diff options
author | Andreas Hansson <andreas.hansson@arm.com> | 2012-02-13 06:43:09 -0500 |
---|---|---|
committer | Andreas Hansson <andreas.hansson@arm.com> | 2012-02-13 06:43:09 -0500 |
commit | 5a9a743cfc4517f93e5c94533efa767b92272c59 (patch) | |
tree | f3dbc078a51e5759b26b1a5f16263ddb1cf55a7b /src/mem/cache | |
parent | 8cb4a2208d568eb86ad3f6c6bb250bcbe2952302 (diff) | |
download | gem5-5a9a743cfc4517f93e5c94533efa767b92272c59.tar.xz |
MEM: Introduce the master/slave port roles in the Python classes
This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.
The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.
Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
Diffstat (limited to 'src/mem/cache')
-rw-r--r-- | src/mem/cache/BaseCache.py | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/src/mem/cache/BaseCache.py b/src/mem/cache/BaseCache.py index 4389eb356..adc48a461 100644 --- a/src/mem/cache/BaseCache.py +++ b/src/mem/cache/BaseCache.py @@ -58,7 +58,7 @@ class BaseCache(MemObject): prefetch_on_access = Param.Bool(False, "notify the hardware prefetcher on every access (not just misses)") prefetcher = Param.BasePrefetcher(NULL,"Prefetcher attached to cache") - cpu_side = Port("Port on side closer to CPU") - mem_side = Port("Port on side closer to MEM") + cpu_side = SlavePort("Port on side closer to CPU") + mem_side = MasterPort("Port on side closer to MEM") addr_range = Param.AddrRange(AllMemory, "The address range for the CPU-side port") system = Param.System(Parent.any, "System we belong to") |