summaryrefslogtreecommitdiff
path: root/src/mem/ruby/network/simple/Topology.cc
diff options
context:
space:
mode:
authorNathan Binkert <nate@binkert.org>2009-05-11 10:38:43 -0700
committerNathan Binkert <nate@binkert.org>2009-05-11 10:38:43 -0700
commit2f30950143cc70bc42a3c8a4111d7cf8198ec881 (patch)
tree708f6c22edb3c6feb31dd82866c26623a5329580 /src/mem/ruby/network/simple/Topology.cc
parentc70241810d4e4f523f173c1646b008dc40faad8e (diff)
downloadgem5-2f30950143cc70bc42a3c8a4111d7cf8198ec881.tar.xz
ruby: Import ruby and slicc from GEMS
We eventually plan to replace the m5 cache hierarchy with the GEMS hierarchy, but for now we will make both live alongside eachother.
Diffstat (limited to 'src/mem/ruby/network/simple/Topology.cc')
-rw-r--r--src/mem/ruby/network/simple/Topology.cc801
1 files changed, 801 insertions, 0 deletions
diff --git a/src/mem/ruby/network/simple/Topology.cc b/src/mem/ruby/network/simple/Topology.cc
new file mode 100644
index 000000000..db886052f
--- /dev/null
+++ b/src/mem/ruby/network/simple/Topology.cc
@@ -0,0 +1,801 @@
+
+/*
+ * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Topology.C
+ *
+ * Description: See Topology.h
+ *
+ * $Id$
+ *
+ * */
+
+#include "Topology.hh"
+#include "NetDest.hh"
+#include "Network.hh"
+#include "TopologyType.hh"
+#include "RubyConfig.hh"
+#include "util.hh"
+#include "MachineType.hh"
+#include "Protocol.hh"
+#include <string>
+
+static const int INFINITE_LATENCY = 10000; // Yes, this is a big hack
+static const int DEFAULT_BW_MULTIPLIER = 1; // Just to be consistent with above :)
+
+// Note: In this file, we use the first 2*m_nodes SwitchIDs to
+// represent the input and output endpoint links. These really are
+// not 'switches', as they will not have a Switch object allocated for
+// them. The first m_nodes SwitchIDs are the links into the network,
+// the second m_nodes set of SwitchIDs represent the the output queues
+// of the network.
+
+// Helper functions based on chapter 29 of Cormen et al.
+static Matrix extend_shortest_path(const Matrix& current_dist, Matrix& latencies, Matrix& inter_switches);
+static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches);
+static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final, const Matrix& weights, const Matrix& dist);
+static NetDest shortest_path_to_node(SwitchID src, SwitchID next, const Matrix& weights, const Matrix& dist);
+
+
+Topology::Topology(Network* network_ptr, int number_of_nodes)
+{
+ m_network_ptr = network_ptr;
+ m_nodes = number_of_nodes;
+ m_number_of_switches = 0;
+ init();
+}
+
+void Topology::init()
+{
+ if (m_nodes == 1) {
+ SwitchID id = newSwitchID();
+ addLink(0, id, NETWORK_LINK_LATENCY);
+ addLink(id, 1, NETWORK_LINK_LATENCY);
+ return;
+ }
+
+ // topology-specific set-up
+ TopologyType topology = string_to_TopologyType(g_NETWORK_TOPOLOGY);
+ switch (topology) {
+ case TopologyType_TORUS_2D:
+ make2DTorus();
+ break;
+ case TopologyType_HIERARCHICAL_SWITCH:
+ makeHierarchicalSwitch(FAN_OUT_DEGREE);
+ break;
+ case TopologyType_CROSSBAR:
+ makeHierarchicalSwitch(1024);
+ break;
+ case TopologyType_PT_TO_PT:
+ makePtToPt();
+ break;
+ case TopologyType_FILE_SPECIFIED:
+ makeFileSpecified();
+ break;
+ default:
+ ERROR_MSG("Unexpected typology type")
+ }
+
+ // initialize component latencies record
+ m_component_latencies.setSize(0);
+ m_component_inter_switches.setSize(0);
+}
+
+void Topology::makeSwitchesPerChip(Vector< Vector < SwitchID > > &nodePairs, Vector<int> &latencies, Vector<int> &bw_multis, int numberOfChipSwitches)
+{
+
+ Vector < SwitchID > nodes; // temporary buffer
+ nodes.setSize(2);
+
+ Vector<bool> endpointConnectionExist; // used to ensure all endpoints are connected to the network
+ endpointConnectionExist.setSize(m_nodes);
+ // initialize endpoint check vector
+ for (int k = 0; k < endpointConnectionExist.size(); k++) {
+ endpointConnectionExist[k] = false;
+ }
+
+ Vector<int> componentCount;
+ componentCount.setSize(MachineType_NUM);
+ for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
+ componentCount[mType] = 0;
+ }
+
+ // components to/from network links
+ for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {
+ for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
+ for (int component = 0; component < MachineType_chip_count(mType, chip); component++) {
+
+ int latency = -1;
+ int bw_multiplier = -1; // internal link bw multiplier of the global bandwidth
+ if (mType != MachineType_Directory) {
+ latency = ON_CHIP_LINK_LATENCY; // internal link latency
+ bw_multiplier = 10; // internal link bw multiplier of the global bandwidth
+ } else {
+ latency = NETWORK_LINK_LATENCY; // local memory latency
+ bw_multiplier = 1; // local memory link bw multiplier of the global bandwidth
+ }
+ nodes[0] = MachineType_base_number(mType)+componentCount[mType];
+ nodes[1] = chip+m_nodes*2; // this is the chip's internal switch id #
+
+ // insert link
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ //bw_multis.insertAtBottom(bw_multiplier);
+ bw_multis.insertAtBottom(componentCount[mType]+MachineType_base_number((MachineType)mType));
+
+ // opposite direction link
+ Vector < SwitchID > otherDirectionNodes;
+ otherDirectionNodes.setSize(2);
+ otherDirectionNodes[0] = nodes[1];
+ otherDirectionNodes[1] = nodes[0]+m_nodes;
+ nodePairs.insertAtBottom(otherDirectionNodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ assert(!endpointConnectionExist[nodes[0]]);
+ endpointConnectionExist[nodes[0]] = true;
+ componentCount[mType]++;
+ }
+ }
+ }
+
+ // make sure all enpoints are connected in the soon to be created network
+ for (int k = 0; k < endpointConnectionExist.size(); k++) {
+ if (endpointConnectionExist[k] == false) {
+ cerr << "Error: Unconnected Endpoint: " << k << endl;
+ exit(1);
+ }
+ }
+
+ // secondary check to ensure we saw the correct machine counts
+ for (MachineType mType = MachineType_FIRST; mType < MachineType_NUM; ++mType) {
+ assert(componentCount[mType] == MachineType_base_count((MachineType)mType));
+ }
+
+}
+
+// 2D torus topology
+
+void Topology::make2DTorus()
+{
+ Vector< Vector < SwitchID > > nodePairs; // node pairs extracted from the file
+ Vector<int> latencies; // link latencies for each link extracted
+ Vector<int> bw_multis; // bw multipliers for each link extracted
+
+ Vector < SwitchID > nodes; // temporary buffer
+ nodes.setSize(2);
+
+ // number of inter-chip switches
+ int numberOfTorusSwitches = m_nodes/MachineType_base_level(MachineType_NUM);
+ // one switch per machine node grouping
+ Vector<SwitchID> torusSwitches;
+ for(int i=0; i<numberOfTorusSwitches; i++){
+ SwitchID new_switch = newSwitchID();
+ torusSwitches.insertAtBottom(new_switch);
+ }
+
+ makeSwitchesPerChip(nodePairs, latencies, bw_multis, numberOfTorusSwitches);
+
+ int lengthOfSide = (int)sqrt((double)numberOfTorusSwitches);
+
+ // Now connect the inter-chip torus links
+
+ int latency = NETWORK_LINK_LATENCY; // external link latency
+ int bw_multiplier = 1; // external link bw multiplier of the global bandwidth
+
+ for(int i=0; i<numberOfTorusSwitches; i++){
+ nodes[0] = torusSwitches[i]; // current switch
+
+ // left
+ if(nodes[0]%lengthOfSide == 0){ // determine left neighbor
+ nodes[1] = nodes[0] - 1 + lengthOfSide;
+ } else {
+ nodes[1] = nodes[0] - 1;
+ }
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ // right
+ if((nodes[0] + 1)%lengthOfSide == 0){ // determine right neighbor
+ nodes[1] = nodes[0] + 1 - lengthOfSide;
+ } else {
+ nodes[1] = nodes[0] + 1;
+ }
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ // top
+ if(nodes[0] - lengthOfSide < 2*m_nodes){ // determine if node is on the top
+ nodes[1] = nodes[0] - lengthOfSide + (lengthOfSide*lengthOfSide);
+ } else {
+ nodes[1] = nodes[0] - lengthOfSide;
+ }
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ // bottom
+ if(nodes[0] + lengthOfSide >= 2*m_nodes+numberOfTorusSwitches){ // determine if node is on the bottom
+ // sorin: bad bug if this is a > instead of a >=
+ nodes[1] = nodes[0] + lengthOfSide - (lengthOfSide*lengthOfSide);
+ } else {
+ nodes[1] = nodes[0] + lengthOfSide;
+ }
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ }
+
+ // add links
+ ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size())
+ for (int k = 0; k < nodePairs.size(); k++) {
+ ASSERT(nodePairs[k].size() == 2);
+ addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k]);
+ }
+
+}
+
+// hierarchical switch topology
+void Topology::makeHierarchicalSwitch(int fan_out_degree)
+{
+ // Make a row of switches with only one input. This extra row makes
+ // sure the links out of the nodes have latency and limited
+ // bandwidth.
+
+ // number of inter-chip switches, i.e. the last row of switches
+ Vector<SwitchID> last_level;
+ for (int i=0; i<m_nodes; i++) {
+ SwitchID new_switch = newSwitchID(); // internal switch id #
+ addLink(i, new_switch, NETWORK_LINK_LATENCY);
+ last_level.insertAtBottom(new_switch);
+ }
+
+ // Create Hierarchical Switches
+
+ // start from the bottom level and work up to root
+ Vector<SwitchID> next_level;
+ while(last_level.size() > 1) {
+ for (int i=0; i<last_level.size(); i++) {
+ if ((i % fan_out_degree) == 0) {
+ next_level.insertAtBottom(newSwitchID());
+ }
+ // Add this link to the last switch we created
+ addLink(last_level[i], next_level[next_level.size()-1], NETWORK_LINK_LATENCY);
+ }
+
+ // Make the current level the last level to get ready for next
+ // iteration
+ last_level = next_level;
+ next_level.clear();
+ }
+
+ SwitchID root_switch = last_level[0];
+
+ Vector<SwitchID> out_level;
+ for (int i=0; i<m_nodes; i++) {
+ out_level.insertAtBottom(m_nodes+i);
+ }
+
+ // Build the down network from the endpoints to the root
+ while(out_level.size() != 1) {
+
+ // A level of switches
+ for (int i=0; i<out_level.size(); i++) {
+ if ((i % fan_out_degree) == 0) {
+ if (out_level.size() > fan_out_degree) {
+ next_level.insertAtBottom(newSwitchID());
+ } else {
+ next_level.insertAtBottom(root_switch);
+ }
+ }
+ // Add this link to the last switch we created
+ addLink(next_level[next_level.size()-1], out_level[i], NETWORK_LINK_LATENCY);
+ }
+
+ // Make the current level the last level to get ready for next
+ // iteration
+ out_level = next_level;
+ next_level.clear();
+ }
+}
+
+// one internal node per chip, point to point links between chips
+void Topology::makePtToPt()
+{
+ Vector< Vector < SwitchID > > nodePairs; // node pairs extracted from the file
+ Vector<int> latencies; // link latencies for each link extracted
+ Vector<int> bw_multis; // bw multipliers for each link extracted
+
+ Vector < SwitchID > nodes;
+ nodes.setSize(2);
+
+ // number of inter-chip switches
+ int numberOfChipSwitches = m_nodes/MachineType_base_level(MachineType_NUM);
+ // two switches per machine node grouping
+ // one intra-chip switch and one inter-chip switch per chip
+ for(int i=0; i<numberOfChipSwitches; i++){
+ SwitchID new_switch = newSwitchID();
+ new_switch = newSwitchID();
+ }
+
+ makeSwitchesPerChip(nodePairs, latencies, bw_multis, numberOfChipSwitches);
+
+ // connect intra-chip switch to inter-chip switch
+ for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {
+
+ int latency = ON_CHIP_LINK_LATENCY; // internal link latency
+ int bw_multiplier = 10; // external link bw multiplier of the global bandwidth
+
+ nodes[0] = chip+m_nodes*2;
+ nodes[1] = chip+m_nodes*2+RubyConfig::numberOfChips();
+
+ // insert link
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ // opposite direction link
+ Vector < SwitchID > otherDirectionNodes;
+ otherDirectionNodes.setSize(2);
+ otherDirectionNodes[0] = nodes[1];
+ otherDirectionNodes[1] = nodes[0];
+ nodePairs.insertAtBottom(otherDirectionNodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+ }
+
+ // point-to-point network between chips
+ for (int chip = 0; chip < RubyConfig::numberOfChips(); chip++) {
+ for (int other_chip = chip+1; other_chip < RubyConfig::numberOfChips(); other_chip++) {
+
+ int latency = NETWORK_LINK_LATENCY; // external link latency
+ int bw_multiplier = 1; // external link bw multiplier of the global bandwidth
+
+ nodes[0] = chip+m_nodes*2+RubyConfig::numberOfChips();
+ nodes[1] = other_chip+m_nodes*2+RubyConfig::numberOfChips();
+
+ // insert link
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+
+ // opposite direction link
+ Vector < SwitchID > otherDirectionNodes;
+ otherDirectionNodes.setSize(2);
+ otherDirectionNodes[0] = nodes[1];
+ otherDirectionNodes[1] = nodes[0];
+ nodePairs.insertAtBottom(otherDirectionNodes);
+ latencies.insertAtBottom(latency);
+ bw_multis.insertAtBottom(bw_multiplier);
+ }
+ }
+
+ // add links
+ ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size())
+ for (int k = 0; k < nodePairs.size(); k++) {
+ ASSERT(nodePairs[k].size() == 2);
+ addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k]);
+ }
+}
+
+// make a network as described by the networkFile
+void Topology::makeFileSpecified()
+{
+
+ Vector< Vector < SwitchID > > nodePairs; // node pairs extracted from the file
+ Vector<int> latencies; // link latencies for each link extracted
+ Vector<int> bw_multis; // bw multipliers for each link extracted
+ Vector<int> weights; // link weights used to enfore e-cube deadlock free routing
+ Vector< SwitchID > int_network_switches; // internal switches extracted from the file
+ Vector<bool> endpointConnectionExist; // used to ensure all endpoints are connected to the network
+
+ endpointConnectionExist.setSize(m_nodes);
+
+ // initialize endpoint check vector
+ for (int k = 0; k < endpointConnectionExist.size(); k++) {
+ endpointConnectionExist[k] = false;
+ }
+
+ string filename = "network/simple/Network_Files/";
+ filename = filename+g_CACHE_DESIGN
+ +"_Procs-"+int_to_string(RubyConfig::numberOfProcessors())
+ +"_ProcsPerChip-"+int_to_string(RubyConfig::numberOfProcsPerChip())
+ +"_L2Banks-"+int_to_string(RubyConfig::numberOfL2Cache())
+ +"_Memories-"+int_to_string(RubyConfig::numberOfMemories())
+ +".txt";
+
+ if (g_SIMICS) {
+ filename = "../../../ruby/"+filename;
+ }
+ ifstream networkFile( filename.c_str() , ios::in);
+ if (!networkFile.is_open()) {
+ cerr << "Error: Could not open network file: " << filename << endl;
+ cerr << "Probably no network file exists for " << RubyConfig::numberOfProcessors()
+ << " processors and " << RubyConfig::numberOfProcsPerChip() << " procs per chip " << endl;
+ exit(1);
+ }
+
+ string line = "";
+
+ while (!networkFile.eof()) {
+
+ Vector < SwitchID > nodes;
+ nodes.setSize(2);
+ int latency = -1; // null latency
+ int weight = -1; // null weight
+ int bw_multiplier = DEFAULT_BW_MULTIPLIER; // default multiplier incase the network file doesn't define it
+ int i = 0; // node pair index
+ int varsFound = 0; // number of varsFound on the line
+ int internalNodes = 0; // used to determine if the link is between 2 internal nodes
+ std::getline(networkFile, line, '\n');
+ string varStr = string_split(line, ' ');
+
+ // parse the current line in the file
+ while (varStr != "") {
+ string label = string_split(varStr, ':');
+
+ // valid node labels
+ if (label == "ext_node" || label == "int_node") {
+ ASSERT(i < 2); // one link between 2 switches per line
+ varsFound++;
+ bool isNewIntSwitch = true;
+ if (label == "ext_node") { // input link to node
+ MachineType machine = string_to_MachineType(string_split(varStr, ':'));
+ string nodeStr = string_split(varStr, ':');
+ if (string_split(varStr, ':') == "bank") {
+ nodes[i] = MachineType_base_number(machine)
+ + atoi(nodeStr.c_str())
+ + atoi((string_split(varStr, ':')).c_str())*RubyConfig::numberOfChips();
+ } else {
+ nodes[i] = MachineType_base_number(machine)
+ + atoi(nodeStr.c_str());
+ }
+ // in nodes should be numbered 0 to m_nodes-1
+ ASSERT(nodes[i] >= 0 && nodes[i] < m_nodes);
+ isNewIntSwitch = false;
+ endpointConnectionExist[nodes[i]] = true;
+ }
+ if (label == "int_node") { // interior node
+ nodes[i] = atoi((string_split(varStr, ':')).c_str())+m_nodes*2;
+ // in nodes should be numbered >= m_nodes*2
+ ASSERT(nodes[i] >= m_nodes*2);
+ for (int k = 0; k < int_network_switches.size(); k++) {
+ if (int_network_switches[k] == nodes[i]) {
+ isNewIntSwitch = false;
+ }
+ }
+ if (isNewIntSwitch) { // if internal switch
+ m_number_of_switches++;
+ int_network_switches.insertAtBottom(nodes[i]);
+ }
+ internalNodes++;
+ }
+ i++;
+ } else if (label == "link_latency") {
+ latency = atoi((string_split(varStr, ':')).c_str());
+ varsFound++;
+ } else if (label == "bw_multiplier") { // not necessary, defaults to DEFAULT_BW_MULTIPLIER
+ bw_multiplier = atoi((string_split(varStr, ':')).c_str());
+ } else if (label == "link_weight") { // not necessary, defaults to link_latency
+ weight = atoi((string_split(varStr, ':')).c_str());
+ } else if (label == "processors") {
+ ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfProcessors());
+ } else if (label == "bw_unit") {
+ ASSERT(atoi((string_split(varStr, ':')).c_str()) == g_endpoint_bandwidth);
+ } else if (label == "procs_per_chip") {
+ ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfProcsPerChip());
+ } else if (label == "L2banks") {
+ ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfL2Cache());
+ } else if (label == "memories") {
+ ASSERT(atoi((string_split(varStr, ':')).c_str()) == RubyConfig::numberOfMemories());
+ } else {
+ cerr << "Error: Unexpected Identifier: " << label << endl;
+ exit(1);
+ }
+ varStr = string_split(line, ' ');
+ }
+ if (varsFound == 3) { // all three necessary link variables where found so add the link
+ nodePairs.insertAtBottom(nodes);
+ latencies.insertAtBottom(latency);
+ if (weight != -1) {
+ weights.insertAtBottom(weight);
+ } else {
+ weights.insertAtBottom(latency);
+ }
+ bw_multis.insertAtBottom(bw_multiplier);
+ Vector < SwitchID > otherDirectionNodes;
+ otherDirectionNodes.setSize(2);
+ otherDirectionNodes[0] = nodes[1];
+ if (internalNodes == 2) { // this is an internal link
+ otherDirectionNodes[1] = nodes[0];
+ } else {
+ otherDirectionNodes[1] = nodes[0]+m_nodes;
+ }
+ nodePairs.insertAtBottom(otherDirectionNodes);
+ latencies.insertAtBottom(latency);
+ if (weight != -1) {
+ weights.insertAtBottom(weight);
+ } else {
+ weights.insertAtBottom(latency);
+ }
+ bw_multis.insertAtBottom(bw_multiplier);
+ } else {
+ if (varsFound != 0) { // if this is not a valid link, then no vars should have been found
+ cerr << "Error in line: " << line << endl;
+ exit(1);
+ }
+ }
+ } // end of file
+
+ // makes sure all enpoints are connected in the soon to be created network
+ for (int k = 0; k < endpointConnectionExist.size(); k++) {
+ if (endpointConnectionExist[k] == false) {
+ cerr << "Error: Unconnected Endpoint: " << k << endl;
+ exit(1);
+ }
+ }
+
+ ASSERT(nodePairs.size() == latencies.size() && latencies.size() == bw_multis.size() && latencies.size() == weights.size())
+ for (int k = 0; k < nodePairs.size(); k++) {
+ ASSERT(nodePairs[k].size() == 2);
+ addLink(nodePairs[k][0], nodePairs[k][1], latencies[k], bw_multis[k], weights[k]);
+ }
+
+ networkFile.close();
+}
+
+void Topology::createLinks(bool isReconfiguration)
+{
+ // Find maximum switchID
+
+ SwitchID max_switch_id = 0;
+ for (int i=0; i<m_links_src_vector.size(); i++) {
+ max_switch_id = max(max_switch_id, m_links_src_vector[i]);
+ max_switch_id = max(max_switch_id, m_links_dest_vector[i]);
+ }
+
+ // Initialize weight vector
+ Matrix topology_weights;
+ Matrix topology_latency;
+ Matrix topology_bw_multis;
+ int num_switches = max_switch_id+1;
+ topology_weights.setSize(num_switches);
+ topology_latency.setSize(num_switches);
+ topology_bw_multis.setSize(num_switches);
+ m_component_latencies.setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
+ m_component_inter_switches.setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
+ for(int i=0; i<topology_weights.size(); i++) {
+ topology_weights[i].setSize(num_switches);
+ topology_latency[i].setSize(num_switches);
+ topology_bw_multis[i].setSize(num_switches);
+ m_component_latencies[i].setSize(num_switches);
+ m_component_inter_switches[i].setSize(num_switches); // FIXME setting the size of a member variable here is a HACK!
+ for(int j=0; j<topology_weights[i].size(); j++) {
+ topology_weights[i][j] = INFINITE_LATENCY;
+ topology_latency[i][j] = -1; // initialize to an invalid value
+ topology_bw_multis[i][j] = -1; // initialize to an invalid value
+ m_component_latencies[i][j] = -1; // initialize to an invalid value
+ m_component_inter_switches[i][j] = 0; // initially assume direct connections / no intermediate switches between components
+ }
+ }
+
+ // Set identity weights to zero
+ for(int i=0; i<topology_weights.size(); i++) {
+ topology_weights[i][i] = 0;
+ }
+
+ // Fill in the topology weights and bandwidth multipliers
+ for (int i=0; i<m_links_src_vector.size(); i++) {
+ topology_weights[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_weight_vector[i];
+ topology_latency[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i];
+ m_component_latencies[m_links_src_vector[i]][m_links_dest_vector[i]] = m_links_latency_vector[i]; // initialize to latency vector
+ topology_bw_multis[m_links_src_vector[i]][m_links_dest_vector[i]] = m_bw_multiplier_vector[i];
+ }
+
+ // Walk topology and hookup the links
+ Matrix dist = shortest_path(topology_weights, m_component_latencies, m_component_inter_switches);
+ for(int i=0; i<topology_weights.size(); i++) {
+ for(int j=0; j<topology_weights[i].size(); j++) {
+ int weight = topology_weights[i][j];
+ int bw_multiplier = topology_bw_multis[i][j];
+ int latency = topology_latency[i][j];
+ if (weight > 0 && weight != INFINITE_LATENCY) {
+ NetDest destination_set = shortest_path_to_node(i, j, topology_weights, dist);
+ assert(latency != -1);
+ makeLink(i, j, destination_set, latency, weight, bw_multiplier, isReconfiguration);
+ }
+ }
+ }
+}
+
+SwitchID Topology::newSwitchID()
+{
+ m_number_of_switches++;
+ return m_number_of_switches-1+m_nodes+m_nodes;
+}
+
+void Topology::addLink(SwitchID src, SwitchID dest, int link_latency)
+{
+ addLink(src, dest, link_latency, DEFAULT_BW_MULTIPLIER, link_latency);
+}
+
+void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier)
+{
+ addLink(src, dest, link_latency, bw_multiplier, link_latency);
+}
+
+void Topology::addLink(SwitchID src, SwitchID dest, int link_latency, int bw_multiplier, int link_weight)
+{
+ ASSERT(src <= m_number_of_switches+m_nodes+m_nodes);
+ ASSERT(dest <= m_number_of_switches+m_nodes+m_nodes);
+ m_links_src_vector.insertAtBottom(src);
+ m_links_dest_vector.insertAtBottom(dest);
+ m_links_latency_vector.insertAtBottom(link_latency);
+ m_links_weight_vector.insertAtBottom(link_weight);
+ m_bw_multiplier_vector.insertAtBottom(bw_multiplier);
+}
+
+void Topology::makeLink(SwitchID src, SwitchID dest, const NetDest& routing_table_entry, int link_latency, int link_weight, int bw_multiplier, bool isReconfiguration)
+{
+ // Make sure we're not trying to connect two end-point nodes directly together
+ assert((src >= 2*m_nodes) || (dest >= 2*m_nodes));
+
+ if (src < m_nodes) {
+ m_network_ptr->makeInLink(src, dest-(2*m_nodes), routing_table_entry, link_latency, bw_multiplier, isReconfiguration);
+ } else if (dest < 2*m_nodes) {
+ assert(dest >= m_nodes);
+ NodeID node = dest-m_nodes;
+ m_network_ptr->makeOutLink(src-(2*m_nodes), node, routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
+ } else {
+ assert((src >= 2*m_nodes) && (dest >= 2*m_nodes));
+ m_network_ptr->makeInternalLink(src-(2*m_nodes), dest-(2*m_nodes), routing_table_entry, link_latency, link_weight, bw_multiplier, isReconfiguration);
+ }
+}
+
+void Topology::printConfig(ostream& out) const
+{
+ assert(m_component_latencies.size() > 0);
+
+ out << "--- Begin Topology Print ---" << endl;
+ out << endl;
+ out << "Topology print ONLY indicates the _NETWORK_ latency between two machines" << endl;
+ out << "It does NOT include the latency within the machines" << endl;
+ out << endl;
+ for (int m=0; m<MachineType_NUM; m++) {
+ for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
+ MachineID cur_mach = {(MachineType)m, i};
+ out << cur_mach << " Network Latencies" << endl;
+ for (int n=0; n<MachineType_NUM; n++) {
+ for (int j=0; j<MachineType_base_count((MachineType)n); j++) {
+ MachineID dest_mach = {(MachineType)n, j};
+ if (cur_mach != dest_mach) {
+ int link_latency = m_component_latencies[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
+ int intermediate_switches = m_component_inter_switches[MachineType_base_number((MachineType)m)+i][MachineType_base_number(MachineType_NUM)+MachineType_base_number((MachineType)n)+j];
+ out << " " << cur_mach << " -> " << dest_mach << " net_lat: "
+ << link_latency+intermediate_switches << endl; // NOTE switches are assumed to have single cycle latency
+ }
+ }
+ }
+ out << endl;
+ }
+ }
+
+ out << "--- End Topology Print ---" << endl;
+}
+
+/**************************************************************************/
+
+// The following all-pairs shortest path algorithm is based on the
+// discussion from Cormen et al., Chapter 26.1.
+
+static void extend_shortest_path(Matrix& current_dist, Matrix& latencies, Matrix& inter_switches)
+{
+ bool change = true;
+ int nodes = current_dist.size();
+
+ while (change) {
+ change = false;
+ for (int i=0; i<nodes; i++) {
+ for (int j=0; j<nodes; j++) {
+ int minimum = current_dist[i][j];
+ int previous_minimum = minimum;
+ int intermediate_switch = -1;
+ for (int k=0; k<nodes; k++) {
+ minimum = min(minimum, current_dist[i][k] + current_dist[k][j]);
+ if (previous_minimum != minimum) {
+ intermediate_switch = k;
+ inter_switches[i][j] = inter_switches[i][k] + inter_switches[k][j] + 1;
+ }
+ previous_minimum = minimum;
+ }
+ if (current_dist[i][j] != minimum) {
+ change = true;
+ current_dist[i][j] = minimum;
+ assert(intermediate_switch >= 0);
+ assert(intermediate_switch < latencies[i].size());
+ latencies[i][j] = latencies[i][intermediate_switch] + latencies[intermediate_switch][j];
+ }
+ }
+ }
+ }
+}
+
+static Matrix shortest_path(const Matrix& weights, Matrix& latencies, Matrix& inter_switches)
+{
+ Matrix dist = weights;
+ extend_shortest_path(dist, latencies, inter_switches);
+ return dist;
+}
+
+static bool link_is_shortest_path_to_node(SwitchID src, SwitchID next, SwitchID final,
+ const Matrix& weights, const Matrix& dist)
+{
+ return (weights[src][next] + dist[next][final] == dist[src][final]);
+}
+
+static NetDest shortest_path_to_node(SwitchID src, SwitchID next,
+ const Matrix& weights, const Matrix& dist)
+{
+ NetDest result;
+ int d = 0;
+ int machines;
+ int max_machines;
+
+ machines = MachineType_NUM;
+ max_machines = MachineType_base_number(MachineType_NUM);
+
+ for (int m=0; m<machines; m++) {
+ for (int i=0; i<MachineType_base_count((MachineType)m); i++) {
+ // we use "d+max_machines" below since the "destination" switches for the machines are numbered
+ // [MachineType_base_number(MachineType_NUM)...2*MachineType_base_number(MachineType_NUM)-1]
+ // for the component network
+ if (link_is_shortest_path_to_node(src, next,
+ d+max_machines,
+ weights, dist)) {
+ MachineID mach = {(MachineType)m, i};
+ result.add(mach);
+ }
+ d++;
+ }
+ }
+
+ DEBUG_MSG(NETWORK_COMP, MedPrio, "returning shortest path");
+ DEBUG_EXPR(NETWORK_COMP, MedPrio, (src-(2*max_machines)));
+ DEBUG_EXPR(NETWORK_COMP, MedPrio, (next-(2*max_machines)));
+ DEBUG_EXPR(NETWORK_COMP, MedPrio, src);
+ DEBUG_EXPR(NETWORK_COMP, MedPrio, next);
+ DEBUG_EXPR(NETWORK_COMP, MedPrio, result);
+ DEBUG_NEWLINE(NETWORK_COMP, MedPrio);
+
+ return result;
+}
+