diff options
author | Nikos Nikoleris <nikos.nikoleris@arm.com> | 2018-02-02 17:34:40 +0000 |
---|---|---|
committer | Nikos Nikoleris <nikos.nikoleris@arm.com> | 2018-05-31 15:12:04 +0000 |
commit | 41db9b95aa234094da62fdd3a863870b175d8f97 (patch) | |
tree | 433ad327b0e148bbacc65e1fcfdb87e41f1c4cb4 /src/mem/cache/base.cc | |
parent | d5c4dd986a48f13cc774e487993634d8c2b68e10 (diff) | |
download | gem5-41db9b95aa234094da62fdd3a863870b175d8f97.tar.xz |
mem-cache: Adopt a more sensible cache class hierarchy
This patch changes what goes into the BaseCache and what goes into the
Cache, to make it easier to add a NoncoherentCache with as much re-use
as possible. A number of redundant members and definitions are also
removed in the process.
This is a modified version of a changeset put together by Andreas
Hansson <andreas.hansson@arm.com>
Change-Id: Ie9dd73c4ec07732e778e7416b712dad8b4bd5d4b
Reviewed-on: https://gem5-review.googlesource.com/10431
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Nikos Nikoleris <nikos.nikoleris@arm.com>
Diffstat (limited to 'src/mem/cache/base.cc')
-rw-r--r-- | src/mem/cache/base.cc | 1543 |
1 files changed, 1532 insertions, 11 deletions
diff --git a/src/mem/cache/base.cc b/src/mem/cache/base.cc index 8143acd67..d7d593ec0 100644 --- a/src/mem/cache/base.cc +++ b/src/mem/cache/base.cc @@ -1,5 +1,5 @@ /* - * Copyright (c) 2012-2013 ARM Limited + * Copyright (c) 2012-2013, 2018 ARM Limited * All rights reserved. * * The license below extends only to copyright in the software and shall @@ -38,6 +38,7 @@ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Authors: Erik Hallnor + * Nikos Nikoleris */ /** @@ -47,12 +48,19 @@ #include "mem/cache/base.hh" +#include "base/compiler.hh" +#include "base/logging.hh" #include "debug/Cache.hh" -#include "debug/Drain.hh" -#include "mem/cache/cache.hh" +#include "debug/CachePort.hh" +#include "debug/CacheVerbose.hh" #include "mem/cache/mshr.hh" -#include "mem/cache/tags/fa_lru.hh" -#include "sim/full_system.hh" +#include "mem/cache/prefetch/base.hh" +#include "mem/cache/queue_entry.hh" +#include "params/BaseCache.hh" +#include "sim/core.hh" + +class BaseMasterPort; +class BaseSlavePort; using namespace std; @@ -67,9 +75,18 @@ BaseCache::CacheSlavePort::CacheSlavePort(const std::string &_name, BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) : MemObject(p), - cpuSidePort(nullptr), memSidePort(nullptr), + cpuSidePort (p->name + ".cpu_side", this, "CpuSidePort"), + memSidePort(p->name + ".mem_side", this, "MemSidePort"), mshrQueue("MSHRs", p->mshrs, 0, p->demand_mshr_reserve), // see below writeBuffer("write buffer", p->write_buffers, p->mshrs), // see below + tags(p->tags), + prefetcher(p->prefetcher), + prefetchOnAccess(p->prefetch_on_access), + writebackClean(p->writeback_clean), + tempBlockWriteback(nullptr), + writebackTempBlockAtomicEvent([this]{ writebackTempBlockAtomic(); }, + name(), false, + EventBase::Delayed_Writeback_Pri), blkSize(blk_size), lookupLatency(p->tag_latency), dataLatency(p->data_latency), @@ -78,6 +95,7 @@ BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) responseLatency(p->response_latency), numTarget(p->tgts_per_mshr), forwardSnoops(true), + clusivity(p->clusivity), isReadOnly(p->is_read_only), blocked(0), order(0), @@ -94,6 +112,19 @@ BaseCache::BaseCache(const BaseCacheParams *p, unsigned blk_size) // forward snoops is overridden in init() once we can query // whether the connected master is actually snooping or not + + tempBlock = new CacheBlk(); + tempBlock->data = new uint8_t[blkSize]; + + tags->setCache(this); + if (prefetcher) + prefetcher->setCache(this); +} + +BaseCache::~BaseCache() +{ + delete [] tempBlock->data; + delete tempBlock; } void @@ -136,17 +167,17 @@ BaseCache::CacheSlavePort::processSendRetry() void BaseCache::init() { - if (!cpuSidePort->isConnected() || !memSidePort->isConnected()) + if (!cpuSidePort.isConnected() || !memSidePort.isConnected()) fatal("Cache ports on %s are not connected\n", name()); - cpuSidePort->sendRangeChange(); - forwardSnoops = cpuSidePort->isSnooping(); + cpuSidePort.sendRangeChange(); + forwardSnoops = cpuSidePort.isSnooping(); } BaseMasterPort & BaseCache::getMasterPort(const std::string &if_name, PortID idx) { if (if_name == "mem_side") { - return *memSidePort; + return memSidePort; } else { return MemObject::getMasterPort(if_name, idx); } @@ -156,7 +187,7 @@ BaseSlavePort & BaseCache::getSlavePort(const std::string &if_name, PortID idx) { if (if_name == "cpu_side") { - return *cpuSidePort; + return cpuSidePort; } else { return MemObject::getSlavePort(if_name, idx); } @@ -174,6 +205,1350 @@ BaseCache::inRange(Addr addr) const } void +BaseCache::handleTimingReqHit(PacketPtr pkt, CacheBlk *blk, Tick request_time) +{ + if (pkt->needsResponse()) { + pkt->makeTimingResponse(); + // @todo: Make someone pay for this + pkt->headerDelay = pkt->payloadDelay = 0; + + // In this case we are considering request_time that takes + // into account the delay of the xbar, if any, and just + // lat, neglecting responseLatency, modelling hit latency + // just as lookupLatency or or the value of lat overriden + // by access(), that calls accessBlock() function. + cpuSidePort.schedTimingResp(pkt, request_time, true); + } else { + DPRINTF(Cache, "%s satisfied %s, no response needed\n", __func__, + pkt->print()); + + // queue the packet for deletion, as the sending cache is + // still relying on it; if the block is found in access(), + // CleanEvict and Writeback messages will be deleted + // here as well + pendingDelete.reset(pkt); + } +} + +void +BaseCache::handleTimingReqMiss(PacketPtr pkt, MSHR *mshr, CacheBlk *blk, + Tick forward_time, Tick request_time) +{ + if (mshr) { + /// MSHR hit + /// @note writebacks will be checked in getNextMSHR() + /// for any conflicting requests to the same block + + //@todo remove hw_pf here + + // Coalesce unless it was a software prefetch (see above). + if (pkt) { + assert(!pkt->isWriteback()); + // CleanEvicts corresponding to blocks which have + // outstanding requests in MSHRs are simply sunk here + if (pkt->cmd == MemCmd::CleanEvict) { + pendingDelete.reset(pkt); + } else if (pkt->cmd == MemCmd::WriteClean) { + // A WriteClean should never coalesce with any + // outstanding cache maintenance requests. + + // We use forward_time here because there is an + // uncached memory write, forwarded to WriteBuffer. + allocateWriteBuffer(pkt, forward_time); + } else { + DPRINTF(Cache, "%s coalescing MSHR for %s\n", __func__, + pkt->print()); + + assert(pkt->req->masterId() < system->maxMasters()); + mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++; + + // We use forward_time here because it is the same + // considering new targets. We have multiple + // requests for the same address here. It + // specifies the latency to allocate an internal + // buffer and to schedule an event to the queued + // port and also takes into account the additional + // delay of the xbar. + mshr->allocateTarget(pkt, forward_time, order++, + allocOnFill(pkt->cmd)); + if (mshr->getNumTargets() == numTarget) { + noTargetMSHR = mshr; + setBlocked(Blocked_NoTargets); + // need to be careful with this... if this mshr isn't + // ready yet (i.e. time > curTick()), we don't want to + // move it ahead of mshrs that are ready + // mshrQueue.moveToFront(mshr); + } + } + } + } else { + // no MSHR + assert(pkt->req->masterId() < system->maxMasters()); + mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; + + if (pkt->isEviction() || pkt->cmd == MemCmd::WriteClean) { + // We use forward_time here because there is an + // writeback or writeclean, forwarded to WriteBuffer. + allocateWriteBuffer(pkt, forward_time); + } else { + if (blk && blk->isValid()) { + // If we have a write miss to a valid block, we + // need to mark the block non-readable. Otherwise + // if we allow reads while there's an outstanding + // write miss, the read could return stale data + // out of the cache block... a more aggressive + // system could detect the overlap (if any) and + // forward data out of the MSHRs, but we don't do + // that yet. Note that we do need to leave the + // block valid so that it stays in the cache, in + // case we get an upgrade response (and hence no + // new data) when the write miss completes. + // As long as CPUs do proper store/load forwarding + // internally, and have a sufficiently weak memory + // model, this is probably unnecessary, but at some + // point it must have seemed like we needed it... + assert((pkt->needsWritable() && !blk->isWritable()) || + pkt->req->isCacheMaintenance()); + blk->status &= ~BlkReadable; + } + // Here we are using forward_time, modelling the latency of + // a miss (outbound) just as forwardLatency, neglecting the + // lookupLatency component. + allocateMissBuffer(pkt, forward_time); + } + } +} + +void +BaseCache::recvTimingReq(PacketPtr pkt) +{ + // anything that is merely forwarded pays for the forward latency and + // the delay provided by the crossbar + Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; + + // We use lookupLatency here because it is used to specify the latency + // to access. + Cycles lat = lookupLatency; + CacheBlk *blk = nullptr; + bool satisfied = false; + { + PacketList writebacks; + // Note that lat is passed by reference here. The function + // access() calls accessBlock() which can modify lat value. + satisfied = access(pkt, blk, lat, writebacks); + + // copy writebacks to write buffer here to ensure they logically + // proceed anything happening below + doWritebacks(writebacks, forward_time); + } + + // Here we charge the headerDelay that takes into account the latencies + // of the bus, if the packet comes from it. + // The latency charged it is just lat that is the value of lookupLatency + // modified by access() function, or if not just lookupLatency. + // In case of a hit we are neglecting response latency. + // In case of a miss we are neglecting forward latency. + Tick request_time = clockEdge(lat) + pkt->headerDelay; + // Here we reset the timing of the packet. + pkt->headerDelay = pkt->payloadDelay = 0; + // track time of availability of next prefetch, if any + Tick next_pf_time = MaxTick; + + if (satisfied) { + // if need to notify the prefetcher we have to do it before + // anything else as later handleTimingReqHit might turn the + // packet in a response + if (prefetcher && + (prefetchOnAccess || (blk && blk->wasPrefetched()))) { + if (blk) + blk->status &= ~BlkHWPrefetched; + + // Don't notify on SWPrefetch + if (!pkt->cmd.isSWPrefetch()) { + assert(!pkt->req->isCacheMaintenance()); + next_pf_time = prefetcher->notify(pkt); + } + } + + handleTimingReqHit(pkt, blk, request_time); + } else { + handleTimingReqMiss(pkt, blk, forward_time, request_time); + + // We should call the prefetcher reguardless if the request is + // satisfied or not, reguardless if the request is in the MSHR + // or not. The request could be a ReadReq hit, but still not + // satisfied (potentially because of a prior write to the same + // cache line. So, even when not satisfied, there is an MSHR + // already allocated for this, we need to let the prefetcher + // know about the request + + // Don't notify prefetcher on SWPrefetch or cache maintenance + // operations + if (prefetcher && pkt && + !pkt->cmd.isSWPrefetch() && + !pkt->req->isCacheMaintenance()) { + next_pf_time = prefetcher->notify(pkt); + } + } + + if (next_pf_time != MaxTick) { + schedMemSideSendEvent(next_pf_time); + } +} + +void +BaseCache::handleUncacheableWriteResp(PacketPtr pkt) +{ + Tick completion_time = clockEdge(responseLatency) + + pkt->headerDelay + pkt->payloadDelay; + + // Reset the bus additional time as it is now accounted for + pkt->headerDelay = pkt->payloadDelay = 0; + + cpuSidePort.schedTimingResp(pkt, completion_time, true); +} + +void +BaseCache::recvTimingResp(PacketPtr pkt) +{ + assert(pkt->isResponse()); + + // all header delay should be paid for by the crossbar, unless + // this is a prefetch response from above + panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp, + "%s saw a non-zero packet delay\n", name()); + + const bool is_error = pkt->isError(); + + if (is_error) { + DPRINTF(Cache, "%s: Cache received %s with error\n", __func__, + pkt->print()); + } + + DPRINTF(Cache, "%s: Handling response %s\n", __func__, + pkt->print()); + + // if this is a write, we should be looking at an uncacheable + // write + if (pkt->isWrite()) { + assert(pkt->req->isUncacheable()); + handleUncacheableWriteResp(pkt); + return; + } + + // we have dealt with any (uncacheable) writes above, from here on + // we know we are dealing with an MSHR due to a miss or a prefetch + MSHR *mshr = dynamic_cast<MSHR*>(pkt->popSenderState()); + assert(mshr); + + if (mshr == noTargetMSHR) { + // we always clear at least one target + clearBlocked(Blocked_NoTargets); + noTargetMSHR = nullptr; + } + + // Initial target is used just for stats + MSHR::Target *initial_tgt = mshr->getTarget(); + int stats_cmd_idx = initial_tgt->pkt->cmdToIndex(); + Tick miss_latency = curTick() - initial_tgt->recvTime; + + if (pkt->req->isUncacheable()) { + assert(pkt->req->masterId() < system->maxMasters()); + mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] += + miss_latency; + } else { + assert(pkt->req->masterId() < system->maxMasters()); + mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] += + miss_latency; + } + + PacketList writebacks; + + bool is_fill = !mshr->isForward && + (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp); + + CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure()); + + if (is_fill && !is_error) { + DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n", + pkt->getAddr()); + + blk = handleFill(pkt, blk, writebacks, mshr->allocOnFill()); + assert(blk != nullptr); + } + + if (blk && blk->isValid() && pkt->isClean() && !pkt->isInvalidate()) { + // The block was marked not readable while there was a pending + // cache maintenance operation, restore its flag. + blk->status |= BlkReadable; + } + + if (blk && blk->isWritable() && !pkt->req->isCacheInvalidate()) { + // If at this point the referenced block is writable and the + // response is not a cache invalidate, we promote targets that + // were deferred as we couldn't guarrantee a writable copy + mshr->promoteWritable(); + } + + serviceMSHRTargets(mshr, pkt, blk, writebacks); + + if (mshr->promoteDeferredTargets()) { + // avoid later read getting stale data while write miss is + // outstanding.. see comment in timingAccess() + if (blk) { + blk->status &= ~BlkReadable; + } + mshrQueue.markPending(mshr); + schedMemSideSendEvent(clockEdge() + pkt->payloadDelay); + } else { + // while we deallocate an mshr from the queue we still have to + // check the isFull condition before and after as we might + // have been using the reserved entries already + const bool was_full = mshrQueue.isFull(); + mshrQueue.deallocate(mshr); + if (was_full && !mshrQueue.isFull()) { + clearBlocked(Blocked_NoMSHRs); + } + + // Request the bus for a prefetch if this deallocation freed enough + // MSHRs for a prefetch to take place + if (prefetcher && mshrQueue.canPrefetch()) { + Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(), + clockEdge()); + if (next_pf_time != MaxTick) + schedMemSideSendEvent(next_pf_time); + } + } + + // if we used temp block, check to see if its valid and then clear it out + if (blk == tempBlock && tempBlock->isValid()) { + evictBlock(blk, writebacks); + } + + const Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay; + // copy writebacks to write buffer + doWritebacks(writebacks, forward_time); + + DPRINTF(CacheVerbose, "%s: Leaving with %s\n", __func__, pkt->print()); + delete pkt; +} + + +Tick +BaseCache::recvAtomic(PacketPtr pkt) +{ + // We are in atomic mode so we pay just for lookupLatency here. + Cycles lat = lookupLatency; + + // follow the same flow as in recvTimingReq, and check if a cache + // above us is responding + if (pkt->cacheResponding() && !pkt->isClean()) { + assert(!pkt->req->isCacheInvalidate()); + DPRINTF(Cache, "Cache above responding to %s: not responding\n", + pkt->print()); + + // if a cache is responding, and it had the line in Owned + // rather than Modified state, we need to invalidate any + // copies that are not on the same path to memory + assert(pkt->needsWritable() && !pkt->responderHadWritable()); + lat += ticksToCycles(memSidePort.sendAtomic(pkt)); + + return lat * clockPeriod(); + } + + // should assert here that there are no outstanding MSHRs or + // writebacks... that would mean that someone used an atomic + // access in timing mode + + CacheBlk *blk = nullptr; + PacketList writebacks; + bool satisfied = access(pkt, blk, lat, writebacks); + + if (pkt->isClean() && blk && blk->isDirty()) { + // A cache clean opearation is looking for a dirty + // block. If a dirty block is encountered a WriteClean + // will update any copies to the path to the memory + // until the point of reference. + DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", + __func__, pkt->print(), blk->print()); + PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), pkt->id); + writebacks.push_back(wb_pkt); + pkt->setSatisfied(); + } + + // handle writebacks resulting from the access here to ensure they + // logically proceed anything happening below + doWritebacksAtomic(writebacks); + assert(writebacks.empty()); + + if (!satisfied) { + lat += handleAtomicReqMiss(pkt, blk, writebacks); + } + + // Note that we don't invoke the prefetcher at all in atomic mode. + // It's not clear how to do it properly, particularly for + // prefetchers that aggressively generate prefetch candidates and + // rely on bandwidth contention to throttle them; these will tend + // to pollute the cache in atomic mode since there is no bandwidth + // contention. If we ever do want to enable prefetching in atomic + // mode, though, this is the place to do it... see timingAccess() + // for an example (though we'd want to issue the prefetch(es) + // immediately rather than calling requestMemSideBus() as we do + // there). + + // do any writebacks resulting from the response handling + doWritebacksAtomic(writebacks); + + // if we used temp block, check to see if its valid and if so + // clear it out, but only do so after the call to recvAtomic is + // finished so that any downstream observers (such as a snoop + // filter), first see the fill, and only then see the eviction + if (blk == tempBlock && tempBlock->isValid()) { + // the atomic CPU calls recvAtomic for fetch and load/store + // sequentuially, and we may already have a tempBlock + // writeback from the fetch that we have not yet sent + if (tempBlockWriteback) { + // if that is the case, write the prevoius one back, and + // do not schedule any new event + writebackTempBlockAtomic(); + } else { + // the writeback/clean eviction happens after the call to + // recvAtomic has finished (but before any successive + // calls), so that the response handling from the fill is + // allowed to happen first + schedule(writebackTempBlockAtomicEvent, curTick()); + } + + tempBlockWriteback = evictBlock(blk); + } + + if (pkt->needsResponse()) { + pkt->makeAtomicResponse(); + } + + return lat * clockPeriod(); +} + +void +BaseCache::functionalAccess(PacketPtr pkt, bool from_cpu_side) +{ + if (system->bypassCaches()) { + // Packets from the memory side are snoop request and + // shouldn't happen in bypass mode. + assert(from_cpu_side); + + // The cache should be flushed if we are in cache bypass mode, + // so we don't need to check if we need to update anything. + memSidePort.sendFunctional(pkt); + return; + } + + Addr blk_addr = pkt->getBlockAddr(blkSize); + bool is_secure = pkt->isSecure(); + CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure); + MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure); + + pkt->pushLabel(name()); + + CacheBlkPrintWrapper cbpw(blk); + + // Note that just because an L2/L3 has valid data doesn't mean an + // L1 doesn't have a more up-to-date modified copy that still + // needs to be found. As a result we always update the request if + // we have it, but only declare it satisfied if we are the owner. + + // see if we have data at all (owned or otherwise) + bool have_data = blk && blk->isValid() + && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize, + blk->data); + + // data we have is dirty if marked as such or if we have an + // in-service MSHR that is pending a modified line + bool have_dirty = + have_data && (blk->isDirty() || + (mshr && mshr->inService && mshr->isPendingModified())); + + bool done = have_dirty || + cpuSidePort.checkFunctional(pkt) || + mshrQueue.checkFunctional(pkt, blk_addr) || + writeBuffer.checkFunctional(pkt, blk_addr) || + memSidePort.checkFunctional(pkt); + + DPRINTF(CacheVerbose, "%s: %s %s%s%s\n", __func__, pkt->print(), + (blk && blk->isValid()) ? "valid " : "", + have_data ? "data " : "", done ? "done " : ""); + + // We're leaving the cache, so pop cache->name() label + pkt->popLabel(); + + if (done) { + pkt->makeResponse(); + } else { + // if it came as a request from the CPU side then make sure it + // continues towards the memory side + if (from_cpu_side) { + memSidePort.sendFunctional(pkt); + } else if (cpuSidePort.isSnooping()) { + // if it came from the memory side, it must be a snoop request + // and we should only forward it if we are forwarding snoops + cpuSidePort.sendFunctionalSnoop(pkt); + } + } +} + + +void +BaseCache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt) +{ + assert(pkt->isRequest()); + + uint64_t overwrite_val; + bool overwrite_mem; + uint64_t condition_val64; + uint32_t condition_val32; + + int offset = pkt->getOffset(blkSize); + uint8_t *blk_data = blk->data + offset; + + assert(sizeof(uint64_t) >= pkt->getSize()); + + overwrite_mem = true; + // keep a copy of our possible write value, and copy what is at the + // memory address into the packet + pkt->writeData((uint8_t *)&overwrite_val); + pkt->setData(blk_data); + + if (pkt->req->isCondSwap()) { + if (pkt->getSize() == sizeof(uint64_t)) { + condition_val64 = pkt->req->getExtraData(); + overwrite_mem = !std::memcmp(&condition_val64, blk_data, + sizeof(uint64_t)); + } else if (pkt->getSize() == sizeof(uint32_t)) { + condition_val32 = (uint32_t)pkt->req->getExtraData(); + overwrite_mem = !std::memcmp(&condition_val32, blk_data, + sizeof(uint32_t)); + } else + panic("Invalid size for conditional read/write\n"); + } + + if (overwrite_mem) { + std::memcpy(blk_data, &overwrite_val, pkt->getSize()); + blk->status |= BlkDirty; + } +} + +QueueEntry* +BaseCache::getNextQueueEntry() +{ + // Check both MSHR queue and write buffer for potential requests, + // note that null does not mean there is no request, it could + // simply be that it is not ready + MSHR *miss_mshr = mshrQueue.getNext(); + WriteQueueEntry *wq_entry = writeBuffer.getNext(); + + // If we got a write buffer request ready, first priority is a + // full write buffer, otherwise we favour the miss requests + if (wq_entry && (writeBuffer.isFull() || !miss_mshr)) { + // need to search MSHR queue for conflicting earlier miss. + MSHR *conflict_mshr = + mshrQueue.findPending(wq_entry->blkAddr, + wq_entry->isSecure); + + if (conflict_mshr && conflict_mshr->order < wq_entry->order) { + // Service misses in order until conflict is cleared. + return conflict_mshr; + + // @todo Note that we ignore the ready time of the conflict here + } + + // No conflicts; issue write + return wq_entry; + } else if (miss_mshr) { + // need to check for conflicting earlier writeback + WriteQueueEntry *conflict_mshr = + writeBuffer.findPending(miss_mshr->blkAddr, + miss_mshr->isSecure); + if (conflict_mshr) { + // not sure why we don't check order here... it was in the + // original code but commented out. + + // The only way this happens is if we are + // doing a write and we didn't have permissions + // then subsequently saw a writeback (owned got evicted) + // We need to make sure to perform the writeback first + // To preserve the dirty data, then we can issue the write + + // should we return wq_entry here instead? I.e. do we + // have to flush writes in order? I don't think so... not + // for Alpha anyway. Maybe for x86? + return conflict_mshr; + + // @todo Note that we ignore the ready time of the conflict here + } + + // No conflicts; issue read + return miss_mshr; + } + + // fall through... no pending requests. Try a prefetch. + assert(!miss_mshr && !wq_entry); + if (prefetcher && mshrQueue.canPrefetch()) { + // If we have a miss queue slot, we can try a prefetch + PacketPtr pkt = prefetcher->getPacket(); + if (pkt) { + Addr pf_addr = pkt->getBlockAddr(blkSize); + if (!tags->findBlock(pf_addr, pkt->isSecure()) && + !mshrQueue.findMatch(pf_addr, pkt->isSecure()) && + !writeBuffer.findMatch(pf_addr, pkt->isSecure())) { + // Update statistic on number of prefetches issued + // (hwpf_mshr_misses) + assert(pkt->req->masterId() < system->maxMasters()); + mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++; + + // allocate an MSHR and return it, note + // that we send the packet straight away, so do not + // schedule the send + return allocateMissBuffer(pkt, curTick(), false); + } else { + // free the request and packet + delete pkt->req; + delete pkt; + } + } + } + + return nullptr; +} + +void +BaseCache::satisfyRequest(PacketPtr pkt, CacheBlk *blk, bool, bool) +{ + assert(pkt->isRequest()); + + assert(blk && blk->isValid()); + // Occasionally this is not true... if we are a lower-level cache + // satisfying a string of Read and ReadEx requests from + // upper-level caches, a Read will mark the block as shared but we + // can satisfy a following ReadEx anyway since we can rely on the + // Read requester(s) to have buffered the ReadEx snoop and to + // invalidate their blocks after receiving them. + // assert(!pkt->needsWritable() || blk->isWritable()); + assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize); + + // Check RMW operations first since both isRead() and + // isWrite() will be true for them + if (pkt->cmd == MemCmd::SwapReq) { + cmpAndSwap(blk, pkt); + } else if (pkt->isWrite()) { + // we have the block in a writable state and can go ahead, + // note that the line may be also be considered writable in + // downstream caches along the path to memory, but always + // Exclusive, and never Modified + assert(blk->isWritable()); + // Write or WriteLine at the first cache with block in writable state + if (blk->checkWrite(pkt)) { + pkt->writeDataToBlock(blk->data, blkSize); + } + // Always mark the line as dirty (and thus transition to the + // Modified state) even if we are a failed StoreCond so we + // supply data to any snoops that have appended themselves to + // this cache before knowing the store will fail. + blk->status |= BlkDirty; + DPRINTF(CacheVerbose, "%s for %s (write)\n", __func__, pkt->print()); + } else if (pkt->isRead()) { + if (pkt->isLLSC()) { + blk->trackLoadLocked(pkt); + } + + // all read responses have a data payload + assert(pkt->hasRespData()); + pkt->setDataFromBlock(blk->data, blkSize); + } else if (pkt->isUpgrade()) { + // sanity check + assert(!pkt->hasSharers()); + + if (blk->isDirty()) { + // we were in the Owned state, and a cache above us that + // has the line in Shared state needs to be made aware + // that the data it already has is in fact dirty + pkt->setCacheResponding(); + blk->status &= ~BlkDirty; + } + } else { + assert(pkt->isInvalidate()); + invalidateBlock(blk); + DPRINTF(CacheVerbose, "%s for %s (invalidation)\n", __func__, + pkt->print()); + } +} + +///////////////////////////////////////////////////// +// +// Access path: requests coming in from the CPU side +// +///////////////////////////////////////////////////// + +bool +BaseCache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat, + PacketList &writebacks) +{ + // sanity check + assert(pkt->isRequest()); + + chatty_assert(!(isReadOnly && pkt->isWrite()), + "Should never see a write in a read-only cache %s\n", + name()); + + // Here lat is the value passed as parameter to accessBlock() function + // that can modify its value. + blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat); + + DPRINTF(Cache, "%s for %s %s\n", __func__, pkt->print(), + blk ? "hit " + blk->print() : "miss"); + + if (pkt->req->isCacheMaintenance()) { + // A cache maintenance operation is always forwarded to the + // memory below even if the block is found in dirty state. + + // We defer any changes to the state of the block until we + // create and mark as in service the mshr for the downstream + // packet. + return false; + } + + if (pkt->isEviction()) { + // We check for presence of block in above caches before issuing + // Writeback or CleanEvict to write buffer. Therefore the only + // possible cases can be of a CleanEvict packet coming from above + // encountering a Writeback generated in this cache peer cache and + // waiting in the write buffer. Cases of upper level peer caches + // generating CleanEvict and Writeback or simply CleanEvict and + // CleanEvict almost simultaneously will be caught by snoops sent out + // by crossbar. + WriteQueueEntry *wb_entry = writeBuffer.findMatch(pkt->getAddr(), + pkt->isSecure()); + if (wb_entry) { + assert(wb_entry->getNumTargets() == 1); + PacketPtr wbPkt = wb_entry->getTarget()->pkt; + assert(wbPkt->isWriteback()); + + if (pkt->isCleanEviction()) { + // The CleanEvict and WritebackClean snoops into other + // peer caches of the same level while traversing the + // crossbar. If a copy of the block is found, the + // packet is deleted in the crossbar. Hence, none of + // the other upper level caches connected to this + // cache have the block, so we can clear the + // BLOCK_CACHED flag in the Writeback if set and + // discard the CleanEvict by returning true. + wbPkt->clearBlockCached(); + return true; + } else { + assert(pkt->cmd == MemCmd::WritebackDirty); + // Dirty writeback from above trumps our clean + // writeback... discard here + // Note: markInService will remove entry from writeback buffer. + markInService(wb_entry); + delete wbPkt; + } + } + } + + // Writeback handling is special case. We can write the block into + // the cache without having a writeable copy (or any copy at all). + if (pkt->isWriteback()) { + assert(blkSize == pkt->getSize()); + + // we could get a clean writeback while we are having + // outstanding accesses to a block, do the simple thing for + // now and drop the clean writeback so that we do not upset + // any ordering/decisions about ownership already taken + if (pkt->cmd == MemCmd::WritebackClean && + mshrQueue.findMatch(pkt->getAddr(), pkt->isSecure())) { + DPRINTF(Cache, "Clean writeback %#llx to block with MSHR, " + "dropping\n", pkt->getAddr()); + return true; + } + + if (!blk) { + // need to do a replacement + blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks); + if (!blk) { + // no replaceable block available: give up, fwd to next level. + incMissCount(pkt); + return false; + } + tags->insertBlock(pkt, blk); + + blk->status |= (BlkValid | BlkReadable); + } + // only mark the block dirty if we got a writeback command, + // and leave it as is for a clean writeback + if (pkt->cmd == MemCmd::WritebackDirty) { + // TODO: the coherent cache can assert(!blk->isDirty()); + blk->status |= BlkDirty; + } + // if the packet does not have sharers, it is passing + // writable, and we got the writeback in Modified or Exclusive + // state, if not we are in the Owned or Shared state + if (!pkt->hasSharers()) { + blk->status |= BlkWritable; + } + // nothing else to do; writeback doesn't expect response + assert(!pkt->needsResponse()); + pkt->writeDataToBlock(blk->data, blkSize); + DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); + incHitCount(pkt); + // populate the time when the block will be ready to access. + blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + + pkt->payloadDelay; + return true; + } else if (pkt->cmd == MemCmd::CleanEvict) { + if (blk) { + // Found the block in the tags, need to stop CleanEvict from + // propagating further down the hierarchy. Returning true will + // treat the CleanEvict like a satisfied write request and delete + // it. + return true; + } + // We didn't find the block here, propagate the CleanEvict further + // down the memory hierarchy. Returning false will treat the CleanEvict + // like a Writeback which could not find a replaceable block so has to + // go to next level. + return false; + } else if (pkt->cmd == MemCmd::WriteClean) { + // WriteClean handling is a special case. We can allocate a + // block directly if it doesn't exist and we can update the + // block immediately. The WriteClean transfers the ownership + // of the block as well. + assert(blkSize == pkt->getSize()); + + if (!blk) { + if (pkt->writeThrough()) { + // if this is a write through packet, we don't try to + // allocate if the block is not present + return false; + } else { + // a writeback that misses needs to allocate a new block + blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), + writebacks); + if (!blk) { + // no replaceable block available: give up, fwd to + // next level. + incMissCount(pkt); + return false; + } + tags->insertBlock(pkt, blk); + + blk->status |= (BlkValid | BlkReadable); + } + } + + // at this point either this is a writeback or a write-through + // write clean operation and the block is already in this + // cache, we need to update the data and the block flags + assert(blk); + // TODO: the coherent cache can assert(!blk->isDirty()); + if (!pkt->writeThrough()) { + blk->status |= BlkDirty; + } + // nothing else to do; writeback doesn't expect response + assert(!pkt->needsResponse()); + pkt->writeDataToBlock(blk->data, blkSize); + DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print()); + + incHitCount(pkt); + // populate the time when the block will be ready to access. + blk->whenReady = clockEdge(fillLatency) + pkt->headerDelay + + pkt->payloadDelay; + // if this a write-through packet it will be sent to cache + // below + return !pkt->writeThrough(); + } else if (blk && (pkt->needsWritable() ? blk->isWritable() : + blk->isReadable())) { + // OK to satisfy access + incHitCount(pkt); + satisfyRequest(pkt, blk); + maintainClusivity(pkt->fromCache(), blk); + + return true; + } + + // Can't satisfy access normally... either no block (blk == nullptr) + // or have block but need writable + + incMissCount(pkt); + + if (!blk && pkt->isLLSC() && pkt->isWrite()) { + // complete miss on store conditional... just give up now + pkt->req->setExtraData(0); + return true; + } + + return false; +} + +void +BaseCache::maintainClusivity(bool from_cache, CacheBlk *blk) +{ + if (from_cache && blk && blk->isValid() && !blk->isDirty() && + clusivity == Enums::mostly_excl) { + // if we have responded to a cache, and our block is still + // valid, but not dirty, and this cache is mostly exclusive + // with respect to the cache above, drop the block + invalidateBlock(blk); + } +} + +CacheBlk* +BaseCache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks, + bool allocate) +{ + assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq); + Addr addr = pkt->getAddr(); + bool is_secure = pkt->isSecure(); +#if TRACING_ON + CacheBlk::State old_state = blk ? blk->status : 0; +#endif + + // When handling a fill, we should have no writes to this line. + assert(addr == pkt->getBlockAddr(blkSize)); + assert(!writeBuffer.findMatch(addr, is_secure)); + + if (!blk) { + // better have read new data... + assert(pkt->hasData()); + + // only read responses and write-line requests have data; + // note that we don't write the data here for write-line - that + // happens in the subsequent call to satisfyRequest + assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq); + + // need to do a replacement if allocating, otherwise we stick + // with the temporary storage + blk = allocate ? allocateBlock(addr, is_secure, writebacks) : nullptr; + + if (!blk) { + // No replaceable block or a mostly exclusive + // cache... just use temporary storage to complete the + // current request and then get rid of it + assert(!tempBlock->isValid()); + blk = tempBlock; + tempBlock->set = tags->extractSet(addr); + tempBlock->tag = tags->extractTag(addr); + DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr, + is_secure ? "s" : "ns"); + } else { + tags->insertBlock(pkt, blk); + } + + // we should never be overwriting a valid block + assert(!blk->isValid()); + } else { + // existing block... probably an upgrade + assert(blk->tag == tags->extractTag(addr)); + // either we're getting new data or the block should already be valid + assert(pkt->hasData() || blk->isValid()); + // don't clear block status... if block is already dirty we + // don't want to lose that + } + + if (is_secure) + blk->status |= BlkSecure; + blk->status |= BlkValid | BlkReadable; + + // sanity check for whole-line writes, which should always be + // marked as writable as part of the fill, and then later marked + // dirty as part of satisfyRequest + if (pkt->cmd == MemCmd::WriteLineReq) { + assert(!pkt->hasSharers()); + } + + // here we deal with setting the appropriate state of the line, + // and we start by looking at the hasSharers flag, and ignore the + // cacheResponding flag (normally signalling dirty data) if the + // packet has sharers, thus the line is never allocated as Owned + // (dirty but not writable), and always ends up being either + // Shared, Exclusive or Modified, see Packet::setCacheResponding + // for more details + if (!pkt->hasSharers()) { + // we could get a writable line from memory (rather than a + // cache) even in a read-only cache, note that we set this bit + // even for a read-only cache, possibly revisit this decision + blk->status |= BlkWritable; + + // check if we got this via cache-to-cache transfer (i.e., from a + // cache that had the block in Modified or Owned state) + if (pkt->cacheResponding()) { + // we got the block in Modified state, and invalidated the + // owners copy + blk->status |= BlkDirty; + + chatty_assert(!isReadOnly, "Should never see dirty snoop response " + "in read-only cache %s\n", name()); + } + } + + DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n", + addr, is_secure ? "s" : "ns", old_state, blk->print()); + + // if we got new data, copy it in (checking for a read response + // and a response that has data is the same in the end) + if (pkt->isRead()) { + // sanity checks + assert(pkt->hasData()); + assert(pkt->getSize() == blkSize); + + pkt->writeDataToBlock(blk->data, blkSize); + } + // We pay for fillLatency here. + blk->whenReady = clockEdge() + fillLatency * clockPeriod() + + pkt->payloadDelay; + + return blk; +} + +CacheBlk* +BaseCache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks) +{ + // Find replacement victim + CacheBlk *blk = tags->findVictim(addr); + + // It is valid to return nullptr if there is no victim + if (!blk) + return nullptr; + + if (blk->isValid()) { + Addr repl_addr = tags->regenerateBlkAddr(blk); + MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure()); + if (repl_mshr) { + // must be an outstanding upgrade or clean request + // on a block we're about to replace... + assert((!blk->isWritable() && repl_mshr->needsWritable()) || + repl_mshr->isCleaning()); + // too hard to replace block with transient state + // allocation failed, block not inserted + return nullptr; + } else { + DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx " + "(%s): %s\n", repl_addr, blk->isSecure() ? "s" : "ns", + addr, is_secure ? "s" : "ns", + blk->isDirty() ? "writeback" : "clean"); + + if (blk->wasPrefetched()) { + unusedPrefetches++; + } + evictBlock(blk, writebacks); + replacements++; + } + } + + return blk; +} + +void +BaseCache::invalidateBlock(CacheBlk *blk) +{ + if (blk != tempBlock) + tags->invalidate(blk); + blk->invalidate(); +} + +PacketPtr +BaseCache::writebackBlk(CacheBlk *blk) +{ + chatty_assert(!isReadOnly || writebackClean, + "Writeback from read-only cache"); + assert(blk && blk->isValid() && (blk->isDirty() || writebackClean)); + + writebacks[Request::wbMasterId]++; + + Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0, + Request::wbMasterId); + if (blk->isSecure()) + req->setFlags(Request::SECURE); + + req->taskId(blk->task_id); + + PacketPtr pkt = + new Packet(req, blk->isDirty() ? + MemCmd::WritebackDirty : MemCmd::WritebackClean); + + DPRINTF(Cache, "Create Writeback %s writable: %d, dirty: %d\n", + pkt->print(), blk->isWritable(), blk->isDirty()); + + if (blk->isWritable()) { + // not asserting shared means we pass the block in modified + // state, mark our own block non-writeable + blk->status &= ~BlkWritable; + } else { + // we are in the Owned state, tell the receiver + pkt->setHasSharers(); + } + + // make sure the block is not marked dirty + blk->status &= ~BlkDirty; + + pkt->allocate(); + pkt->setDataFromBlock(blk->data, blkSize); + + return pkt; +} + +PacketPtr +BaseCache::writecleanBlk(CacheBlk *blk, Request::Flags dest, PacketId id) +{ + Request *req = new Request(tags->regenerateBlkAddr(blk), blkSize, 0, + Request::wbMasterId); + if (blk->isSecure()) { + req->setFlags(Request::SECURE); + } + req->taskId(blk->task_id); + + PacketPtr pkt = new Packet(req, MemCmd::WriteClean, blkSize, id); + + if (dest) { + req->setFlags(dest); + pkt->setWriteThrough(); + } + + DPRINTF(Cache, "Create %s writable: %d, dirty: %d\n", pkt->print(), + blk->isWritable(), blk->isDirty()); + + if (blk->isWritable()) { + // not asserting shared means we pass the block in modified + // state, mark our own block non-writeable + blk->status &= ~BlkWritable; + } else { + // we are in the Owned state, tell the receiver + pkt->setHasSharers(); + } + + // make sure the block is not marked dirty + blk->status &= ~BlkDirty; + + pkt->allocate(); + pkt->setDataFromBlock(blk->data, blkSize); + + return pkt; +} + + +void +BaseCache::memWriteback() +{ + CacheBlkVisitorWrapper visitor(*this, &BaseCache::writebackVisitor); + tags->forEachBlk(visitor); +} + +void +BaseCache::memInvalidate() +{ + CacheBlkVisitorWrapper visitor(*this, &BaseCache::invalidateVisitor); + tags->forEachBlk(visitor); +} + +bool +BaseCache::isDirty() const +{ + CacheBlkIsDirtyVisitor visitor; + tags->forEachBlk(visitor); + + return visitor.isDirty(); +} + +bool +BaseCache::writebackVisitor(CacheBlk &blk) +{ + if (blk.isDirty()) { + assert(blk.isValid()); + + Request request(tags->regenerateBlkAddr(&blk), + blkSize, 0, Request::funcMasterId); + request.taskId(blk.task_id); + if (blk.isSecure()) { + request.setFlags(Request::SECURE); + } + + Packet packet(&request, MemCmd::WriteReq); + packet.dataStatic(blk.data); + + memSidePort.sendFunctional(&packet); + + blk.status &= ~BlkDirty; + } + + return true; +} + +bool +BaseCache::invalidateVisitor(CacheBlk &blk) +{ + if (blk.isDirty()) + warn_once("Invalidating dirty cache lines. " \ + "Expect things to break.\n"); + + if (blk.isValid()) { + assert(!blk.isDirty()); + invalidateBlock(&blk); + } + + return true; +} + +Tick +BaseCache::nextQueueReadyTime() const +{ + Tick nextReady = std::min(mshrQueue.nextReadyTime(), + writeBuffer.nextReadyTime()); + + // Don't signal prefetch ready time if no MSHRs available + // Will signal once enoguh MSHRs are deallocated + if (prefetcher && mshrQueue.canPrefetch()) { + nextReady = std::min(nextReady, + prefetcher->nextPrefetchReadyTime()); + } + + return nextReady; +} + + +bool +BaseCache::sendMSHRQueuePacket(MSHR* mshr) +{ + assert(mshr); + + // use request from 1st target + PacketPtr tgt_pkt = mshr->getTarget()->pkt; + + DPRINTF(Cache, "%s: MSHR %s\n", __func__, tgt_pkt->print()); + + CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure); + + // either a prefetch that is not present upstream, or a normal + // MSHR request, proceed to get the packet to send downstream + PacketPtr pkt = createMissPacket(tgt_pkt, blk, mshr->needsWritable()); + + mshr->isForward = (pkt == nullptr); + + if (mshr->isForward) { + // not a cache block request, but a response is expected + // make copy of current packet to forward, keep current + // copy for response handling + pkt = new Packet(tgt_pkt, false, true); + assert(!pkt->isWrite()); + } + + // play it safe and append (rather than set) the sender state, + // as forwarded packets may already have existing state + pkt->pushSenderState(mshr); + + if (pkt->isClean() && blk && blk->isDirty()) { + // A cache clean opearation is looking for a dirty block. Mark + // the packet so that the destination xbar can determine that + // there will be a follow-up write packet as well. + pkt->setSatisfied(); + } + + if (!memSidePort.sendTimingReq(pkt)) { + // we are awaiting a retry, but we + // delete the packet and will be creating a new packet + // when we get the opportunity + delete pkt; + + // note that we have now masked any requestBus and + // schedSendEvent (we will wait for a retry before + // doing anything), and this is so even if we do not + // care about this packet and might override it before + // it gets retried + return true; + } else { + // As part of the call to sendTimingReq the packet is + // forwarded to all neighbouring caches (and any caches + // above them) as a snoop. Thus at this point we know if + // any of the neighbouring caches are responding, and if + // so, we know it is dirty, and we can determine if it is + // being passed as Modified, making our MSHR the ordering + // point + bool pending_modified_resp = !pkt->hasSharers() && + pkt->cacheResponding(); + markInService(mshr, pending_modified_resp); + + if (pkt->isClean() && blk && blk->isDirty()) { + // A cache clean opearation is looking for a dirty + // block. If a dirty block is encountered a WriteClean + // will update any copies to the path to the memory + // until the point of reference. + DPRINTF(CacheVerbose, "%s: packet %s found block: %s\n", + __func__, pkt->print(), blk->print()); + PacketPtr wb_pkt = writecleanBlk(blk, pkt->req->getDest(), + pkt->id); + PacketList writebacks; + writebacks.push_back(wb_pkt); + doWritebacks(writebacks, 0); + } + + return false; + } +} + +bool +BaseCache::sendWriteQueuePacket(WriteQueueEntry* wq_entry) +{ + assert(wq_entry); + + // always a single target for write queue entries + PacketPtr tgt_pkt = wq_entry->getTarget()->pkt; + + DPRINTF(Cache, "%s: write %s\n", __func__, tgt_pkt->print()); + + // forward as is, both for evictions and uncacheable writes + if (!memSidePort.sendTimingReq(tgt_pkt)) { + // note that we have now masked any requestBus and + // schedSendEvent (we will wait for a retry before + // doing anything), and this is so even if we do not + // care about this packet and might override it before + // it gets retried + return true; + } else { + markInService(wq_entry); + return false; + } +} + +void +BaseCache::serialize(CheckpointOut &cp) const +{ + bool dirty(isDirty()); + + if (dirty) { + warn("*** The cache still contains dirty data. ***\n"); + warn(" Make sure to drain the system using the correct flags.\n"); + warn(" This checkpoint will not restore correctly " \ + "and dirty data in the cache will be lost!\n"); + } + + // Since we don't checkpoint the data in the cache, any dirty data + // will be lost when restoring from a checkpoint of a system that + // wasn't drained properly. Flag the checkpoint as invalid if the + // cache contains dirty data. + bool bad_checkpoint(dirty); + SERIALIZE_SCALAR(bad_checkpoint); +} + +void +BaseCache::unserialize(CheckpointIn &cp) +{ + bool bad_checkpoint; + UNSERIALIZE_SCALAR(bad_checkpoint); + if (bad_checkpoint) { + fatal("Restoring from checkpoints with dirty caches is not " + "supported in the classic memory system. Please remove any " + "caches or drain them properly before taking checkpoints.\n"); + } +} + +void BaseCache::regStats() { MemObject::regStats(); @@ -763,3 +2138,149 @@ BaseCache::regStats() .desc("number of replacements") ; } + +/////////////// +// +// CpuSidePort +// +/////////////// +bool +BaseCache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt) +{ + // Express snoop responses from master to slave, e.g., from L1 to L2 + cache->recvTimingSnoopResp(pkt); + return true; +} + + +bool +BaseCache::CpuSidePort::tryTiming(PacketPtr pkt) +{ + if (pkt->isExpressSnoop()) { + // always let express snoop packets through even if blocked + return true; + } else if (blocked || mustSendRetry) { + // either already committed to send a retry, or blocked + mustSendRetry = true; + return false; + } + mustSendRetry = false; + return true; +} + +bool +BaseCache::CpuSidePort::recvTimingReq(PacketPtr pkt) +{ + if (tryTiming(pkt)) { + cache->recvTimingReq(pkt); + return true; + } + return false; +} + +Tick +BaseCache::CpuSidePort::recvAtomic(PacketPtr pkt) +{ + return cache->recvAtomic(pkt); +} + +void +BaseCache::CpuSidePort::recvFunctional(PacketPtr pkt) +{ + // functional request + cache->functionalAccess(pkt, true); +} + +AddrRangeList +BaseCache::CpuSidePort::getAddrRanges() const +{ + return cache->getAddrRanges(); +} + + +BaseCache:: +CpuSidePort::CpuSidePort(const std::string &_name, BaseCache *_cache, + const std::string &_label) + : CacheSlavePort(_name, _cache, _label), cache(_cache) +{ +} + +/////////////// +// +// MemSidePort +// +/////////////// +bool +BaseCache::MemSidePort::recvTimingResp(PacketPtr pkt) +{ + cache->recvTimingResp(pkt); + return true; +} + +// Express snooping requests to memside port +void +BaseCache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt) +{ + // handle snooping requests + cache->recvTimingSnoopReq(pkt); +} + +Tick +BaseCache::MemSidePort::recvAtomicSnoop(PacketPtr pkt) +{ + return cache->recvAtomicSnoop(pkt); +} + +void +BaseCache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt) +{ + // functional snoop (note that in contrast to atomic we don't have + // a specific functionalSnoop method, as they have the same + // behaviour regardless) + cache->functionalAccess(pkt, false); +} + +void +BaseCache::CacheReqPacketQueue::sendDeferredPacket() +{ + // sanity check + assert(!waitingOnRetry); + + // there should never be any deferred request packets in the + // queue, instead we resly on the cache to provide the packets + // from the MSHR queue or write queue + assert(deferredPacketReadyTime() == MaxTick); + + // check for request packets (requests & writebacks) + QueueEntry* entry = cache.getNextQueueEntry(); + + if (!entry) { + // can happen if e.g. we attempt a writeback and fail, but + // before the retry, the writeback is eliminated because + // we snoop another cache's ReadEx. + } else { + // let our snoop responses go first if there are responses to + // the same addresses + if (checkConflictingSnoop(entry->blkAddr)) { + return; + } + waitingOnRetry = entry->sendPacket(cache); + } + + // if we succeeded and are not waiting for a retry, schedule the + // next send considering when the next queue is ready, note that + // snoop responses have their own packet queue and thus schedule + // their own events + if (!waitingOnRetry) { + schedSendEvent(cache.nextQueueReadyTime()); + } +} + +BaseCache::MemSidePort::MemSidePort(const std::string &_name, + BaseCache *_cache, + const std::string &_label) + : CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue), + _reqQueue(*_cache, *this, _snoopRespQueue, _label), + _snoopRespQueue(*_cache, *this, _label), cache(_cache) +{ +} |