summaryrefslogtreecommitdiff
path: root/src/mem/cache/base.cc
diff options
context:
space:
mode:
authorNikos Nikoleris <nikos.nikoleris@arm.com>2018-02-02 17:34:40 +0000
committerNikos Nikoleris <nikos.nikoleris@arm.com>2018-05-31 15:12:04 +0000
commit41db9b95aa234094da62fdd3a863870b175d8f97 (patch)
tree433ad327b0e148bbacc65e1fcfdb87e41f1c4cb4 /src/mem/cache/base.cc
parentd5c4dd986a48f13cc774e487993634d8c2b68e10 (diff)
downloadgem5-41db9b95aa234094da62fdd3a863870b175d8f97.tar.xz
mem-cache: Adopt a more sensible cache class hierarchy
This patch changes what goes into the BaseCache and what goes into the Cache, to make it easier to add a NoncoherentCache with as much re-use as possible. A number of redundant members and definitions are also removed in the process. This is a modified version of a changeset put together by Andreas Hansson <andreas.hansson@arm.com> Change-Id: Ie9dd73c4ec07732e778e7416b712dad8b4bd5d4b Reviewed-on: https://gem5-review.googlesource.com/10431 Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br> Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Diffstat (limited to 'src/mem/cache/base.cc')
-rw-r--r--src/mem/cache/base.cc1543
1 files changed, 1532 insertions, 11 deletions
diff --git a/src/mem/cache/base.cc b/src/mem/cache/base.cc
index 8143acd67..d7d593ec0 100644
--- a/src/mem/cache/base.cc
+++ b/src/mem/cache/base.cc
@@ -1,5 +1,5 @@
/*
- * Copyright (c) 2012-2013 ARM Limited
+ * Copyright (c) 2012-2013, 2018 ARM Limited
* All rights reserved.
*
* The license below extends only to copyright in the software and shall
@@ -38,6 +38,7 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
+ * Nikos Nikoleris
*/
/**
@@ -47,12 +48,19 @@
#include "mem/cache/base.hh"
+#include "base/compiler.hh"
+#include "base/logging.hh"
#include "debug/Cache.hh"
-#include "debug/Drain.hh"
-#include "mem/cache/cache.hh"
+#include "debug/CachePort.hh"
+#include "debug/CacheVerbose.hh"
#include "mem/cache/mshr.hh"
-#include "mem/cache/tags/fa_lru.hh"
-#include "sim/full_system.hh"
+#include "mem/cache/prefetch/base.hh"
+#include "mem/cache/queue_entry.hh"
+#include "params/BaseCache.hh"
+#include "sim/core.hh"
+
+class BaseMasterPort;
+class BaseSlavePort;
using namespace std;
@@ -67,9 +75,18 @@ BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name,
BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
: MemObject(p),
- cpuSidePort(nullptr), memSidePort(nullptr),
+ cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"),
+ memSidePort(p->name + ".mem_side", this, "MemSidePort"),
mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below
writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below
+ tags(p->tags),
+ prefetcher(p->prefetcher),
+ prefetchOnAccess(p->prefetch_on_access),
+ writebackClean(p->writeback_clean),
+ tempBlockWriteback(nullptr),
+ writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); },
+ name(), false,
+ EventBase::Delayed_Writeback_Pri),
blkSize(blk_size),
lookupLatency(p->tag_latency),
dataLatency(p->data_latency),
@@ -78,6 +95,7 @@ BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
responseLatency(p->response_latency),
numTarget(p->tgts_per_mshr),
forwardSnoops(true),
+ clusivity(p->clusivity),
isReadOnly(p->is_read_only),
blocked(0),
order(0),
@@ -94,6 +112,19 @@ BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size)
// forward snoops is overridden in init() once we can query
// whether the connected master is actually snooping or not
+
+ tempBlock = new CacheBlk();
+ tempBlock->data = new uint8_t[blkSize];
+
+ tags->setCache(this);
+ if (prefetcher)
+ prefetcher->setCache(this);
+}
+
+BaseCache::~BaseCache()
+{
+ delete [] tempBlock->data;
+ delete tempBlock;
}
void
@@ -136,17 +167,17 @@ BaseCache::CacheSlavePort::processSendRetry()
void
BaseCache::init()
{
- if (!cpuSidePort->isConnected() || !memSidePort->isConnected())
+ if (!cpuSidePort.isConnected() || !memSidePort.isConnected())
fatal("Cache ports on %s are not connected\n", name());
- cpuSidePort->sendRangeChange();
- forwardSnoops = cpuSidePort->isSnooping();
+ cpuSidePort.sendRangeChange();
+ forwardSnoops = cpuSidePort.isSnooping();
}
BaseMasterPort &
BaseCache::getMasterPort(const std::string &if_name, PortID idx)
{
if (if_name == "mem_side") {
- return *memSidePort;
+ return memSidePort;
} else {
return MemObject::getMasterPort(if_name, idx);
}
@@ -156,7 +187,7 @@ BaseSlavePort &
BaseCache::getSlavePort(const std::string &if_name, PortID idx)
{
if (if_name == "cpu_side") {
- return *cpuSidePort;
+ return cpuSidePort;
} else {
return MemObject::getSlavePort(if_name, idx);
}
@@ -174,6 +205,1350 @@ BaseCache::inRange(Addr addr) const
}
void
+BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time)
+{
+ if (pkt->needsResponse()) {
+ pkt->makeTimingResponse();
+ // @todo: Make someone pay for this
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // In this case we are considering request_time that takes
+ // into account the delay of the xbar, if any, and just
+ // lat, neglecting responseLatency, modelling hit latency
+ // just as lookupLatency or or the value of lat overriden
+ // by access(), that calls accessBlock() function.
+ cpuSidePort.schedTimingResp(pkt, request_time, true);
+ } else {
+ DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__,
+ pkt->print());
+
+ // queue the packet for deletion, as the sending cache is
+ // still relying on it; if the block is found in access(),
+ // CleanEvict and Writeback messages will be deleted
+ // here as well
+ pendingDelete.reset(pkt);
+ }
+}
+
+void
+BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk,
+ Tick forward_time, Tick request_time)
+{
+ if (mshr) {
+ /// MSHR hit
+ /// @note writebacks will be checked in getNextMSHR()
+ /// for any conflicting requests to the same block
+
+ //@todo remove hw_pf here
+
+ // Coalesce unless it was a software prefetch (see above).
+ if (pkt) {
+ assert(!pkt->isWriteback());
+ // CleanEvicts corresponding to blocks which have
+ // outstanding requests in MSHRs are simply sunk here
+ if (pkt->cmd == MemCmd::CleanEvict) {
+ pendingDelete.reset(pkt);
+ } else if (pkt->cmd == MemCmd::WriteClean) {
+ // A WriteClean should never coalesce with any
+ // outstanding cache maintenance requests.
+
+ // We use forward_time here because there is an
+ // uncached memory write, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__,
+ pkt->print());
+
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // We use forward_time here because it is the same
+ // considering new targets. We have multiple
+ // requests for the same address here. It
+ // specifies the latency to allocate an internal
+ // buffer and to schedule an event to the queued
+ // port and also takes into account the additional
+ // delay of the xbar.
+ mshr->allocateTarget(pkt, forward_time, order++,
+ allocOnFill(pkt->cmd));
+ if (mshr->getNumTargets() == numTarget) {
+ noTargetMSHR = mshr;
+ setBlocked(Blocked_NoTargets);
+ // need to be careful with this... if this mshr isn't
+ // ready yet (i.e. time > curTick()), we don't want to
+ // move it ahead of mshrs that are ready
+ // mshrQueue.moveToFront(mshr);
+ }
+ }
+ }
+ } else {
+ // no MSHR
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) {
+ // We use forward_time here because there is an
+ // writeback or writeclean, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ if (blk && blk->isValid()) {
+ // If we have a write miss to a valid block, we
+ // need to mark the block non-readable. Otherwise
+ // if we allow reads while there's an outstanding
+ // write miss, the read could return stale data
+ // out of the cache block... a more aggressive
+ // system could detect the overlap (if any) and
+ // forward data out of the MSHRs, but we don't do
+ // that yet. Note that we do need to leave the
+ // block valid so that it stays in the cache, in
+ // case we get an upgrade response (and hence no
+ // new data) when the write miss completes.
+ // As long as CPUs do proper store/load forwarding
+ // internally, and have a sufficiently weak memory
+ // model, this is probably unnecessary, but at some
+ // point it must have seemed like we needed it...
+ assert((pkt->needsWritable() && !blk->isWritable()) ||
+ pkt->req->isCacheMaintenance());
+ blk->status &= ~BlkReadable;
+ }
+ // Here we are using forward_time, modelling the latency of
+ // a miss (outbound) just as forwardLatency, neglecting the
+ // lookupLatency component.
+ allocateMissBuffer(pkt, forward_time);
+ }
+ }
+}
+
+void
+BaseCache::recvTimingReq(PacketPtr pkt)
+{
+ // anything that is merely forwarded pays for the forward latency and
+ // the delay provided by the crossbar
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ // We use lookupLatency here because it is used to specify the latency
+ // to access.
+ Cycles lat = lookupLatency;
+ CacheBlk *blk = nullptr;
+ bool satisfied = false;
+ {
+ PacketList writebacks;
+ // Note that lat is passed by reference here. The function
+ // access() calls accessBlock() which can modify lat value.
+ satisfied = access(pkt, blk, lat, writebacks);
+
+ // copy writebacks to write buffer here to ensure they logically
+ // proceed anything happening below
+ doWritebacks(writebacks, forward_time);
+ }
+
+ // Here we charge the headerDelay that takes into account the latencies
+ // of the bus, if the packet comes from it.
+ // The latency charged it is just lat that is the value of lookupLatency
+ // modified by access() function, or if not just lookupLatency.
+ // In case of a hit we are neglecting response latency.
+ // In case of a miss we are neglecting forward latency.
+ Tick request_time = clockEdge(lat) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ // track time of availability of next prefetch, if any
+ Tick next_pf_time = MaxTick;
+
+ if (satisfied) {
+ // if need to notify the prefetcher we have to do it before
+ // anything else as later handleTimingReqHit might turn the
+ // packet in a response
+ if (prefetcher &&
+ (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
+ if (blk)
+ blk->status &= ~BlkHWPrefetched;
+
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch()) {
+ assert(!pkt->req->isCacheMaintenance());
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+
+ handleTimingReqHit(pkt, blk, request_time);
+ } else {
+ handleTimingReqMiss(pkt, blk, forward_time, request_time);
+
+ // We should call the prefetcher reguardless if the request is
+ // satisfied or not, reguardless if the request is in the MSHR
+ // or not. The request could be a ReadReq hit, but still not
+ // satisfied (potentially because of a prior write to the same
+ // cache line. So, even when not satisfied, there is an MSHR
+ // already allocated for this, we need to let the prefetcher
+ // know about the request
+
+ // Don't notify prefetcher on SWPrefetch or cache maintenance
+ // operations
+ if (prefetcher && pkt &&
+ !pkt->cmd.isSWPrefetch() &&
+ !pkt->req->isCacheMaintenance()) {
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+
+ if (next_pf_time != MaxTick) {
+ schedMemSideSendEvent(next_pf_time);
+ }
+}
+
+void
+BaseCache::handleUncacheableWriteResp(PacketPtr pkt)
+{
+ Tick completion_time = clockEdge(responseLatency) +
+ pkt->headerDelay + pkt->payloadDelay;
+
+ // Reset the bus additional time as it is now accounted for
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ cpuSidePort.schedTimingResp(pkt, completion_time, true);
+}
+
+void
+BaseCache::recvTimingResp(PacketPtr pkt)
+{
+ assert(pkt->isResponse());
+
+ // all header delay should be paid for by the crossbar, unless
+ // this is a prefetch response from above
+ panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
+ "%s saw a non-zero packet delay\n", name());
+
+ const bool is_error = pkt->isError();
+
+ if (is_error) {
+ DPRINTF(Cache, "%s: Cache received %s with error\n", __func__,
+ pkt->print());
+ }
+
+ DPRINTF(Cache, "%s: Handling response %s\n", __func__,
+ pkt->print());
+
+ // if this is a write, we should be looking at an uncacheable
+ // write
+ if (pkt->isWrite()) {
+ assert(pkt->req->isUncacheable());
+ handleUncacheableWriteResp(pkt);
+ return;
+ }
+
+ // we have dealt with any (uncacheable) writes above, from here on
+ // we know we are dealing with an MSHR due to a miss or a prefetch
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState());
+ assert(mshr);
+
+ if (mshr == noTargetMSHR) {
+ // we always clear at least one target
+ clearBlocked(Blocked_NoTargets);
+ noTargetMSHR = nullptr;
+ }
+
+ // Initial target is used just for stats
+ MSHR::Target *initial_tgt = mshr->getTarget();
+ int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
+ Tick miss_latency = curTick() - initial_tgt->recvTime;
+
+ if (pkt->req->isUncacheable()) {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ } else {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ }
+
+ PacketList writebacks;
+
+ bool is_fill = !mshr->isForward &&
+ (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
+
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+
+ if (is_fill && !is_error) {
+ DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
+ pkt->getAddr());
+
+ blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill());
+ assert(blk != nullptr);
+ }
+
+ if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) {
+ // The block was marked not readable while there was a pending
+ // cache maintenance operation, restore its flag.
+ blk->status |= BlkReadable;
+ }
+
+ if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) {
+ // If at this point the referenced block is writable and the
+ // response is not a cache invalidate, we promote targets that
+ // were deferred as we couldn't guarrantee a writable copy
+ mshr->promoteWritable();
+ }
+
+ serviceMSHRTargets(mshr, pkt, blk, writebacks);
+
+ if (mshr->promoteDeferredTargets()) {
+ // avoid later read getting stale data while write miss is
+ // outstanding.. see comment in timingAccess()
+ if (blk) {
+ blk->status &= ~BlkReadable;
+ }
+ mshrQueue.markPending(mshr);
+ schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
+ } else {
+ // while we deallocate an mshr from the queue we still have to
+ // check the isFull condition before and after as we might
+ // have been using the reserved entries already
+ const bool was_full = mshrQueue.isFull();
+ mshrQueue.deallocate(mshr);
+ if (was_full && !mshrQueue.isFull()) {
+ clearBlocked(Blocked_NoMSHRs);
+ }
+
+ // Request the bus for a prefetch if this deallocation freed enough
+ // MSHRs for a prefetch to take place
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
+ clockEdge());
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+ }
+ }
+
+ // if we used temp block, check to see if its valid and then clear it out
+ if (blk == tempBlock && tempBlock->isValid()) {
+ evictBlock(blk, writebacks);
+ }
+
+ const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // copy writebacks to write buffer
+ doWritebacks(writebacks, forward_time);
+
+ DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print());
+ delete pkt;
+}
+
+
+Tick
+BaseCache::recvAtomic(PacketPtr pkt)
+{
+ // We are in atomic mode so we pay just for lookupLatency here.
+ Cycles lat = lookupLatency;
+
+ // follow the same flow as in recvTimingReq, and check if a cache
+ // above us is responding
+ if (pkt->cacheResponding() && !pkt->isClean()) {
+ assert(!pkt->req->isCacheInvalidate());
+ DPRINTF(Cache, "Cache above responding to %s: not responding\n",
+ pkt->print());
+
+ // if a cache is responding, and it had the line in Owned
+ // rather than Modified state, we need to invalidate any
+ // copies that are not on the same path to memory
+ assert(pkt->needsWritable() && !pkt->responderHadWritable());
+ lat += ticksToCycles(memSidePort.sendAtomic(pkt));
+
+ return lat * clockPeriod();
+ }
+
+ // should assert here that there are no outstanding MSHRs or
+ // writebacks... that would mean that someone used an atomic
+ // access in timing mode
+
+ CacheBlk *blk = nullptr;
+ PacketList writebacks;
+ bool satisfied = access(pkt, blk, lat, writebacks);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty
+ // block. If a dirty block is encountered a WriteClean
+ // will update any copies to the path to the memory
+ // until the point of reference.
+ DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+ __func__, pkt->print(), blk->print());
+ PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id);
+ writebacks.push_back(wb_pkt);
+ pkt->setSatisfied();
+ }
+
+ // handle writebacks resulting from the access here to ensure they
+ // logically proceed anything happening below
+ doWritebacksAtomic(writebacks);
+ assert(writebacks.empty());
+
+ if (!satisfied) {
+ lat += handleAtomicReqMiss(pkt, blk, writebacks);
+ }
+
+ // Note that we don't invoke the prefetcher at all in atomic mode.
+ // It's not clear how to do it properly, particularly for
+ // prefetchers that aggressively generate prefetch candidates and
+ // rely on bandwidth contention to throttle them; these will tend
+ // to pollute the cache in atomic mode since there is no bandwidth
+ // contention. If we ever do want to enable prefetching in atomic
+ // mode, though, this is the place to do it... see timingAccess()
+ // for an example (though we'd want to issue the prefetch(es)
+ // immediately rather than calling requestMemSideBus() as we do
+ // there).
+
+ // do any writebacks resulting from the response handling
+ doWritebacksAtomic(writebacks);
+
+ // if we used temp block, check to see if its valid and if so
+ // clear it out, but only do so after the call to recvAtomic is
+ // finished so that any downstream observers (such as a snoop
+ // filter), first see the fill, and only then see the eviction
+ if (blk == tempBlock && tempBlock->isValid()) {
+ // the atomic CPU calls recvAtomic for fetch and load/store
+ // sequentuially, and we may already have a tempBlock
+ // writeback from the fetch that we have not yet sent
+ if (tempBlockWriteback) {
+ // if that is the case, write the prevoius one back, and
+ // do not schedule any new event
+ writebackTempBlockAtomic();
+ } else {
+ // the writeback/clean eviction happens after the call to
+ // recvAtomic has finished (but before any successive
+ // calls), so that the response handling from the fill is
+ // allowed to happen first
+ schedule(writebackTempBlockAtomicEvent, curTick());
+ }
+
+ tempBlockWriteback = evictBlock(blk);
+ }
+
+ if (pkt->needsResponse()) {
+ pkt->makeAtomicResponse();
+ }
+
+ return lat * clockPeriod();
+}
+
+void
+BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side)
+{
+ if (system->bypassCaches()) {
+ // Packets from the memory side are snoop request and
+ // shouldn't happen in bypass mode.
+ assert(from_cpu_side);
+
+ // The cache should be flushed if we are in cache bypass mode,
+ // so we don't need to check if we need to update anything.
+ memSidePort.sendFunctional(pkt);
+ return;
+ }
+
+ Addr blk_addr = pkt->getBlockAddr(blkSize);
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ pkt->pushLabel(name());
+
+ CacheBlkPrintWrapper cbpw(blk);
+
+ // Note that just because an L2/L3 has valid data doesn't mean an
+ // L1 doesn't have a more up-to-date modified copy that still
+ // needs to be found. As a result we always update the request if
+ // we have it, but only declare it satisfied if we are the owner.
+
+ // see if we have data at all (owned or otherwise)
+ bool have_data = blk && blk->isValid()
+ && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
+ blk->data);
+
+ // data we have is dirty if marked as such or if we have an
+ // in-service MSHR that is pending a modified line
+ bool have_dirty =
+ have_data && (blk->isDirty() ||
+ (mshr && mshr->inService && mshr->isPendingModified()));
+
+ bool done = have_dirty ||
+ cpuSidePort.checkFunctional(pkt) ||
+ mshrQueue.checkFunctional(pkt, blk_addr) ||
+ writeBuffer.checkFunctional(pkt, blk_addr) ||
+ memSidePort.checkFunctional(pkt);
+
+ DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(),
+ (blk && blk->isValid()) ? "valid " : "",
+ have_data ? "data " : "", done ? "done " : "");
+
+ // We're leaving the cache, so pop cache->name() label
+ pkt->popLabel();
+
+ if (done) {
+ pkt->makeResponse();
+ } else {
+ // if it came as a request from the CPU side then make sure it
+ // continues towards the memory side
+ if (from_cpu_side) {
+ memSidePort.sendFunctional(pkt);
+ } else if (cpuSidePort.isSnooping()) {
+ // if it came from the memory side, it must be a snoop request
+ // and we should only forward it if we are forwarding snoops
+ cpuSidePort.sendFunctionalSnoop(pkt);
+ }
+ }
+}
+
+
+void
+BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
+{
+ assert(pkt->isRequest());
+
+ uint64_t overwrite_val;
+ bool overwrite_mem;
+ uint64_t condition_val64;
+ uint32_t condition_val32;
+
+ int offset = pkt->getOffset(blkSize);
+ uint8_t *blk_data = blk->data + offset;
+
+ assert(sizeof(uint64_t) >= pkt->getSize());
+
+ overwrite_mem = true;
+ // keep a copy of our possible write value, and copy what is at the
+ // memory address into the packet
+ pkt->writeData((uint8_t *)&overwrite_val);
+ pkt->setData(blk_data);
+
+ if (pkt->req->isCondSwap()) {
+ if (pkt->getSize() == sizeof(uint64_t)) {
+ condition_val64 = pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val64, blk_data,
+ sizeof(uint64_t));
+ } else if (pkt->getSize() == sizeof(uint32_t)) {
+ condition_val32 = (uint32_t)pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val32, blk_data,
+ sizeof(uint32_t));
+ } else
+ panic("Invalid size for conditional read/write\n");
+ }
+
+ if (overwrite_mem) {
+ std::memcpy(blk_data, &overwrite_val, pkt->getSize());
+ blk->status |= BlkDirty;
+ }
+}
+
+QueueEntry*
+BaseCache::getNextQueueEntry()
+{
+ // Check both MSHR queue and write buffer for potential requests,
+ // note that null does not mean there is no request, it could
+ // simply be that it is not ready
+ MSHR *miss_mshr = mshrQueue.getNext();
+ WriteQueueEntry *wq_entry = writeBuffer.getNext();
+
+ // If we got a write buffer request ready, first priority is a
+ // full write buffer, otherwise we favour the miss requests
+ if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) {
+ // need to search MSHR queue for conflicting earlier miss.
+ MSHR *conflict_mshr =
+ mshrQueue.findPending(wq_entry->blkAddr,
+ wq_entry->isSecure);
+
+ if (conflict_mshr && conflict_mshr->order < wq_entry->order) {
+ // Service misses in order until conflict is cleared.
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue write
+ return wq_entry;
+ } else if (miss_mshr) {
+ // need to check for conflicting earlier writeback
+ WriteQueueEntry *conflict_mshr =
+ writeBuffer.findPending(miss_mshr->blkAddr,
+ miss_mshr->isSecure);
+ if (conflict_mshr) {
+ // not sure why we don't check order here... it was in the
+ // original code but commented out.
+
+ // The only way this happens is if we are
+ // doing a write and we didn't have permissions
+ // then subsequently saw a writeback (owned got evicted)
+ // We need to make sure to perform the writeback first
+ // To preserve the dirty data, then we can issue the write
+
+ // should we return wq_entry here instead? I.e. do we
+ // have to flush writes in order? I don't think so... not
+ // for Alpha anyway. Maybe for x86?
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue read
+ return miss_mshr;
+ }
+
+ // fall through... no pending requests. Try a prefetch.
+ assert(!miss_mshr && !wq_entry);
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ // If we have a miss queue slot, we can try a prefetch
+ PacketPtr pkt = prefetcher->getPacket();
+ if (pkt) {
+ Addr pf_addr = pkt->getBlockAddr(blkSize);
+ if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
+ !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
+ !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
+ // Update statistic on number of prefetches issued
+ // (hwpf_mshr_misses)
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // allocate an MSHR and return it, note
+ // that we send the packet straight away, so do not
+ // schedule the send
+ return allocateMissBuffer(pkt, curTick(), false);
+ } else {
+ // free the request and packet
+ delete pkt->req;
+ delete pkt;
+ }
+ }
+ }
+
+ return nullptr;
+}
+
+void
+BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool)
+{
+ assert(pkt->isRequest());
+
+ assert(blk && blk->isValid());
+ // Occasionally this is not true... if we are a lower-level cache
+ // satisfying a string of Read and ReadEx requests from
+ // upper-level caches, a Read will mark the block as shared but we
+ // can satisfy a following ReadEx anyway since we can rely on the
+ // Read requester(s) to have buffered the ReadEx snoop and to
+ // invalidate their blocks after receiving them.
+ // assert(!pkt->needsWritable() || blk->isWritable());
+ assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
+
+ // Check RMW operations first since both isRead() and
+ // isWrite() will be true for them
+ if (pkt->cmd == MemCmd::SwapReq) {
+ cmpAndSwap(blk, pkt);
+ } else if (pkt->isWrite()) {
+ // we have the block in a writable state and can go ahead,
+ // note that the line may be also be considered writable in
+ // downstream caches along the path to memory, but always
+ // Exclusive, and never Modified
+ assert(blk->isWritable());
+ // Write or WriteLine at the first cache with block in writable state
+ if (blk->checkWrite(pkt)) {
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // Always mark the line as dirty (and thus transition to the
+ // Modified state) even if we are a failed StoreCond so we
+ // supply data to any snoops that have appended themselves to
+ // this cache before knowing the store will fail.
+ blk->status |= BlkDirty;
+ DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print());
+ } else if (pkt->isRead()) {
+ if (pkt->isLLSC()) {
+ blk->trackLoadLocked(pkt);
+ }
+
+ // all read responses have a data payload
+ assert(pkt->hasRespData());
+ pkt->setDataFromBlock(blk->data, blkSize);
+ } else if (pkt->isUpgrade()) {
+ // sanity check
+ assert(!pkt->hasSharers());
+
+ if (blk->isDirty()) {
+ // we were in the Owned state, and a cache above us that
+ // has the line in Shared state needs to be made aware
+ // that the data it already has is in fact dirty
+ pkt->setCacheResponding();
+ blk->status &= ~BlkDirty;
+ }
+ } else {
+ assert(pkt->isInvalidate());
+ invalidateBlock(blk);
+ DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__,
+ pkt->print());
+ }
+}
+
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
+
+bool
+BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks)
+{
+ // sanity check
+ assert(pkt->isRequest());
+
+ chatty_assert(!(isReadOnly && pkt->isWrite()),
+ "Should never see a write in a read-only cache %s\n",
+ name());
+
+ // Here lat is the value passed as parameter to accessBlock() function
+ // that can modify its value.
+ blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat);
+
+ DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(),
+ blk ? "hit " + blk->print() : "miss");
+
+ if (pkt->req->isCacheMaintenance()) {
+ // A cache maintenance operation is always forwarded to the
+ // memory below even if the block is found in dirty state.
+
+ // We defer any changes to the state of the block until we
+ // create and mark as in service the mshr for the downstream
+ // packet.
+ return false;
+ }
+
+ if (pkt->isEviction()) {
+ // We check for presence of block in above caches before issuing
+ // Writeback or CleanEvict to write buffer. Therefore the only
+ // possible cases can be of a CleanEvict packet coming from above
+ // encountering a Writeback generated in this cache peer cache and
+ // waiting in the write buffer. Cases of upper level peer caches
+ // generating CleanEvict and Writeback or simply CleanEvict and
+ // CleanEvict almost simultaneously will be caught by snoops sent out
+ // by crossbar.
+ WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(),
+ pkt->isSecure());
+ if (wb_entry) {
+ assert(wb_entry->getNumTargets() == 1);
+ PacketPtr wbPkt = wb_entry->getTarget()->pkt;
+ assert(wbPkt->isWriteback());
+
+ if (pkt->isCleanEviction()) {
+ // The CleanEvict and WritebackClean snoops into other
+ // peer caches of the same level while traversing the
+ // crossbar. If a copy of the block is found, the
+ // packet is deleted in the crossbar. Hence, none of
+ // the other upper level caches connected to this
+ // cache have the block, so we can clear the
+ // BLOCK_CACHED flag in the Writeback if set and
+ // discard the CleanEvict by returning true.
+ wbPkt->clearBlockCached();
+ return true;
+ } else {
+ assert(pkt->cmd == MemCmd::WritebackDirty);
+ // Dirty writeback from above trumps our clean
+ // writeback... discard here
+ // Note: markInService will remove entry from writeback buffer.
+ markInService(wb_entry);
+ delete wbPkt;
+ }
+ }
+ }
+
+ // Writeback handling is special case. We can write the block into
+ // the cache without having a writeable copy (or any copy at all).
+ if (pkt->isWriteback()) {
+ assert(blkSize == pkt->getSize());
+
+ // we could get a clean writeback while we are having
+ // outstanding accesses to a block, do the simple thing for
+ // now and drop the clean writeback so that we do not upset
+ // any ordering/decisions about ownership already taken
+ if (pkt->cmd == MemCmd::WritebackClean &&
+ mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) {
+ DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, "
+ "dropping\n", pkt->getAddr());
+ return true;
+ }
+
+ if (!blk) {
+ // need to do a replacement
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
+ if (!blk) {
+ // no replaceable block available: give up, fwd to next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status |= (BlkValid | BlkReadable);
+ }
+ // only mark the block dirty if we got a writeback command,
+ // and leave it as is for a clean writeback
+ if (pkt->cmd == MemCmd::WritebackDirty) {
+ // TODO: the coherent cache can assert(!blk->isDirty());
+ blk->status |= BlkDirty;
+ }
+ // if the packet does not have sharers, it is passing
+ // writable, and we got the writeback in Modified or Exclusive
+ // state, if not we are in the Owned or Shared state
+ if (!pkt->hasSharers()) {
+ blk->status |= BlkWritable;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ pkt->writeDataToBlock(blk->data, blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+ incHitCount(pkt);
+ // populate the time when the block will be ready to access.
+ blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
+ pkt->payloadDelay;
+ return true;
+ } else if (pkt->cmd == MemCmd::CleanEvict) {
+ if (blk) {
+ // Found the block in the tags, need to stop CleanEvict from
+ // propagating further down the hierarchy. Returning true will
+ // treat the CleanEvict like a satisfied write request and delete
+ // it.
+ return true;
+ }
+ // We didn't find the block here, propagate the CleanEvict further
+ // down the memory hierarchy. Returning false will treat the CleanEvict
+ // like a Writeback which could not find a replaceable block so has to
+ // go to next level.
+ return false;
+ } else if (pkt->cmd == MemCmd::WriteClean) {
+ // WriteClean handling is a special case. We can allocate a
+ // block directly if it doesn't exist and we can update the
+ // block immediately. The WriteClean transfers the ownership
+ // of the block as well.
+ assert(blkSize == pkt->getSize());
+
+ if (!blk) {
+ if (pkt->writeThrough()) {
+ // if this is a write through packet, we don't try to
+ // allocate if the block is not present
+ return false;
+ } else {
+ // a writeback that misses needs to allocate a new block
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(),
+ writebacks);
+ if (!blk) {
+ // no replaceable block available: give up, fwd to
+ // next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status |= (BlkValid | BlkReadable);
+ }
+ }
+
+ // at this point either this is a writeback or a write-through
+ // write clean operation and the block is already in this
+ // cache, we need to update the data and the block flags
+ assert(blk);
+ // TODO: the coherent cache can assert(!blk->isDirty());
+ if (!pkt->writeThrough()) {
+ blk->status |= BlkDirty;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ pkt->writeDataToBlock(blk->data, blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+
+ incHitCount(pkt);
+ // populate the time when the block will be ready to access.
+ blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay +
+ pkt->payloadDelay;
+ // if this a write-through packet it will be sent to cache
+ // below
+ return !pkt->writeThrough();
+ } else if (blk && (pkt->needsWritable() ? blk->isWritable() :
+ blk->isReadable())) {
+ // OK to satisfy access
+ incHitCount(pkt);
+ satisfyRequest(pkt, blk);
+ maintainClusivity(pkt->fromCache(), blk);
+
+ return true;
+ }
+
+ // Can't satisfy access normally... either no block (blk == nullptr)
+ // or have block but need writable
+
+ incMissCount(pkt);
+
+ if (!blk && pkt->isLLSC() && pkt->isWrite()) {
+ // complete miss on store conditional... just give up now
+ pkt->req->setExtraData(0);
+ return true;
+ }
+
+ return false;
+}
+
+void
+BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk)
+{
+ if (from_cache && blk && blk->isValid() && !blk->isDirty() &&
+ clusivity == Enums::mostly_excl) {
+ // if we have responded to a cache, and our block is still
+ // valid, but not dirty, and this cache is mostly exclusive
+ // with respect to the cache above, drop the block
+ invalidateBlock(blk);
+ }
+}
+
+CacheBlk*
+BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks,
+ bool allocate)
+{
+ assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
+ Addr addr = pkt->getAddr();
+ bool is_secure = pkt->isSecure();
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ // When handling a fill, we should have no writes to this line.
+ assert(addr == pkt->getBlockAddr(blkSize));
+ assert(!writeBuffer.findMatch(addr, is_secure));
+
+ if (!blk) {
+ // better have read new data...
+ assert(pkt->hasData());
+
+ // only read responses and write-line requests have data;
+ // note that we don't write the data here for write-line - that
+ // happens in the subsequent call to satisfyRequest
+ assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
+
+ // need to do a replacement if allocating, otherwise we stick
+ // with the temporary storage
+ blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr;
+
+ if (!blk) {
+ // No replaceable block or a mostly exclusive
+ // cache... just use temporary storage to complete the
+ // current request and then get rid of it
+ assert(!tempBlock->isValid());
+ blk = tempBlock;
+ tempBlock->set = tags->extractSet(addr);
+ tempBlock->tag = tags->extractTag(addr);
+ DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
+ is_secure ? "s" : "ns");
+ } else {
+ tags->insertBlock(pkt, blk);
+ }
+
+ // we should never be overwriting a valid block
+ assert(!blk->isValid());
+ } else {
+ // existing block... probably an upgrade
+ assert(blk->tag == tags->extractTag(addr));
+ // either we're getting new data or the block should already be valid
+ assert(pkt->hasData() || blk->isValid());
+ // don't clear block status... if block is already dirty we
+ // don't want to lose that
+ }
+
+ if (is_secure)
+ blk->status |= BlkSecure;
+ blk->status |= BlkValid | BlkReadable;
+
+ // sanity check for whole-line writes, which should always be
+ // marked as writable as part of the fill, and then later marked
+ // dirty as part of satisfyRequest
+ if (pkt->cmd == MemCmd::WriteLineReq) {
+ assert(!pkt->hasSharers());
+ }
+
+ // here we deal with setting the appropriate state of the line,
+ // and we start by looking at the hasSharers flag, and ignore the
+ // cacheResponding flag (normally signalling dirty data) if the
+ // packet has sharers, thus the line is never allocated as Owned
+ // (dirty but not writable), and always ends up being either
+ // Shared, Exclusive or Modified, see Packet::setCacheResponding
+ // for more details
+ if (!pkt->hasSharers()) {
+ // we could get a writable line from memory (rather than a
+ // cache) even in a read-only cache, note that we set this bit
+ // even for a read-only cache, possibly revisit this decision
+ blk->status |= BlkWritable;
+
+ // check if we got this via cache-to-cache transfer (i.e., from a
+ // cache that had the block in Modified or Owned state)
+ if (pkt->cacheResponding()) {
+ // we got the block in Modified state, and invalidated the
+ // owners copy
+ blk->status |= BlkDirty;
+
+ chatty_assert(!isReadOnly, "Should never see dirty snoop response "
+ "in read-only cache %s\n", name());
+ }
+ }
+
+ DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
+ addr, is_secure ? "s" : "ns", old_state, blk->print());
+
+ // if we got new data, copy it in (checking for a read response
+ // and a response that has data is the same in the end)
+ if (pkt->isRead()) {
+ // sanity checks
+ assert(pkt->hasData());
+ assert(pkt->getSize() == blkSize);
+
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // We pay for fillLatency here.
+ blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
+ pkt->payloadDelay;
+
+ return blk;
+}
+
+CacheBlk*
+BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
+{
+ // Find replacement victim
+ CacheBlk *blk = tags->findVictim(addr);
+
+ // It is valid to return nullptr if there is no victim
+ if (!blk)
+ return nullptr;
+
+ if (blk->isValid()) {
+ Addr repl_addr = tags->regenerateBlkAddr(blk);
+ MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
+ if (repl_mshr) {
+ // must be an outstanding upgrade or clean request
+ // on a block we're about to replace...
+ assert((!blk->isWritable() && repl_mshr->needsWritable()) ||
+ repl_mshr->isCleaning());
+ // too hard to replace block with transient state
+ // allocation failed, block not inserted
+ return nullptr;
+ } else {
+ DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx "
+ "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns",
+ addr, is_secure ? "s" : "ns",
+ blk->isDirty() ? "writeback" : "clean");
+
+ if (blk->wasPrefetched()) {
+ unusedPrefetches++;
+ }
+ evictBlock(blk, writebacks);
+ replacements++;
+ }
+ }
+
+ return blk;
+}
+
+void
+BaseCache::invalidateBlock(CacheBlk *blk)
+{
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+}
+
+PacketPtr
+BaseCache::writebackBlk(CacheBlk *blk)
+{
+ chatty_assert(!isReadOnly || writebackClean,
+ "Writeback from read-only cache");
+ assert(blk && blk->isValid() && (blk->isDirty() || writebackClean));
+
+ writebacks[Request::wbMasterId]++;
+
+ Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ req->setFlags(Request::SECURE);
+
+ req->taskId(blk->task_id);
+
+ PacketPtr pkt =
+ new Packet(req, blk->isDirty() ?
+ MemCmd::WritebackDirty : MemCmd::WritebackClean);
+
+ DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n",
+ pkt->print(), blk->isWritable(), blk->isDirty());
+
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the Owned state, tell the receiver
+ pkt->setHasSharers();
+ }
+
+ // make sure the block is not marked dirty
+ blk->status &= ~BlkDirty;
+
+ pkt->allocate();
+ pkt->setDataFromBlock(blk->data, blkSize);
+
+ return pkt;
+}
+
+PacketPtr
+BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id)
+{
+ Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure()) {
+ req->setFlags(Request::SECURE);
+ }
+ req->taskId(blk->task_id);
+
+ PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id);
+
+ if (dest) {
+ req->setFlags(dest);
+ pkt->setWriteThrough();
+ }
+
+ DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(),
+ blk->isWritable(), blk->isDirty());
+
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the Owned state, tell the receiver
+ pkt->setHasSharers();
+ }
+
+ // make sure the block is not marked dirty
+ blk->status &= ~BlkDirty;
+
+ pkt->allocate();
+ pkt->setDataFromBlock(blk->data, blkSize);
+
+ return pkt;
+}
+
+
+void
+BaseCache::memWriteback()
+{
+ CacheBlkVisitorWrapper visitor(*this, &BaseCache::writebackVisitor);
+ tags->forEachBlk(visitor);
+}
+
+void
+BaseCache::memInvalidate()
+{
+ CacheBlkVisitorWrapper visitor(*this, &BaseCache::invalidateVisitor);
+ tags->forEachBlk(visitor);
+}
+
+bool
+BaseCache::isDirty() const
+{
+ CacheBlkIsDirtyVisitor visitor;
+ tags->forEachBlk(visitor);
+
+ return visitor.isDirty();
+}
+
+bool
+BaseCache::writebackVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty()) {
+ assert(blk.isValid());
+
+ Request request(tags->regenerateBlkAddr(&blk),
+ blkSize, 0, Request::funcMasterId);
+ request.taskId(blk.task_id);
+ if (blk.isSecure()) {
+ request.setFlags(Request::SECURE);
+ }
+
+ Packet packet(&request, MemCmd::WriteReq);
+ packet.dataStatic(blk.data);
+
+ memSidePort.sendFunctional(&packet);
+
+ blk.status &= ~BlkDirty;
+ }
+
+ return true;
+}
+
+bool
+BaseCache::invalidateVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty())
+ warn_once("Invalidating dirty cache lines. " \
+ "Expect things to break.\n");
+
+ if (blk.isValid()) {
+ assert(!blk.isDirty());
+ invalidateBlock(&blk);
+ }
+
+ return true;
+}
+
+Tick
+BaseCache::nextQueueReadyTime() const
+{
+ Tick nextReady = std::min(mshrQueue.nextReadyTime(),
+ writeBuffer.nextReadyTime());
+
+ // Don't signal prefetch ready time if no MSHRs available
+ // Will signal once enoguh MSHRs are deallocated
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ nextReady = std::min(nextReady,
+ prefetcher->nextPrefetchReadyTime());
+ }
+
+ return nextReady;
+}
+
+
+bool
+BaseCache::sendMSHRQueuePacket(MSHR* mshr)
+{
+ assert(mshr);
+
+ // use request from 1st target
+ PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+
+ DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print());
+
+ CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
+
+ // either a prefetch that is not present upstream, or a normal
+ // MSHR request, proceed to get the packet to send downstream
+ PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable());
+
+ mshr->isForward = (pkt == nullptr);
+
+ if (mshr->isForward) {
+ // not a cache block request, but a response is expected
+ // make copy of current packet to forward, keep current
+ // copy for response handling
+ pkt = new Packet(tgt_pkt, false, true);
+ assert(!pkt->isWrite());
+ }
+
+ // play it safe and append (rather than set) the sender state,
+ // as forwarded packets may already have existing state
+ pkt->pushSenderState(mshr);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty block. Mark
+ // the packet so that the destination xbar can determine that
+ // there will be a follow-up write packet as well.
+ pkt->setSatisfied();
+ }
+
+ if (!memSidePort.sendTimingReq(pkt)) {
+ // we are awaiting a retry, but we
+ // delete the packet and will be creating a new packet
+ // when we get the opportunity
+ delete pkt;
+
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ return true;
+ } else {
+ // As part of the call to sendTimingReq the packet is
+ // forwarded to all neighbouring caches (and any caches
+ // above them) as a snoop. Thus at this point we know if
+ // any of the neighbouring caches are responding, and if
+ // so, we know it is dirty, and we can determine if it is
+ // being passed as Modified, making our MSHR the ordering
+ // point
+ bool pending_modified_resp = !pkt->hasSharers() &&
+ pkt->cacheResponding();
+ markInService(mshr, pending_modified_resp);
+
+ if (pkt->isClean() && blk && blk->isDirty()) {
+ // A cache clean opearation is looking for a dirty
+ // block. If a dirty block is encountered a WriteClean
+ // will update any copies to the path to the memory
+ // until the point of reference.
+ DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n",
+ __func__, pkt->print(), blk->print());
+ PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(),
+ pkt->id);
+ PacketList writebacks;
+ writebacks.push_back(wb_pkt);
+ doWritebacks(writebacks, 0);
+ }
+
+ return false;
+ }
+}
+
+bool
+BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry)
+{
+ assert(wq_entry);
+
+ // always a single target for write queue entries
+ PacketPtr tgt_pkt = wq_entry->getTarget()->pkt;
+
+ DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print());
+
+ // forward as is, both for evictions and uncacheable writes
+ if (!memSidePort.sendTimingReq(tgt_pkt)) {
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ return true;
+ } else {
+ markInService(wq_entry);
+ return false;
+ }
+}
+
+void
+BaseCache::serialize(CheckpointOut &cp) const
+{
+ bool dirty(isDirty());
+
+ if (dirty) {
+ warn("*** The cache still contains dirty data. ***\n");
+ warn(" Make sure to drain the system using the correct flags.\n");
+ warn(" This checkpoint will not restore correctly " \
+ "and dirty data in the cache will be lost!\n");
+ }
+
+ // Since we don't checkpoint the data in the cache, any dirty data
+ // will be lost when restoring from a checkpoint of a system that
+ // wasn't drained properly. Flag the checkpoint as invalid if the
+ // cache contains dirty data.
+ bool bad_checkpoint(dirty);
+ SERIALIZE_SCALAR(bad_checkpoint);
+}
+
+void
+BaseCache::unserialize(CheckpointIn &cp)
+{
+ bool bad_checkpoint;
+ UNSERIALIZE_SCALAR(bad_checkpoint);
+ if (bad_checkpoint) {
+ fatal("Restoring from checkpoints with dirty caches is not "
+ "supported in the classic memory system. Please remove any "
+ "caches or drain them properly before taking checkpoints.\n");
+ }
+}
+
+void
BaseCache::regStats()
{
MemObject::regStats();
@@ -763,3 +2138,149 @@ BaseCache::regStats()
.desc("number of replacements")
;
}
+
+///////////////
+//
+// CpuSidePort
+//
+///////////////
+bool
+BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
+{
+ // Express snoop responses from master to slave, e.g., from L1 to L2
+ cache->recvTimingSnoopResp(pkt);
+ return true;
+}
+
+
+bool
+BaseCache::CpuSidePort::tryTiming(PacketPtr pkt)
+{
+ if (pkt->isExpressSnoop()) {
+ // always let express snoop packets through even if blocked
+ return true;
+ } else if (blocked || mustSendRetry) {
+ // either already committed to send a retry, or blocked
+ mustSendRetry = true;
+ return false;
+ }
+ mustSendRetry = false;
+ return true;
+}
+
+bool
+BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt)
+{
+ if (tryTiming(pkt)) {
+ cache->recvTimingReq(pkt);
+ return true;
+ }
+ return false;
+}
+
+Tick
+BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt)
+{
+ return cache->recvAtomic(pkt);
+}
+
+void
+BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt)
+{
+ // functional request
+ cache->functionalAccess(pkt, true);
+}
+
+AddrRangeList
+BaseCache::CpuSidePort::getAddrRanges() const
+{
+ return cache->getAddrRanges();
+}
+
+
+BaseCache::
+CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache,
+ const std::string &_label)
+ : CacheSlavePort(_name, _cache, _label), cache(_cache)
+{
+}
+
+///////////////
+//
+// MemSidePort
+//
+///////////////
+bool
+BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt)
+{
+ cache->recvTimingResp(pkt);
+ return true;
+}
+
+// Express snooping requests to memside port
+void
+BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
+{
+ // handle snooping requests
+ cache->recvTimingSnoopReq(pkt);
+}
+
+Tick
+BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
+{
+ return cache->recvAtomicSnoop(pkt);
+}
+
+void
+BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
+{
+ // functional snoop (note that in contrast to atomic we don't have
+ // a specific functionalSnoop method, as they have the same
+ // behaviour regardless)
+ cache->functionalAccess(pkt, false);
+}
+
+void
+BaseCache::CacheReqPacketQueue::sendDeferredPacket()
+{
+ // sanity check
+ assert(!waitingOnRetry);
+
+ // there should never be any deferred request packets in the
+ // queue, instead we resly on the cache to provide the packets
+ // from the MSHR queue or write queue
+ assert(deferredPacketReadyTime() == MaxTick);
+
+ // check for request packets (requests & writebacks)
+ QueueEntry* entry = cache.getNextQueueEntry();
+
+ if (!entry) {
+ // can happen if e.g. we attempt a writeback and fail, but
+ // before the retry, the writeback is eliminated because
+ // we snoop another cache's ReadEx.
+ } else {
+ // let our snoop responses go first if there are responses to
+ // the same addresses
+ if (checkConflictingSnoop(entry->blkAddr)) {
+ return;
+ }
+ waitingOnRetry = entry->sendPacket(cache);
+ }
+
+ // if we succeeded and are not waiting for a retry, schedule the
+ // next send considering when the next queue is ready, note that
+ // snoop responses have their own packet queue and thus schedule
+ // their own events
+ if (!waitingOnRetry) {
+ schedSendEvent(cache.nextQueueReadyTime());
+ }
+}
+
+BaseCache::MemSidePort::MemSidePort(const std::string &_name,
+ BaseCache *_cache,
+ const std::string &_label)
+ : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
+ _reqQueue(*_cache, *this, _snoopRespQueue, _label),
+ _snoopRespQueue(*_cache, *this, _label), cache(_cache)
+{
+}