- new_decode_block,
- new_exec_output) = builder(name, Name, *default)
- header_output += new_header_output
- decoder_output += new_decoder_output
- decode_block += '\tdefault: %s\n' % new_decode_block
- exec_output += new_exec_output
- decode_block += '}\n'
- return (header_output, decoder_output, decode_block, exec_output)
-}};
-
-let {{
-
- # This function specializes the given piece of code to use a particular
- # set of argument types described by "opTags". These are "implemented"
- # in reverse order.
- def doCompOps(name, Name, code, opTags, postfix):
- opNum = len(opTags) - 1
- while len(opTags):
- # print "Building a composite op with tags", opTags
- # print "And code", code
- opNum = len(opTags) - 1
- # A regular expression to find the operand placeholders we're
- # interested in.
- opRe = re.compile("%%(?P<operandNum>%d)(?=[^0-9]|$)" % opNum)
- tag = opTags[opNum]
- # Build up a name for this instructions class using the argument
- # types. Each variation will get its own name this way.
- postfix = '_' + tag + postfix
- tagParser = re.compile(r"(?P<tagType>[A-Z][A-Z]*)(?P<tagSize>[a-z][a-z]*)|(r(?P<tagReg>[A-Za-z0-9][A-Za-z0-9]*))")
- tagMatch = tagParser.search(tag)
- if tagMatch == None:
- raise Exception, "Problem parsing operand tag %s" % tag
- reg = tagMatch.group("tagReg")
- tagType = tagMatch.group("tagType")
- tagSize = tagMatch.group("tagSize")
- if reg:
- #Figure out what to do with fixed register operands
- if reg in ("Ax", "Bx", "Cx", "Dx"):
- code = opRe.sub("{INTREG_R%s}" % reg.upper(), code)
- elif reg == "Al":
- # We need a way to specify register width
- code = opRe.sub("{INTREG_RAX}", code)
- else:
- print "Didn't know how to encode fixed register %s!" % reg
- elif tagType == None or tagSize == None:
- raise Exception, "Problem parsing operand tag: %s" % tag
- elif tagType == "C" or tagType == "D" or tagType == "G" or \
- tagType == "P" or tagType == "S" or \
- tagType == "T" or tagType == "V":
- # Use the "reg" field of the ModRM byte to select the register
- code = opRe.sub("{(uint8_t)MODRM_REG}", code)
- elif tagType == "E" or tagType == "Q" or tagType == "W":
- # This might refer to memory or to a register. We need to
- # divide it up farther.
- regCode = opRe.sub("{(uint8_t)MODRM_RM}", code)
- regTags = copy.copy(opTags)
- regTags.pop(-1)
- # This needs to refer to memory, but we'll fill in the details
- # later. It needs to take into account unaligned memory
- # addresses.
- memCode = opRe.sub("0", code)
- memTags = copy.copy(opTags)
- memTags.pop(-1)
- return doMultiOp(name, Name, doCompOps, "MODRM_MOD",
- {"3" : (regCode, regTags, postfix)},
- (memCode, memTags, postfix))
- elif tagType == "I" or tagType == "J":
- # Substitute in an immediate
- code = opRe.sub("{IMMEDIATE}", code)
- elif tagType == "M":
- # This needs to refer to memory, but we'll fill in the details
- # later. It needs to take into account unaligned memory
- # addresses.
- code = opRe.sub("0", code)
- elif tagType == "PR" or tagType == "R" or tagType == "VR":
- # There should probably be a check here to verify that mod
- # is equal to 11b
- code = opRe.sub("{(uint8_t)MODRM_RM}", code)
- else:
- raise Exception, "Unrecognized tag %s." % tag
- opTags.pop(-1)
-
- # At this point, we've built up "code" to have all the necessary extra
- # instructions needed to implement whatever types of operands were
- # specified. Now we'll assemble it it into a microOp sequence.
- ops = assembleMicro(code)
-
- # Build a macroop to contain the sequence of microops we've
- # constructed. The decode block will be used to fill in our
- # inner decode structure, and the rest will be concatenated and
- # passed back.
- return genInst(name, Name + postfix, ops)
-}};
-
-def format TaggedOp(code, tagSet) {{
+def format Inst(*opTypeSet) {{
(header_output,
decoder_output,
decode_block,
- exec_output) = doCompOps(name, Name, code, tagSet, '')
+ exec_output) = doInst(name, Name, list(opTypeSet))
}};
-def format MultiOp(code, switchVal, opTags, *opt_flags) {{
+def format MultiInst(switchVal, *opTypeSets) {{
switcher = {}
- for (count, tagSet) in zip(xrange(len(opTags) - 1), opTags):
- switcher[count] = (code, tagSet, '')
+ for (count, opTypeSet) in zip(xrange(len(opTypeSets)), opTypeSets):
+ switcher[count] = (opTypeSet,)
(header_output,
decoder_output,
decode_block,
- exec_output) = doMultiOp(name, Name, doCompOps, switchVal, switcher)
+ exec_output) = doSplitDecode(name, Name, doInst, switchVal, switcher)
}};