summaryrefslogtreecommitdiff
path: root/src/mem/cache/cache_impl.hh
diff options
context:
space:
mode:
authorAndreas Hansson <andreas.hansson@arm.com>2012-04-14 05:45:07 -0400
committerAndreas Hansson <andreas.hansson@arm.com>2012-04-14 05:45:07 -0400
commitdccca0d3a9c985972d3d603190e62899d03825e8 (patch)
treef186c5b7c6656397f04660ec2e43a2cb1a6c11f6 /src/mem/cache/cache_impl.hh
parentb9bc530ad20bceeed6e43ea459d271046f43e70c (diff)
downloadgem5-dccca0d3a9c985972d3d603190e62899d03825e8.tar.xz
MEM: Separate snoops and normal memory requests/responses
This patch introduces port access methods that separates snoop request/responses from normal memory request/responses. The differentiation is made for functional, atomic and timing accesses and builds on the introduction of master and slave ports. Before the introduction of this patch, the packets belonging to the different phases of the protocol (request -> [forwarded snoop request -> snoop response]* -> response) all use the same port access functions, even though the snoop packets flow in the opposite direction to the normal packet. That is, a coherent master sends normal request and receives responses, but receives snoop requests and sends snoop responses (vice versa for the slave). These two distinct phases now use different access functions, as described below. Starting with the functional access, a master sends a request to a slave through sendFunctional, and the request packet is turned into a response before the call returns. In a system without cache coherence, this is all that is needed from the functional interface. For the cache-coherent scenario, a slave also sends snoop requests to coherent masters through sendFunctionalSnoop, with responses returned within the same packet pointer. This is currently used by the bus and caches, and the LSQ of the O3 CPU. The send/recvFunctional and send/recvFunctionalSnoop are moved from the Port super class to the appropriate subclass. Atomic accesses follow the same flow as functional accesses, with request being sent from master to slave through sendAtomic. In the case of cache-coherent ports, a slave can send snoop requests to a master through sendAtomicSnoop. Just as for the functional access methods, the atomic send and receive member functions are moved to the appropriate subclasses. The timing access methods are different from the functional and atomic in that requests and responses are separated in time and send/recvTiming are used for both directions. Hence, a master uses sendTiming to send a request to a slave, and a slave uses sendTiming to send a response back to a master, at a later point in time. Snoop requests and responses travel in the opposite direction, similar to what happens in functional and atomic accesses. With the introduction of this patch, it is possible to determine the direction of packets in the bus, and no longer necessary to look for both a master and a slave port with the requested port id. In contrast to the normal recvFunctional, recvAtomic and recvTiming that are pure virtual functions, the recvFunctionalSnoop, recvAtomicSnoop and recvTimingSnoop have a default implementation that calls panic. This is to allow non-coherent master and slave ports to not implement these functions.
Diffstat (limited to 'src/mem/cache/cache_impl.hh')
-rw-r--r--src/mem/cache/cache_impl.hh60
1 files changed, 39 insertions, 21 deletions
diff --git a/src/mem/cache/cache_impl.hh b/src/mem/cache/cache_impl.hh
index 3525e0777..fa6f6c860 100644
--- a/src/mem/cache/cache_impl.hh
+++ b/src/mem/cache/cache_impl.hh
@@ -785,7 +785,7 @@ Cache<TagStore>::functionalAccess(PacketPtr pkt, bool fromCpuSide)
} else if (forwardSnoops && cpuSidePort->getMasterPort().isSnooping()) {
// if it came from the memory side, it must be a snoop request
// and we should only forward it if we are forwarding snoops
- cpuSidePort->sendFunctional(pkt);
+ cpuSidePort->sendFunctionalSnoop(pkt);
}
}
}
@@ -1178,24 +1178,23 @@ Cache<TagStore>::handleSnoop(PacketPtr pkt, BlkType *blk,
// rewritten to be relative to cpu-side bus (if any)
bool alreadyResponded = pkt->memInhibitAsserted();
if (is_timing) {
- Packet *snoopPkt = new Packet(pkt, true); // clear flags
- snoopPkt->setExpressSnoop();
- snoopPkt->senderState = new ForwardResponseRecord(pkt, this);
- cpuSidePort->sendTiming(snoopPkt);
- if (snoopPkt->memInhibitAsserted()) {
+ Packet snoopPkt(pkt, true); // clear flags
+ snoopPkt.setExpressSnoop();
+ snoopPkt.senderState = new ForwardResponseRecord(pkt, this);
+ cpuSidePort->sendTimingSnoop(&snoopPkt);
+ if (snoopPkt.memInhibitAsserted()) {
// cache-to-cache response from some upper cache
assert(!alreadyResponded);
pkt->assertMemInhibit();
} else {
- delete snoopPkt->senderState;
+ delete snoopPkt.senderState;
}
- if (snoopPkt->sharedAsserted()) {
+ if (snoopPkt.sharedAsserted()) {
pkt->assertShared();
}
- delete snoopPkt;
} else {
- int origSrc = pkt->getSrc();
- cpuSidePort->sendAtomic(pkt);
+ Packet::NodeID origSrc = pkt->getSrc();
+ cpuSidePort->sendAtomicSnoop(pkt);
if (!alreadyResponded && pkt->memInhibitAsserted()) {
// cache-to-cache response from some upper cache:
// forward response to original requester
@@ -1335,6 +1334,16 @@ Cache<TagStore>::snoopTiming(PacketPtr pkt)
handleSnoop(pkt, blk, true, false, false);
}
+template<class TagStore>
+bool
+Cache<TagStore>::CpuSidePort::recvTimingSnoop(PacketPtr pkt)
+{
+ // Express snoop responses from master to slave, e.g., from L1 to L2
+ assert(pkt->isResponse());
+
+ cache->timingAccess(pkt);
+ return true;
+}
template<class TagStore>
Tick
@@ -1483,7 +1492,7 @@ Cache<TagStore>::getTimingPacket()
PacketPtr snoop_pkt = new Packet(tgt_pkt, true);
snoop_pkt->setExpressSnoop();
snoop_pkt->senderState = mshr;
- cpuSidePort->sendTiming(snoop_pkt);
+ cpuSidePort->sendTimingSnoop(snoop_pkt);
if (snoop_pkt->memInhibitAsserted()) {
markInService(mshr, snoop_pkt);
@@ -1550,8 +1559,9 @@ template<class TagStore>
bool
Cache<TagStore>::CpuSidePort::recvTiming(PacketPtr pkt)
{
- // illegal to block responses... can lead to deadlock
- if (pkt->isRequest() && !pkt->memInhibitAsserted() && blocked) {
+ assert(pkt->isRequest());
+ // always let inhibited requests through even if blocked
+ if (!pkt->memInhibitAsserted() && blocked) {
DPRINTF(Cache,"Scheduling a retry while blocked\n");
mustSendRetry = true;
return false;
@@ -1603,17 +1613,25 @@ Cache<TagStore>::MemSidePort::recvTiming(PacketPtr pkt)
if (pkt->wasNacked())
panic("Need to implement cache resending nacked packets!\n");
- if (pkt->isResponse()) {
- cache->handleResponse(pkt);
- } else {
- cache->snoopTiming(pkt);
- }
+ assert(pkt->isResponse());
+ cache->handleResponse(pkt);
+ return true;
+}
+
+// Express snooping requests to memside port
+template<class TagStore>
+bool
+Cache<TagStore>::MemSidePort::recvTimingSnoop(PacketPtr pkt)
+{
+ // handle snooping requests
+ assert(pkt->isRequest());
+ cache->snoopTiming(pkt);
return true;
}
template<class TagStore>
Tick
-Cache<TagStore>::MemSidePort::recvAtomic(PacketPtr pkt)
+Cache<TagStore>::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
{
assert(pkt->isRequest());
// atomic snoop
@@ -1622,7 +1640,7 @@ Cache<TagStore>::MemSidePort::recvAtomic(PacketPtr pkt)
template<class TagStore>
void
-Cache<TagStore>::MemSidePort::recvFunctional(PacketPtr pkt)
+Cache<TagStore>::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
{
assert(pkt->isRequest());
// functional snoop (note that in contrast to atomic we don't have