summaryrefslogtreecommitdiff
path: root/src/mem
diff options
context:
space:
mode:
authorAndreas Hansson <andreas.hansson@arm.com>2015-08-21 07:03:20 -0400
committerAndreas Hansson <andreas.hansson@arm.com>2015-08-21 07:03:20 -0400
commit1bf389a2bf95980efa6d2648a05bda2634dbec64 (patch)
tree0adf900f2348eeda2bb211a3e93e275169092bc0 /src/mem
parentae06e9a5c640e376d8997409180e4ac1d57838b2 (diff)
downloadgem5-1bf389a2bf95980efa6d2648a05bda2634dbec64.tar.xz
mem: Move cache_impl.hh to cache.cc
There is no longer any need to keep the implementation in a header.
Diffstat (limited to 'src/mem')
-rw-r--r--src/mem/cache/base.hh6
-rw-r--r--src/mem/cache/cache.cc2483
-rw-r--r--src/mem/cache/cache.hh6
-rw-r--r--src/mem/cache/cache_impl.hh2514
4 files changed, 2481 insertions, 2528 deletions
diff --git a/src/mem/cache/base.hh b/src/mem/cache/base.hh
index c3bf6fe87..3e6f5cab2 100644
--- a/src/mem/cache/base.hh
+++ b/src/mem/cache/base.hh
@@ -47,8 +47,8 @@
* Declares a basic cache interface BaseCache.
*/
-#ifndef __BASE_CACHE_HH__
-#define __BASE_CACHE_HH__
+#ifndef __MEM_CACHE_BASE_HH__
+#define __MEM_CACHE_BASE_HH__
#include <algorithm>
#include <list>
@@ -597,4 +597,4 @@ class BaseCache : public MemObject
};
-#endif //__BASE_CACHE_HH__
+#endif //__MEM_CACHE_BASE_HH__
diff --git a/src/mem/cache/cache.cc b/src/mem/cache/cache.cc
index 2bf5a260c..2426a0636 100644
--- a/src/mem/cache/cache.cc
+++ b/src/mem/cache/cache.cc
@@ -1,5 +1,18 @@
/*
- * Copyright (c) 2004-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010-2015 ARM Limited
+ * All rights reserved.
+ *
+ * The license below extends only to copyright in the software and shall
+ * not be construed as granting a license to any other intellectual
+ * property including but not limited to intellectual property relating
+ * to a hardware implementation of the functionality of the software
+ * licensed hereunder. You may use the software subject to the license
+ * terms below provided that you ensure that this notice is replicated
+ * unmodified and in its entirety in all distributions of the software,
+ * modified or unmodified, in source code or in binary form.
+ *
+ * Copyright (c) 2002-2005 The Regents of The University of Michigan
+ * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -26,18 +39,2472 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Authors: Erik Hallnor
+ * Dave Greene
+ * Nathan Binkert
* Steve Reinhardt
- * Lisa Hsu
- * Kevin Lim
+ * Ron Dreslinski
+ * Andreas Sandberg
*/
/**
* @file
- * Cache template instantiations.
+ * Cache definitions.
*/
-#include "mem/cache/tags/fa_lru.hh"
-#include "mem/cache/tags/lru.hh"
-#include "mem/cache/tags/random_repl.hh"
-#include "mem/cache/cache_impl.hh"
+#include "mem/cache/cache.hh"
+
+#include "base/misc.hh"
+#include "base/types.hh"
+#include "debug/Cache.hh"
+#include "debug/CachePort.hh"
+#include "debug/CacheTags.hh"
+#include "mem/cache/blk.hh"
+#include "mem/cache/mshr.hh"
+#include "mem/cache/prefetch/base.hh"
+#include "sim/sim_exit.hh"
+
+Cache::Cache(const Params *p)
+ : BaseCache(p),
+ tags(p->tags),
+ prefetcher(p->prefetcher),
+ doFastWrites(true),
+ prefetchOnAccess(p->prefetch_on_access)
+{
+ tempBlock = new CacheBlk();
+ tempBlock->data = new uint8_t[blkSize];
+
+ cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
+ "CpuSidePort");
+ memSidePort = new MemSidePort(p->name + ".mem_side", this,
+ "MemSidePort");
+
+ tags->setCache(this);
+ if (prefetcher)
+ prefetcher->setCache(this);
+}
+
+Cache::~Cache()
+{
+ delete [] tempBlock->data;
+ delete tempBlock;
+
+ delete cpuSidePort;
+ delete memSidePort;
+}
+
+void
+Cache::regStats()
+{
+ BaseCache::regStats();
+}
+
+void
+Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
+{
+ assert(pkt->isRequest());
+
+ uint64_t overwrite_val;
+ bool overwrite_mem;
+ uint64_t condition_val64;
+ uint32_t condition_val32;
+
+ int offset = tags->extractBlkOffset(pkt->getAddr());
+ uint8_t *blk_data = blk->data + offset;
+
+ assert(sizeof(uint64_t) >= pkt->getSize());
+
+ overwrite_mem = true;
+ // keep a copy of our possible write value, and copy what is at the
+ // memory address into the packet
+ pkt->writeData((uint8_t *)&overwrite_val);
+ pkt->setData(blk_data);
+
+ if (pkt->req->isCondSwap()) {
+ if (pkt->getSize() == sizeof(uint64_t)) {
+ condition_val64 = pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val64, blk_data,
+ sizeof(uint64_t));
+ } else if (pkt->getSize() == sizeof(uint32_t)) {
+ condition_val32 = (uint32_t)pkt->req->getExtraData();
+ overwrite_mem = !std::memcmp(&condition_val32, blk_data,
+ sizeof(uint32_t));
+ } else
+ panic("Invalid size for conditional read/write\n");
+ }
+
+ if (overwrite_mem) {
+ std::memcpy(blk_data, &overwrite_val, pkt->getSize());
+ blk->status |= BlkDirty;
+ }
+}
+
+
+void
+Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
+ bool deferred_response, bool pending_downgrade)
+{
+ assert(pkt->isRequest());
+
+ assert(blk && blk->isValid());
+ // Occasionally this is not true... if we are a lower-level cache
+ // satisfying a string of Read and ReadEx requests from
+ // upper-level caches, a Read will mark the block as shared but we
+ // can satisfy a following ReadEx anyway since we can rely on the
+ // Read requester(s) to have buffered the ReadEx snoop and to
+ // invalidate their blocks after receiving them.
+ // assert(!pkt->needsExclusive() || blk->isWritable());
+ assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
+
+ // Check RMW operations first since both isRead() and
+ // isWrite() will be true for them
+ if (pkt->cmd == MemCmd::SwapReq) {
+ cmpAndSwap(blk, pkt);
+ } else if (pkt->isWrite()) {
+ assert(blk->isWritable());
+ // Write or WriteLine at the first cache with block in Exclusive
+ if (blk->checkWrite(pkt)) {
+ pkt->writeDataToBlock(blk->data, blkSize);
+ }
+ // Always mark the line as dirty even if we are a failed
+ // StoreCond so we supply data to any snoops that have
+ // appended themselves to this cache before knowing the store
+ // will fail.
+ blk->status |= BlkDirty;
+ DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ } else if (pkt->isRead()) {
+ if (pkt->isLLSC()) {
+ blk->trackLoadLocked(pkt);
+ }
+ pkt->setDataFromBlock(blk->data, blkSize);
+ // determine if this read is from a (coherent) cache, or not
+ // by looking at the command type; we could potentially add a
+ // packet attribute such as 'FromCache' to make this check a
+ // bit cleaner
+ if (pkt->cmd == MemCmd::ReadExReq ||
+ pkt->cmd == MemCmd::ReadSharedReq ||
+ pkt->cmd == MemCmd::ReadCleanReq ||
+ pkt->cmd == MemCmd::SCUpgradeFailReq) {
+ assert(pkt->getSize() == blkSize);
+ // special handling for coherent block requests from
+ // upper-level caches
+ if (pkt->needsExclusive()) {
+ // sanity check
+ assert(pkt->cmd == MemCmd::ReadExReq ||
+ pkt->cmd == MemCmd::SCUpgradeFailReq);
+
+ // if we have a dirty copy, make sure the recipient
+ // keeps it marked dirty
+ if (blk->isDirty()) {
+ pkt->assertMemInhibit();
+ }
+ // on ReadExReq we give up our copy unconditionally
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+ } else if (blk->isWritable() && !pending_downgrade &&
+ !pkt->sharedAsserted() &&
+ pkt->cmd != MemCmd::ReadCleanReq) {
+ // we can give the requester an exclusive copy (by not
+ // asserting shared line) on a read request if:
+ // - we have an exclusive copy at this level (& below)
+ // - we don't have a pending snoop from below
+ // signaling another read request
+ // - no other cache above has a copy (otherwise it
+ // would have asseretd shared line on request)
+ // - we are not satisfying an instruction fetch (this
+ // prevents dirty data in the i-cache)
+
+ if (blk->isDirty()) {
+ // special considerations if we're owner:
+ if (!deferred_response) {
+ // if we are responding immediately and can
+ // signal that we're transferring ownership
+ // along with exclusivity, do so
+ pkt->assertMemInhibit();
+ blk->status &= ~BlkDirty;
+ } else {
+ // if we're responding after our own miss,
+ // there's a window where the recipient didn't
+ // know it was getting ownership and may not
+ // have responded to snoops correctly, so we
+ // can't pass off ownership *or* exclusivity
+ pkt->assertShared();
+ }
+ }
+ } else {
+ // otherwise only respond with a shared copy
+ pkt->assertShared();
+ }
+ }
+ } else {
+ // Upgrade or Invalidate, since we have it Exclusively (E or
+ // M), we ack then invalidate.
+ assert(pkt->isUpgrade() || pkt->isInvalidate());
+ assert(blk != tempBlock);
+ tags->invalidate(blk);
+ blk->invalidate();
+ DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ }
+}
+
+
+/////////////////////////////////////////////////////
+//
+// MSHR helper functions
+//
+/////////////////////////////////////////////////////
+
+
+void
+Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
+{
+ markInServiceInternal(mshr, pending_dirty_resp);
+}
+
+
+void
+Cache::squash(int threadNum)
+{
+ bool unblock = false;
+ BlockedCause cause = NUM_BLOCKED_CAUSES;
+
+ if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) {
+ noTargetMSHR = NULL;
+ unblock = true;
+ cause = Blocked_NoTargets;
+ }
+ if (mshrQueue.isFull()) {
+ unblock = true;
+ cause = Blocked_NoMSHRs;
+ }
+ mshrQueue.squash(threadNum);
+ if (unblock && !mshrQueue.isFull()) {
+ clearBlocked(cause);
+ }
+}
+
+/////////////////////////////////////////////////////
+//
+// Access path: requests coming in from the CPU side
+//
+/////////////////////////////////////////////////////
+
+bool
+Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
+ PacketList &writebacks)
+{
+ // sanity check
+ assert(pkt->isRequest());
+
+ chatty_assert(!(isReadOnly && pkt->isWrite()),
+ "Should never see a write in a read-only cache %s\n",
+ name());
+
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ if (pkt->req->isUncacheable()) {
+ DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr());
+
+ if (pkt->req->isClearLL())
+ tags->clearLocks();
+
+ // flush and invalidate any existing block
+ CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
+ if (old_blk && old_blk->isValid()) {
+ if (old_blk->isDirty())
+ writebacks.push_back(writebackBlk(old_blk));
+ else
+ writebacks.push_back(cleanEvictBlk(old_blk));
+ tags->invalidate(old_blk);
+ old_blk->invalidate();
+ }
+
+ blk = NULL;
+ // lookupLatency is the latency in case the request is uncacheable.
+ lat = lookupLatency;
+ return false;
+ }
+
+ ContextID id = pkt->req->hasContextId() ?
+ pkt->req->contextId() : InvalidContextID;
+ // Here lat is the value passed as parameter to accessBlock() function
+ // that can modify its value.
+ blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
+
+ DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
+ blk ? "hit " + blk->print() : "miss");
+
+
+ if (pkt->evictingBlock()) {
+ // We check for presence of block in above caches before issuing
+ // Writeback or CleanEvict to write buffer. Therefore the only
+ // possible cases can be of a CleanEvict packet coming from above
+ // encountering a Writeback generated in this cache peer cache and
+ // waiting in the write buffer. Cases of upper level peer caches
+ // generating CleanEvict and Writeback or simply CleanEvict and
+ // CleanEvict almost simultaneously will be caught by snoops sent out
+ // by crossbar.
+ std::vector<MSHR *> outgoing;
+ if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
+ outgoing)) {
+ assert(outgoing.size() == 1);
+ PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
+ assert(pkt->cmd == MemCmd::CleanEvict &&
+ wbPkt->cmd == MemCmd::Writeback);
+ // As the CleanEvict is coming from above, it would have snooped
+ // into other peer caches of the same level while traversing the
+ // crossbar. If a copy of the block had been found, the CleanEvict
+ // would have been deleted in the crossbar. Now that the
+ // CleanEvict is here we can be sure none of the other upper level
+ // caches connected to this cache have the block, so we can clear
+ // the BLOCK_CACHED flag in the Writeback if set and discard the
+ // CleanEvict by returning true.
+ wbPkt->clearBlockCached();
+ return true;
+ }
+ }
+
+ // Writeback handling is special case. We can write the block into
+ // the cache without having a writeable copy (or any copy at all).
+ if (pkt->cmd == MemCmd::Writeback) {
+ assert(blkSize == pkt->getSize());
+ if (blk == NULL) {
+ // need to do a replacement
+ blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
+ if (blk == NULL) {
+ // no replaceable block available: give up, fwd to next level.
+ incMissCount(pkt);
+ return false;
+ }
+ tags->insertBlock(pkt, blk);
+
+ blk->status = (BlkValid | BlkReadable);
+ if (pkt->isSecure()) {
+ blk->status |= BlkSecure;
+ }
+ }
+ blk->status |= BlkDirty;
+ // if shared is not asserted we got the writeback in modified
+ // state, if it is asserted we are in the owned state
+ if (!pkt->sharedAsserted()) {
+ blk->status |= BlkWritable;
+ }
+ // nothing else to do; writeback doesn't expect response
+ assert(!pkt->needsResponse());
+ std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
+ DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
+ incHitCount(pkt);
+ return true;
+ } else if (pkt->cmd == MemCmd::CleanEvict) {
+ if (blk != NULL) {
+ // Found the block in the tags, need to stop CleanEvict from
+ // propagating further down the hierarchy. Returning true will
+ // treat the CleanEvict like a satisfied write request and delete
+ // it.
+ return true;
+ }
+ // We didn't find the block here, propagate the CleanEvict further
+ // down the memory hierarchy. Returning false will treat the CleanEvict
+ // like a Writeback which could not find a replaceable block so has to
+ // go to next level.
+ return false;
+ } else if ((blk != NULL) &&
+ (pkt->needsExclusive() ? blk->isWritable()
+ : blk->isReadable())) {
+ // OK to satisfy access
+ incHitCount(pkt);
+ satisfyCpuSideRequest(pkt, blk);
+ return true;
+ }
+
+ // Can't satisfy access normally... either no block (blk == NULL)
+ // or have block but need exclusive & only have shared.
+
+ incMissCount(pkt);
+
+ if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
+ // complete miss on store conditional... just give up now
+ pkt->req->setExtraData(0);
+ return true;
+ }
+
+ return false;
+}
+
+
+class ForwardResponseRecord : public Packet::SenderState
+{
+ public:
+
+ ForwardResponseRecord() {}
+};
+
+void
+Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
+{
+ while (!writebacks.empty()) {
+ PacketPtr wbPkt = writebacks.front();
+ // We use forwardLatency here because we are copying writebacks to
+ // write buffer. Call isCachedAbove for both Writebacks and
+ // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
+ // in Writebacks and discard CleanEvicts.
+ if (isCachedAbove(wbPkt)) {
+ if (wbPkt->cmd == MemCmd::CleanEvict) {
+ // Delete CleanEvict because cached copies exist above. The
+ // packet destructor will delete the request object because
+ // this is a non-snoop request packet which does not require a
+ // response.
+ delete wbPkt;
+ } else {
+ // Set BLOCK_CACHED flag in Writeback and send below, so that
+ // the Writeback does not reset the bit corresponding to this
+ // address in the snoop filter below.
+ wbPkt->setBlockCached();
+ allocateWriteBuffer(wbPkt, forward_time);
+ }
+ } else {
+ // If the block is not cached above, send packet below. Both
+ // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
+ // reset the bit corresponding to this address in the snoop filter
+ // below.
+ allocateWriteBuffer(wbPkt, forward_time);
+ }
+ writebacks.pop_front();
+ }
+}
+
+
+void
+Cache::recvTimingSnoopResp(PacketPtr pkt)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ assert(pkt->isResponse());
+
+ // must be cache-to-cache response from upper to lower level
+ ForwardResponseRecord *rec =
+ dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
+ assert(!system->bypassCaches());
+
+ if (rec == NULL) {
+ // @todo What guarantee do we have that this HardPFResp is
+ // actually for this cache, and not a cache closer to the
+ // memory?
+ assert(pkt->cmd == MemCmd::HardPFResp);
+ // Check if it's a prefetch response and handle it. We shouldn't
+ // get any other kinds of responses without FRRs.
+ DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
+ pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
+ recvTimingResp(pkt);
+ return;
+ }
+
+ pkt->popSenderState();
+ delete rec;
+ // forwardLatency is set here because there is a response from an
+ // upper level cache.
+ // To pay the delay that occurs if the packet comes from the bus,
+ // we charge also headerDelay.
+ Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // Reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
+}
+
+void
+Cache::promoteWholeLineWrites(PacketPtr pkt)
+{
+ // Cache line clearing instructions
+ if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
+ (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
+ pkt->cmd = MemCmd::WriteLineReq;
+ DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
+ }
+}
+
+bool
+Cache::recvTimingReq(PacketPtr pkt)
+{
+ DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
+//@todo Add back in MemDebug Calls
+// MemDebug::cacheAccess(pkt);
+
+
+ /// @todo temporary hack to deal with memory corruption issue until
+ /// 4-phase transactions are complete
+ for (int x = 0; x < pendingDelete.size(); x++)
+ delete pendingDelete[x];
+ pendingDelete.clear();
+
+ assert(pkt->isRequest());
+
+ // Just forward the packet if caches are disabled.
+ if (system->bypassCaches()) {
+ // @todo This should really enqueue the packet rather
+ bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
+ assert(success);
+ return true;
+ }
+
+ promoteWholeLineWrites(pkt);
+
+ if (pkt->memInhibitAsserted()) {
+ // a cache above us (but not where the packet came from) is
+ // responding to the request
+ DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
+ pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
+
+ // if the packet needs exclusive, and the cache that has
+ // promised to respond (setting the inhibit flag) is not
+ // providing exclusive (it is in O vs M state), we know that
+ // there may be other shared copies in the system; go out and
+ // invalidate them all
+ if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
+ // create a downstream express snoop with cleared packet
+ // flags, there is no need to allocate any data as the
+ // packet is merely used to co-ordinate state transitions
+ Packet *snoop_pkt = new Packet(pkt, true, false);
+
+ // also reset the bus time that the original packet has
+ // not yet paid for
+ snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
+
+ // make this an instantaneous express snoop, and let the
+ // other caches in the system know that the packet is
+ // inhibited, because we have found the authorative copy
+ // (O) that will supply the right data
+ snoop_pkt->setExpressSnoop();
+ snoop_pkt->assertMemInhibit();
+
+ // this express snoop travels towards the memory, and at
+ // every crossbar it is snooped upwards thus reaching
+ // every cache in the system
+ bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
+ // express snoops always succeed
+ assert(success);
+
+ // main memory will delete the packet
+ }
+
+ /// @todo nominally we should just delete the packet here,
+ /// however, until 4-phase stuff we can't because sending
+ /// cache is still relying on it.
+ pendingDelete.push_back(pkt);
+
+ // no need to take any action in this particular cache as the
+ // caches along the path to memory are allowed to keep lines
+ // in a shared state, and a cache above us already committed
+ // to responding
+ return true;
+ }
+
+ // anything that is merely forwarded pays for the forward latency and
+ // the delay provided by the crossbar
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ // We use lookupLatency here because it is used to specify the latency
+ // to access.
+ Cycles lat = lookupLatency;
+ CacheBlk *blk = NULL;
+ bool satisfied = false;
+ {
+ PacketList writebacks;
+ // Note that lat is passed by reference here. The function
+ // access() calls accessBlock() which can modify lat value.
+ satisfied = access(pkt, blk, lat, writebacks);
+
+ // copy writebacks to write buffer here to ensure they logically
+ // proceed anything happening below
+ doWritebacks(writebacks, forward_time);
+ }
+
+ // Here we charge the headerDelay that takes into account the latencies
+ // of the bus, if the packet comes from it.
+ // The latency charged it is just lat that is the value of lookupLatency
+ // modified by access() function, or if not just lookupLatency.
+ // In case of a hit we are neglecting response latency.
+ // In case of a miss we are neglecting forward latency.
+ Tick request_time = clockEdge(lat) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // track time of availability of next prefetch, if any
+ Tick next_pf_time = MaxTick;
+
+ bool needsResponse = pkt->needsResponse();
+
+ if (satisfied) {
+ // should never be satisfying an uncacheable access as we
+ // flush and invalidate any existing block as part of the
+ // lookup
+ assert(!pkt->req->isUncacheable());
+
+ // hit (for all other request types)
+
+ if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
+ if (blk)
+ blk->status &= ~BlkHWPrefetched;
+
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+
+ if (needsResponse) {
+ pkt->makeTimingResponse();
+ // @todo: Make someone pay for this
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // In this case we are considering request_time that takes
+ // into account the delay of the xbar, if any, and just
+ // lat, neglecting responseLatency, modelling hit latency
+ // just as lookupLatency or or the value of lat overriden
+ // by access(), that calls accessBlock() function.
+ cpuSidePort->schedTimingResp(pkt, request_time);
+ } else {
+ /// @todo nominally we should just delete the packet here,
+ /// however, until 4-phase stuff we can't because sending cache is
+ /// still relying on it. If the block is found in access(),
+ /// CleanEvict and Writeback messages will be deleted here as
+ /// well.
+ pendingDelete.push_back(pkt);
+ }
+ } else {
+ // miss
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+
+ // ignore any existing MSHR if we are dealing with an
+ // uncacheable request
+ MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
+ mshrQueue.findMatch(blk_addr, pkt->isSecure());
+
+ // Software prefetch handling:
+ // To keep the core from waiting on data it won't look at
+ // anyway, send back a response with dummy data. Miss handling
+ // will continue asynchronously. Unfortunately, the core will
+ // insist upon freeing original Packet/Request, so we have to
+ // create a new pair with a different lifecycle. Note that this
+ // processing happens before any MSHR munging on the behalf of
+ // this request because this new Request will be the one stored
+ // into the MSHRs, not the original.
+ if (pkt->cmd.isSWPrefetch()) {
+ assert(needsResponse);
+ assert(pkt->req->hasPaddr());
+ assert(!pkt->req->isUncacheable());
+
+ // There's no reason to add a prefetch as an additional target
+ // to an existing MSHR. If an outstanding request is already
+ // in progress, there is nothing for the prefetch to do.
+ // If this is the case, we don't even create a request at all.
+ PacketPtr pf = nullptr;
+
+ if (!mshr) {
+ // copy the request and create a new SoftPFReq packet
+ RequestPtr req = new Request(pkt->req->getPaddr(),
+ pkt->req->getSize(),
+ pkt->req->getFlags(),
+ pkt->req->masterId());
+ pf = new Packet(req, pkt->cmd);
+ pf->allocate();
+ assert(pf->getAddr() == pkt->getAddr());
+ assert(pf->getSize() == pkt->getSize());
+ }
+
+ pkt->makeTimingResponse();
+ // for debugging, set all the bits in the response data
+ // (also keeps valgrind from complaining when debugging settings
+ // print out instruction results)
+ std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
+ // request_time is used here, taking into account lat and the delay
+ // charged if the packet comes from the xbar.
+ cpuSidePort->schedTimingResp(pkt, request_time);
+
+ // If an outstanding request is in progress (we found an
+ // MSHR) this is set to null
+ pkt = pf;
+ }
+
+ if (mshr) {
+ /// MSHR hit
+ /// @note writebacks will be checked in getNextMSHR()
+ /// for any conflicting requests to the same block
+
+ //@todo remove hw_pf here
+
+ // Coalesce unless it was a software prefetch (see above).
+ if (pkt) {
+ assert(pkt->cmd != MemCmd::Writeback);
+ // CleanEvicts corresponding to blocks which have outstanding
+ // requests in MSHRs can be deleted here.
+ if (pkt->cmd == MemCmd::CleanEvict) {
+ pendingDelete.push_back(pkt);
+ } else {
+ DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
+ __func__, pkt->cmdString(), pkt->getAddr(),
+ pkt->getSize());
+
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
+ mshr->threadNum = -1;
+ }
+ // We use forward_time here because it is the same
+ // considering new targets. We have multiple
+ // requests for the same address here. It
+ // specifies the latency to allocate an internal
+ // buffer and to schedule an event to the queued
+ // port and also takes into account the additional
+ // delay of the xbar.
+ mshr->allocateTarget(pkt, forward_time, order++);
+ if (mshr->getNumTargets() == numTarget) {
+ noTargetMSHR = mshr;
+ setBlocked(Blocked_NoTargets);
+ // need to be careful with this... if this mshr isn't
+ // ready yet (i.e. time > curTick()), we don't want to
+ // move it ahead of mshrs that are ready
+ // mshrQueue.moveToFront(mshr);
+ }
+ }
+ // We should call the prefetcher reguardless if the request is
+ // satisfied or not, reguardless if the request is in the MSHR or
+ // not. The request could be a ReadReq hit, but still not
+ // satisfied (potentially because of a prior write to the same
+ // cache line. So, even when not satisfied, tehre is an MSHR
+ // already allocated for this, we need to let the prefetcher know
+ // about the request
+ if (prefetcher) {
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+ } else {
+ // no MSHR
+ assert(pkt->req->masterId() < system->maxMasters());
+ if (pkt->req->isUncacheable()) {
+ mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ } else {
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+ }
+
+ if (pkt->evictingBlock() ||
+ (pkt->req->isUncacheable() && pkt->isWrite())) {
+ // We use forward_time here because there is an
+ // uncached memory write, forwarded to WriteBuffer.
+ allocateWriteBuffer(pkt, forward_time);
+ } else {
+ if (blk && blk->isValid()) {
+ // should have flushed and have no valid block
+ assert(!pkt->req->isUncacheable());
+
+ // If we have a write miss to a valid block, we
+ // need to mark the block non-readable. Otherwise
+ // if we allow reads while there's an outstanding
+ // write miss, the read could return stale data
+ // out of the cache block... a more aggressive
+ // system could detect the overlap (if any) and
+ // forward data out of the MSHRs, but we don't do
+ // that yet. Note that we do need to leave the
+ // block valid so that it stays in the cache, in
+ // case we get an upgrade response (and hence no
+ // new data) when the write miss completes.
+ // As long as CPUs do proper store/load forwarding
+ // internally, and have a sufficiently weak memory
+ // model, this is probably unnecessary, but at some
+ // point it must have seemed like we needed it...
+ assert(pkt->needsExclusive());
+ assert(!blk->isWritable());
+ blk->status &= ~BlkReadable;
+ }
+ // Here we are using forward_time, modelling the latency of
+ // a miss (outbound) just as forwardLatency, neglecting the
+ // lookupLatency component.
+ allocateMissBuffer(pkt, forward_time);
+ }
+
+ if (prefetcher) {
+ // Don't notify on SWPrefetch
+ if (!pkt->cmd.isSWPrefetch())
+ next_pf_time = prefetcher->notify(pkt);
+ }
+ }
+ }
+
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+
+ return true;
+}
+
+
+// See comment in cache.hh.
+PacketPtr
+Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
+ bool needsExclusive) const
+{
+ bool blkValid = blk && blk->isValid();
+
+ if (cpu_pkt->req->isUncacheable()) {
+ // note that at the point we see the uncacheable request we
+ // flush any block, but there could be an outstanding MSHR,
+ // and the cache could have filled again before we actually
+ // send out the forwarded uncacheable request (blk could thus
+ // be non-null)
+ return NULL;
+ }
+
+ if (!blkValid &&
+ (cpu_pkt->isUpgrade() ||
+ cpu_pkt->evictingBlock())) {
+ // Writebacks that weren't allocated in access() and upgrades
+ // from upper-level caches that missed completely just go
+ // through.
+ return NULL;
+ }
+
+ assert(cpu_pkt->needsResponse());
+
+ MemCmd cmd;
+ // @TODO make useUpgrades a parameter.
+ // Note that ownership protocols require upgrade, otherwise a
+ // write miss on a shared owned block will generate a ReadExcl,
+ // which will clobber the owned copy.
+ const bool useUpgrades = true;
+ if (blkValid && useUpgrades) {
+ // only reason to be here is that blk is shared
+ // (read-only) and we need exclusive
+ assert(needsExclusive);
+ assert(!blk->isWritable());
+ cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
+ } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
+ cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
+ // Even though this SC will fail, we still need to send out the
+ // request and get the data to supply it to other snoopers in the case
+ // where the determination the StoreCond fails is delayed due to
+ // all caches not being on the same local bus.
+ cmd = MemCmd::SCUpgradeFailReq;
+ } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
+ // forward as invalidate to all other caches, this gives us
+ // the line in exclusive state, and invalidates all other
+ // copies
+ cmd = MemCmd::InvalidateReq;
+ } else {
+ // block is invalid
+ cmd = needsExclusive ? MemCmd::ReadExReq :
+ (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
+ }
+ PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
+
+ // if there are sharers in the upper levels, pass that info downstream
+ if (cpu_pkt->sharedAsserted()) {
+ // note that cpu_pkt may have spent a considerable time in the
+ // MSHR queue and that the information could possibly be out
+ // of date, however, there is no harm in conservatively
+ // assuming the block is shared
+ pkt->assertShared();
+ DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
+ __func__, cpu_pkt->cmdString(), pkt->cmdString(),
+ pkt->getAddr(), pkt->getSize());
+ }
+
+ // the packet should be block aligned
+ assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
+
+ pkt->allocate();
+ DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
+ __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
+ pkt->getSize());
+ return pkt;
+}
+
+
+Tick
+Cache::recvAtomic(PacketPtr pkt)
+{
+ // We are in atomic mode so we pay just for lookupLatency here.
+ Cycles lat = lookupLatency;
+ // @TODO: make this a parameter
+ bool last_level_cache = false;
+
+ // Forward the request if the system is in cache bypass mode.
+ if (system->bypassCaches())
+ return ticksToCycles(memSidePort->sendAtomic(pkt));
+
+ promoteWholeLineWrites(pkt);
+
+ if (pkt->memInhibitAsserted()) {
+ // have to invalidate ourselves and any lower caches even if
+ // upper cache will be responding
+ if (pkt->isInvalidate()) {
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ if (blk && blk->isValid()) {
+ tags->invalidate(blk);
+ blk->invalidate();
+ DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
+ " invalidating\n",
+ pkt->cmdString(), pkt->getAddr(),
+ pkt->isSecure() ? "s" : "ns");
+ }
+ if (!last_level_cache) {
+ DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
+ pkt->cmdString(), pkt->getAddr(),
+ pkt->isSecure() ? "s" : "ns");
+ lat += ticksToCycles(memSidePort->sendAtomic(pkt));
+ }
+ } else {
+ DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
+ pkt->cmdString(), pkt->getAddr());
+ }
+
+ return lat * clockPeriod();
+ }
+
+ // should assert here that there are no outstanding MSHRs or
+ // writebacks... that would mean that someone used an atomic
+ // access in timing mode
+
+ CacheBlk *blk = NULL;
+ PacketList writebacks;
+ bool satisfied = access(pkt, blk, lat, writebacks);
+
+ // handle writebacks resulting from the access here to ensure they
+ // logically proceed anything happening below
+ while (!writebacks.empty()){
+ PacketPtr wbPkt = writebacks.front();
+ memSidePort->sendAtomic(wbPkt);
+ writebacks.pop_front();
+ delete wbPkt;
+ }
+
+ if (!satisfied) {
+ // MISS
+
+ PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
+
+ bool is_forward = (bus_pkt == NULL);
+
+ if (is_forward) {
+ // just forwarding the same request to the next level
+ // no local cache operation involved
+ bus_pkt = pkt;
+ }
+
+ DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
+ bus_pkt->cmdString(), bus_pkt->getAddr(),
+ bus_pkt->isSecure() ? "s" : "ns");
+
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
+
+ // We are now dealing with the response handling
+ DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
+ bus_pkt->cmdString(), bus_pkt->getAddr(),
+ bus_pkt->isSecure() ? "s" : "ns",
+ old_state);
+
+ // If packet was a forward, the response (if any) is already
+ // in place in the bus_pkt == pkt structure, so we don't need
+ // to do anything. Otherwise, use the separate bus_pkt to
+ // generate response to pkt and then delete it.
+ if (!is_forward) {
+ if (pkt->needsResponse()) {
+ assert(bus_pkt->isResponse());
+ if (bus_pkt->isError()) {
+ pkt->makeAtomicResponse();
+ pkt->copyError(bus_pkt);
+ } else if (pkt->cmd == MemCmd::InvalidateReq) {
+ if (blk) {
+ // invalidate response to a cache that received
+ // an invalidate request
+ satisfyCpuSideRequest(pkt, blk);
+ }
+ } else if (pkt->cmd == MemCmd::WriteLineReq) {
+ // note the use of pkt, not bus_pkt here.
+
+ // write-line request to the cache that promoted
+ // the write to a whole line
+ blk = handleFill(pkt, blk, writebacks);
+ satisfyCpuSideRequest(pkt, blk);
+ } else if (bus_pkt->isRead() ||
+ bus_pkt->cmd == MemCmd::UpgradeResp) {
+ // we're updating cache state to allow us to
+ // satisfy the upstream request from the cache
+ blk = handleFill(bus_pkt, blk, writebacks);
+ satisfyCpuSideRequest(pkt, blk);
+ } else {
+ // we're satisfying the upstream request without
+ // modifying cache state, e.g., a write-through
+ pkt->makeAtomicResponse();
+ }
+ }
+ delete bus_pkt;
+ }
+ }
+
+ // Note that we don't invoke the prefetcher at all in atomic mode.
+ // It's not clear how to do it properly, particularly for
+ // prefetchers that aggressively generate prefetch candidates and
+ // rely on bandwidth contention to throttle them; these will tend
+ // to pollute the cache in atomic mode since there is no bandwidth
+ // contention. If we ever do want to enable prefetching in atomic
+ // mode, though, this is the place to do it... see timingAccess()
+ // for an example (though we'd want to issue the prefetch(es)
+ // immediately rather than calling requestMemSideBus() as we do
+ // there).
+
+ // Handle writebacks (from the response handling) if needed
+ while (!writebacks.empty()){
+ PacketPtr wbPkt = writebacks.front();
+ memSidePort->sendAtomic(wbPkt);
+ writebacks.pop_front();
+ delete wbPkt;
+ }
+
+ if (pkt->needsResponse()) {
+ pkt->makeAtomicResponse();
+ }
+
+ return lat * clockPeriod();
+}
+
+
+void
+Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
+{
+ if (system->bypassCaches()) {
+ // Packets from the memory side are snoop request and
+ // shouldn't happen in bypass mode.
+ assert(fromCpuSide);
+
+ // The cache should be flushed if we are in cache bypass mode,
+ // so we don't need to check if we need to update anything.
+ memSidePort->sendFunctional(pkt);
+ return;
+ }
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ pkt->pushLabel(name());
+
+ CacheBlkPrintWrapper cbpw(blk);
+
+ // Note that just because an L2/L3 has valid data doesn't mean an
+ // L1 doesn't have a more up-to-date modified copy that still
+ // needs to be found. As a result we always update the request if
+ // we have it, but only declare it satisfied if we are the owner.
+
+ // see if we have data at all (owned or otherwise)
+ bool have_data = blk && blk->isValid()
+ && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
+ blk->data);
+
+ // data we have is dirty if marked as such or if valid & ownership
+ // pending due to outstanding UpgradeReq
+ bool have_dirty =
+ have_data && (blk->isDirty() ||
+ (mshr && mshr->inService && mshr->isPendingDirty()));
+
+ bool done = have_dirty
+ || cpuSidePort->checkFunctional(pkt)
+ || mshrQueue.checkFunctional(pkt, blk_addr)
+ || writeBuffer.checkFunctional(pkt, blk_addr)
+ || memSidePort->checkFunctional(pkt);
+
+ DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
+ pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
+ (blk && blk->isValid()) ? "valid " : "",
+ have_data ? "data " : "", done ? "done " : "");
+
+ // We're leaving the cache, so pop cache->name() label
+ pkt->popLabel();
+
+ if (done) {
+ pkt->makeResponse();
+ } else {
+ // if it came as a request from the CPU side then make sure it
+ // continues towards the memory side
+ if (fromCpuSide) {
+ memSidePort->sendFunctional(pkt);
+ } else if (forwardSnoops && cpuSidePort->isSnooping()) {
+ // if it came from the memory side, it must be a snoop request
+ // and we should only forward it if we are forwarding snoops
+ cpuSidePort->sendFunctionalSnoop(pkt);
+ }
+ }
+}
+
+
+/////////////////////////////////////////////////////
+//
+// Response handling: responses from the memory side
+//
+/////////////////////////////////////////////////////
+
+
+void
+Cache::recvTimingResp(PacketPtr pkt)
+{
+ assert(pkt->isResponse());
+
+ // all header delay should be paid for by the crossbar, unless
+ // this is a prefetch response from above
+ panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
+ "%s saw a non-zero packet delay\n", name());
+
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
+ bool is_error = pkt->isError();
+
+ assert(mshr);
+
+ if (is_error) {
+ DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
+ "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
+ pkt->cmdString());
+ }
+
+ DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
+ pkt->isSecure() ? "s" : "ns");
+
+ MSHRQueue *mq = mshr->queue;
+ bool wasFull = mq->isFull();
+
+ if (mshr == noTargetMSHR) {
+ // we always clear at least one target
+ clearBlocked(Blocked_NoTargets);
+ noTargetMSHR = NULL;
+ }
+
+ // Initial target is used just for stats
+ MSHR::Target *initial_tgt = mshr->getTarget();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
+ Tick miss_latency = curTick() - initial_tgt->recvTime;
+ PacketList writebacks;
+ // We need forward_time here because we have a call of
+ // allocateWriteBuffer() that need this parameter to specify the
+ // time to request the bus. In this case we use forward latency
+ // because there is a writeback. We pay also here for headerDelay
+ // that is charged of bus latencies if the packet comes from the
+ // bus.
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+
+ if (pkt->req->isUncacheable()) {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ } else {
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
+ miss_latency;
+ }
+
+ bool is_fill = !mshr->isForward &&
+ (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
+
+ if (is_fill && !is_error) {
+ DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
+ pkt->getAddr());
+
+ // give mshr a chance to do some dirty work
+ mshr->handleFill(pkt, blk);
+
+ blk = handleFill(pkt, blk, writebacks);
+ assert(blk != NULL);
+ }
+
+ // allow invalidation responses originating from write-line
+ // requests to be discarded
+ bool discard_invalidate = false;
+
+ // First offset for critical word first calculations
+ int initial_offset = initial_tgt->pkt->getOffset(blkSize);
+
+ while (mshr->hasTargets()) {
+ MSHR::Target *target = mshr->getTarget();
+ Packet *tgt_pkt = target->pkt;
+
+ switch (target->source) {
+ case MSHR::Target::FromCPU:
+ Tick completion_time;
+ // Here we charge on completion_time the delay of the xbar if the
+ // packet comes from it, charged on headerDelay.
+ completion_time = pkt->headerDelay;
+
+ // Software prefetch handling for cache closest to core
+ if (tgt_pkt->cmd.isSWPrefetch()) {
+ // a software prefetch would have already been ack'd immediately
+ // with dummy data so the core would be able to retire it.
+ // this request completes right here, so we deallocate it.
+ delete tgt_pkt->req;
+ delete tgt_pkt;
+ break; // skip response
+ }
+
+ // unlike the other packet flows, where data is found in other
+ // caches or memory and brought back, write-line requests always
+ // have the data right away, so the above check for "is fill?"
+ // cannot actually be determined until examining the stored MSHR
+ // state. We "catch up" with that logic here, which is duplicated
+ // from above.
+ if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
+ assert(!is_error);
+
+ // NB: we use the original packet here and not the response!
+ mshr->handleFill(tgt_pkt, blk);
+ blk = handleFill(tgt_pkt, blk, writebacks);
+ assert(blk != NULL);
+
+ // treat as a fill, and discard the invalidation
+ // response
+ is_fill = true;
+ discard_invalidate = true;
+ }
+
+ if (is_fill) {
+ satisfyCpuSideRequest(tgt_pkt, blk,
+ true, mshr->hasPostDowngrade());
+
+ // How many bytes past the first request is this one
+ int transfer_offset =
+ tgt_pkt->getOffset(blkSize) - initial_offset;
+ if (transfer_offset < 0) {
+ transfer_offset += blkSize;
+ }
+
+ // If not critical word (offset) return payloadDelay.
+ // responseLatency is the latency of the return path
+ // from lower level caches/memory to an upper level cache or
+ // the core.
+ completion_time += clockEdge(responseLatency) +
+ (transfer_offset ? pkt->payloadDelay : 0);
+
+ assert(!tgt_pkt->req->isUncacheable());
+
+ assert(tgt_pkt->req->masterId() < system->maxMasters());
+ missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
+ completion_time - target->recvTime;
+ } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
+ // failed StoreCond upgrade
+ assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
+ tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
+ tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
+ // responseLatency is the latency of the return path
+ // from lower level caches/memory to an upper level cache or
+ // the core.
+ completion_time += clockEdge(responseLatency) +
+ pkt->payloadDelay;
+ tgt_pkt->req->setExtraData(0);
+ } else {
+ // not a cache fill, just forwarding response
+ // responseLatency is the latency of the return path
+ // from lower level cahces/memory to the core.
+ completion_time += clockEdge(responseLatency) +
+ pkt->payloadDelay;
+ if (pkt->isRead() && !is_error) {
+ // sanity check
+ assert(pkt->getAddr() == tgt_pkt->getAddr());
+ assert(pkt->getSize() >= tgt_pkt->getSize());
+
+ tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
+ }
+ }
+ tgt_pkt->makeTimingResponse();
+ // if this packet is an error copy that to the new packet
+ if (is_error)
+ tgt_pkt->copyError(pkt);
+ if (tgt_pkt->cmd == MemCmd::ReadResp &&
+ (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
+ // If intermediate cache got ReadRespWithInvalidate,
+ // propagate that. Response should not have
+ // isInvalidate() set otherwise.
+ tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
+ DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
+ __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
+ }
+ // Reset the bus additional time as it is now accounted for
+ tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
+ cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
+ break;
+
+ case MSHR::Target::FromPrefetcher:
+ assert(tgt_pkt->cmd == MemCmd::HardPFReq);
+ if (blk)
+ blk->status |= BlkHWPrefetched;
+ delete tgt_pkt->req;
+ delete tgt_pkt;
+ break;
+
+ case MSHR::Target::FromSnoop:
+ // I don't believe that a snoop can be in an error state
+ assert(!is_error);
+ // response to snoop request
+ DPRINTF(Cache, "processing deferred snoop...\n");
+ assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
+ handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
+ break;
+
+ default:
+ panic("Illegal target->source enum %d\n", target->source);
+ }
+
+ mshr->popTarget();
+ }
+
+ if (blk && blk->isValid()) {
+ // an invalidate response stemming from a write line request
+ // should not invalidate the block, so check if the
+ // invalidation should be discarded
+ if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
+ !discard_invalidate) {
+ assert(blk != tempBlock);
+ tags->invalidate(blk);
+ blk->invalidate();
+ } else if (mshr->hasPostDowngrade()) {
+ blk->status &= ~BlkWritable;
+ }
+ }
+
+ if (mshr->promoteDeferredTargets()) {
+ // avoid later read getting stale data while write miss is
+ // outstanding.. see comment in timingAccess()
+ if (blk) {
+ blk->status &= ~BlkReadable;
+ }
+ mq = mshr->queue;
+ mq->markPending(mshr);
+ schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
+ } else {
+ mq->deallocate(mshr);
+ if (wasFull && !mq->isFull()) {
+ clearBlocked((BlockedCause)mq->index);
+ }
+
+ // Request the bus for a prefetch if this deallocation freed enough
+ // MSHRs for a prefetch to take place
+ if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
+ Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
+ clockEdge());
+ if (next_pf_time != MaxTick)
+ schedMemSideSendEvent(next_pf_time);
+ }
+ }
+ // reset the xbar additional timinig as it is now accounted for
+ pkt->headerDelay = pkt->payloadDelay = 0;
+
+ // copy writebacks to write buffer
+ doWritebacks(writebacks, forward_time);
+
+ // if we used temp block, check to see if its valid and then clear it out
+ if (blk == tempBlock && tempBlock->isValid()) {
+ // We use forwardLatency here because we are copying
+ // Writebacks/CleanEvicts to write buffer. It specifies the latency to
+ // allocate an internal buffer and to schedule an event to the
+ // queued port.
+ if (blk->isDirty()) {
+ PacketPtr wbPkt = writebackBlk(blk);
+ allocateWriteBuffer(wbPkt, forward_time);
+ // Set BLOCK_CACHED flag if cached above.
+ if (isCachedAbove(wbPkt))
+ wbPkt->setBlockCached();
+ } else {
+ PacketPtr wcPkt = cleanEvictBlk(blk);
+ // Check to see if block is cached above. If not allocate
+ // write buffer
+ if (isCachedAbove(wcPkt))
+ delete wcPkt;
+ else
+ allocateWriteBuffer(wcPkt, forward_time);
+ }
+ blk->invalidate();
+ }
+
+ DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
+ pkt->cmdString(), pkt->getAddr());
+ delete pkt;
+}
+
+PacketPtr
+Cache::writebackBlk(CacheBlk *blk)
+{
+ chatty_assert(!isReadOnly, "Writeback from read-only cache");
+ assert(blk && blk->isValid() && blk->isDirty());
+
+ writebacks[Request::wbMasterId]++;
+
+ Request *writebackReq =
+ new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ writebackReq->setFlags(Request::SECURE);
+
+ writebackReq->taskId(blk->task_id);
+ blk->task_id= ContextSwitchTaskId::Unknown;
+ blk->tickInserted = curTick();
+
+ PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
+ if (blk->isWritable()) {
+ // not asserting shared means we pass the block in modified
+ // state, mark our own block non-writeable
+ blk->status &= ~BlkWritable;
+ } else {
+ // we are in the owned state, tell the receiver
+ writeback->assertShared();
+ }
+
+ writeback->allocate();
+ std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
+
+ blk->status &= ~BlkDirty;
+ return writeback;
+}
+
+PacketPtr
+Cache::cleanEvictBlk(CacheBlk *blk)
+{
+ assert(blk && blk->isValid() && !blk->isDirty());
+ // Creating a zero sized write, a message to the snoop filter
+ Request *req =
+ new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
+ Request::wbMasterId);
+ if (blk->isSecure())
+ req->setFlags(Request::SECURE);
+
+ req->taskId(blk->task_id);
+ blk->task_id = ContextSwitchTaskId::Unknown;
+ blk->tickInserted = curTick();
+
+ PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
+ pkt->allocate();
+ DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
+ pkt->req->isInstFetch() ? " (ifetch)" : "",
+ pkt->getAddr());
+
+ return pkt;
+}
+
+void
+Cache::memWriteback()
+{
+ CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
+ tags->forEachBlk(visitor);
+}
+
+void
+Cache::memInvalidate()
+{
+ CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
+ tags->forEachBlk(visitor);
+}
+
+bool
+Cache::isDirty() const
+{
+ CacheBlkIsDirtyVisitor visitor;
+ tags->forEachBlk(visitor);
+
+ return visitor.isDirty();
+}
+
+bool
+Cache::writebackVisitor(CacheBlk &blk)
+{
+ if (blk.isDirty()) {
+ assert(blk.isValid());
+
+ Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
+ blkSize, 0, Request::funcMasterId);
+ request.taskId(blk.task_id);
+
+ Packet packet(&request, MemCmd::WriteReq);
+ packet.dataStatic(blk.data);
+
+ memSidePort->sendFunctional(&packet);
+
+ blk.status &= ~BlkDirty;
+ }
+
+ return true;
+}
+
+bool
+Cache::invalidateVisitor(CacheBlk &blk)
+{
+
+ if (blk.isDirty())
+ warn_once("Invalidating dirty cache lines. Expect things to break.\n");
+
+ if (blk.isValid()) {
+ assert(!blk.isDirty());
+ tags->invalidate(&blk);
+ blk.invalidate();
+ }
+
+ return true;
+}
+
+CacheBlk*
+Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
+{
+ CacheBlk *blk = tags->findVictim(addr);
+
+ // It is valid to return NULL if there is no victim
+ if (!blk)
+ return nullptr;
+
+ if (blk->isValid()) {
+ Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
+ MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
+ if (repl_mshr) {
+ // must be an outstanding upgrade request
+ // on a block we're about to replace...
+ assert(!blk->isWritable() || blk->isDirty());
+ assert(repl_mshr->needsExclusive());
+ // too hard to replace block with transient state
+ // allocation failed, block not inserted
+ return NULL;
+ } else {
+ DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
+ repl_addr, blk->isSecure() ? "s" : "ns",
+ addr, is_secure ? "s" : "ns",
+ blk->isDirty() ? "writeback" : "clean");
+
+ // Will send up Writeback/CleanEvict snoops via isCachedAbove
+ // when pushing this writeback list into the write buffer.
+ if (blk->isDirty()) {
+ // Save writeback packet for handling by caller
+ writebacks.push_back(writebackBlk(blk));
+ } else {
+ writebacks.push_back(cleanEvictBlk(blk));
+ }
+ }
+ }
+
+ return blk;
+}
+
+
+// Note that the reason we return a list of writebacks rather than
+// inserting them directly in the write buffer is that this function
+// is called by both atomic and timing-mode accesses, and in atomic
+// mode we don't mess with the write buffer (we just perform the
+// writebacks atomically once the original request is complete).
+CacheBlk*
+Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
+{
+ assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
+ Addr addr = pkt->getAddr();
+ bool is_secure = pkt->isSecure();
+#if TRACING_ON
+ CacheBlk::State old_state = blk ? blk->status : 0;
+#endif
+
+ // When handling a fill, discard any CleanEvicts for the
+ // same address in write buffer.
+ Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
+ std::vector<MSHR *> M5_VAR_USED wbs;
+ assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
+
+ if (blk == NULL) {
+ // better have read new data...
+ assert(pkt->hasData());
+
+ // only read responses and write-line requests have data;
+ // note that we don't write the data here for write-line - that
+ // happens in the subsequent satisfyCpuSideRequest.
+ assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
+
+ // need to do a replacement
+ blk = allocateBlock(addr, is_secure, writebacks);
+ if (blk == NULL) {
+ // No replaceable block... just use temporary storage to
+ // complete the current request and then get rid of it
+ assert(!tempBlock->isValid());
+ blk = tempBlock;
+ tempBlock->set = tags->extractSet(addr);
+ tempBlock->tag = tags->extractTag(addr);
+ // @todo: set security state as well...
+ DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
+ is_secure ? "s" : "ns");
+ } else {
+ tags->insertBlock(pkt, blk);
+ }
+
+ // we should never be overwriting a valid block
+ assert(!blk->isValid());
+ } else {
+ // existing block... probably an upgrade
+ assert(blk->tag == tags->extractTag(addr));
+ // either we're getting new data or the block should already be valid
+ assert(pkt->hasData() || blk->isValid());
+ // don't clear block status... if block is already dirty we
+ // don't want to lose that
+ }
+
+ if (is_secure)
+ blk->status |= BlkSecure;
+ blk->status |= BlkValid | BlkReadable;
+
+ if (!pkt->sharedAsserted()) {
+ // we could get non-shared responses from memory (rather than
+ // a cache) even in a read-only cache, note that we set this
+ // bit even for a read-only cache as we use it to represent
+ // the exclusive state
+ blk->status |= BlkWritable;
+
+ // If we got this via cache-to-cache transfer (i.e., from a
+ // cache that was an owner) and took away that owner's copy,
+ // then we need to write it back. Normally this happens
+ // anyway as a side effect of getting a copy to write it, but
+ // there are cases (such as failed store conditionals or
+ // compare-and-swaps) where we'll demand an exclusive copy but
+ // end up not writing it.
+ if (pkt->memInhibitAsserted()) {
+ blk->status |= BlkDirty;
+
+ chatty_assert(!isReadOnly, "Should never see dirty snoop response "
+ "in read-only cache %s\n", name());
+ }
+ }
+
+ DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
+ addr, is_secure ? "s" : "ns", old_state, blk->print());
+
+ // if we got new data, copy it in (checking for a read response
+ // and a response that has data is the same in the end)
+ if (pkt->isRead()) {
+ // sanity checks
+ assert(pkt->hasData());
+ assert(pkt->getSize() == blkSize);
+
+ std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
+ }
+ // We pay for fillLatency here.
+ blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
+ pkt->payloadDelay;
+
+ return blk;
+}
+
+
+/////////////////////////////////////////////////////
+//
+// Snoop path: requests coming in from the memory side
+//
+/////////////////////////////////////////////////////
+
+void
+Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
+ bool already_copied, bool pending_inval)
+{
+ // sanity check
+ assert(req_pkt->isRequest());
+ assert(req_pkt->needsResponse());
+
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
+ // timing-mode snoop responses require a new packet, unless we
+ // already made a copy...
+ PacketPtr pkt = req_pkt;
+ if (!already_copied)
+ // do not clear flags, and allocate space for data if the
+ // packet needs it (the only packets that carry data are read
+ // responses)
+ pkt = new Packet(req_pkt, false, req_pkt->isRead());
+
+ assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
+ pkt->sharedAsserted());
+ pkt->makeTimingResponse();
+ if (pkt->isRead()) {
+ pkt->setDataFromBlock(blk_data, blkSize);
+ }
+ if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
+ // Assume we defer a response to a read from a far-away cache
+ // A, then later defer a ReadExcl from a cache B on the same
+ // bus as us. We'll assert MemInhibit in both cases, but in
+ // the latter case MemInhibit will keep the invalidation from
+ // reaching cache A. This special response tells cache A that
+ // it gets the block to satisfy its read, but must immediately
+ // invalidate it.
+ pkt->cmd = MemCmd::ReadRespWithInvalidate;
+ }
+ // Here we consider forward_time, paying for just forward latency and
+ // also charging the delay provided by the xbar.
+ // forward_time is used as send_time in next allocateWriteBuffer().
+ Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
+ // Here we reset the timing of the packet.
+ pkt->headerDelay = pkt->payloadDelay = 0;
+ DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
+ forward_time);
+ memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
+}
+
+void
+Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
+ bool is_deferred, bool pending_inval)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ // deferred snoops can only happen in timing mode
+ assert(!(is_deferred && !is_timing));
+ // pending_inval only makes sense on deferred snoops
+ assert(!(pending_inval && !is_deferred));
+ assert(pkt->isRequest());
+
+ // the packet may get modified if we or a forwarded snooper
+ // responds in atomic mode, so remember a few things about the
+ // original packet up front
+ bool invalidate = pkt->isInvalidate();
+ bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
+
+ if (forwardSnoops) {
+ // first propagate snoop upward to see if anyone above us wants to
+ // handle it. save & restore packet src since it will get
+ // rewritten to be relative to cpu-side bus (if any)
+ bool alreadyResponded = pkt->memInhibitAsserted();
+ if (is_timing) {
+ // copy the packet so that we can clear any flags before
+ // forwarding it upwards, we also allocate data (passing
+ // the pointer along in case of static data), in case
+ // there is a snoop hit in upper levels
+ Packet snoopPkt(pkt, true, true);
+ snoopPkt.setExpressSnoop();
+ snoopPkt.pushSenderState(new ForwardResponseRecord());
+ // the snoop packet does not need to wait any additional
+ // time
+ snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
+ cpuSidePort->sendTimingSnoopReq(&snoopPkt);
+ if (snoopPkt.memInhibitAsserted()) {
+ // cache-to-cache response from some upper cache
+ assert(!alreadyResponded);
+ pkt->assertMemInhibit();
+ } else {
+ // no cache (or anyone else for that matter) will
+ // respond, so delete the ForwardResponseRecord here
+ delete snoopPkt.popSenderState();
+ }
+ if (snoopPkt.sharedAsserted()) {
+ pkt->assertShared();
+ }
+ // If this request is a prefetch or clean evict and an upper level
+ // signals block present, make sure to propagate the block
+ // presence to the requester.
+ if (snoopPkt.isBlockCached()) {
+ pkt->setBlockCached();
+ }
+ } else {
+ cpuSidePort->sendAtomicSnoop(pkt);
+ if (!alreadyResponded && pkt->memInhibitAsserted()) {
+ // cache-to-cache response from some upper cache:
+ // forward response to original requester
+ assert(pkt->isResponse());
+ }
+ }
+ }
+
+ if (!blk || !blk->isValid()) {
+ DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
+ __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+ return;
+ } else {
+ DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
+ "old state is %s\n", __func__, pkt->cmdString(),
+ pkt->getAddr(), pkt->getSize(), blk->print());
+ }
+
+ chatty_assert(!(isReadOnly && blk->isDirty()),
+ "Should never have a dirty block in a read-only cache %s\n",
+ name());
+
+ // We may end up modifying both the block state and the packet (if
+ // we respond in atomic mode), so just figure out what to do now
+ // and then do it later. If we find dirty data while snooping for
+ // an invalidate, we don't need to send a response. The
+ // invalidation itself is taken care of below.
+ bool respond = blk->isDirty() && pkt->needsResponse() &&
+ pkt->cmd != MemCmd::InvalidateReq;
+ bool have_exclusive = blk->isWritable();
+
+ // Invalidate any prefetch's from below that would strip write permissions
+ // MemCmd::HardPFReq is only observed by upstream caches. After missing
+ // above and in it's own cache, a new MemCmd::ReadReq is created that
+ // downstream caches observe.
+ if (pkt->mustCheckAbove()) {
+ DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
+ " lower cache\n", pkt->getAddr(), pkt->cmdString());
+ pkt->setBlockCached();
+ return;
+ }
+
+ if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
+ assert(!needs_exclusive);
+ pkt->assertShared();
+ int bits_to_clear = BlkWritable;
+ const bool haveOwnershipState = true; // for now
+ if (!haveOwnershipState) {
+ // if we don't support pure ownership (dirty && !writable),
+ // have to clear dirty bit here, assume memory snarfs data
+ // on cache-to-cache xfer
+ bits_to_clear |= BlkDirty;
+ }
+ blk->status &= ~bits_to_clear;
+ }
+
+ if (respond) {
+ // prevent anyone else from responding, cache as well as
+ // memory, and also prevent any memory from even seeing the
+ // request (with current inhibited semantics), note that this
+ // applies both to reads and writes and that for writes it
+ // works thanks to the fact that we still have dirty data and
+ // will write it back at a later point
+ pkt->assertMemInhibit();
+ if (have_exclusive) {
+ // in the case of an uncacheable request there is no need
+ // to set the exclusive flag, but since the recipient does
+ // not care there is no harm in doing so
+ pkt->setSupplyExclusive();
+ }
+ if (is_timing) {
+ doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
+ } else {
+ pkt->makeAtomicResponse();
+ pkt->setDataFromBlock(blk->data, blkSize);
+ }
+ }
+
+ if (!respond && is_timing && is_deferred) {
+ // if it's a deferred timing snoop then we've made a copy of
+ // both the request and the packet, and so if we're not using
+ // those copies to respond and delete them here
+ DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
+ pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
+
+ // the packets needs a response (just not from us), so we also
+ // need to delete the request and not rely on the packet
+ // destructor
+ assert(pkt->needsResponse());
+ delete pkt->req;
+ delete pkt;
+ }
+
+ // Do this last in case it deallocates block data or something
+ // like that
+ if (invalidate) {
+ if (blk != tempBlock)
+ tags->invalidate(blk);
+ blk->invalidate();
+ }
+
+ DPRINTF(Cache, "new state is %s\n", blk->print());
+}
+
+
+void
+Cache::recvTimingSnoopReq(PacketPtr pkt)
+{
+ DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
+ pkt->cmdString(), pkt->getAddr(), pkt->getSize());
+
+ // Snoops shouldn't happen when bypassing caches
+ assert(!system->bypassCaches());
+
+ // no need to snoop writebacks or requests that are not in range
+ if (!inRange(pkt->getAddr())) {
+ return;
+ }
+
+ bool is_secure = pkt->isSecure();
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
+
+ Addr blk_addr = blockAlign(pkt->getAddr());
+ MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
+
+ // Inform request(Prefetch, CleanEvict or Writeback) from below of
+ // MSHR hit, set setBlockCached.
+ if (mshr && pkt->mustCheckAbove()) {
+ DPRINTF(Cache, "Setting block cached for %s from"
+ "lower cache on mshr hit %#x\n",
+ pkt->cmdString(), pkt->getAddr());
+ pkt->setBlockCached();
+ return;
+ }
+
+ // Let the MSHR itself track the snoop and decide whether we want
+ // to go ahead and do the regular cache snoop
+ if (mshr && mshr->handleSnoop(pkt, order++)) {
+ DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
+ "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
+ mshr->print());
+
+ if (mshr->getNumTargets() > numTarget)
+ warn("allocating bonus target for snoop"); //handle later
+ return;
+ }
+
+ //We also need to check the writeback buffers and handle those
+ std::vector<MSHR *> writebacks;
+ if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
+ DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
+ pkt->getAddr(), is_secure ? "s" : "ns");
+
+ // Look through writebacks for any cachable writes.
+ // We should only ever find a single match
+ assert(writebacks.size() == 1);
+ MSHR *wb_entry = writebacks[0];
+ // Expect to see only Writebacks and/or CleanEvicts here, both of
+ // which should not be generated for uncacheable data.
+ assert(!wb_entry->isUncacheable());
+ // There should only be a single request responsible for generating
+ // Writebacks/CleanEvicts.
+ assert(wb_entry->getNumTargets() == 1);
+ PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
+ assert(wb_pkt->evictingBlock());
+
+ if (pkt->evictingBlock()) {
+ // if the block is found in the write queue, set the BLOCK_CACHED
+ // flag for Writeback/CleanEvict snoop. On return the snoop will
+ // propagate the BLOCK_CACHED flag in Writeback packets and prevent
+ // any CleanEvicts from travelling down the memory hierarchy.
+ pkt->setBlockCached();
+ DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
+ " %#x\n", pkt->cmdString(), pkt->getAddr());
+ return;
+ }
+
+ if (wb_pkt->cmd == MemCmd::Writeback) {
+ assert(!pkt->memInhibitAsserted());
+ pkt->assertMemInhibit();
+ if (!pkt->needsExclusive()) {
+ pkt->assertShared();
+ // the writeback is no longer passing exclusivity (the
+ // receiving cache should consider the block owned
+ // rather than modified)
+ wb_pkt->assertShared();
+ } else {
+ // if we're not asserting the shared line, we need to
+ // invalidate our copy. we'll do that below as long as
+ // the packet's invalidate flag is set...
+ assert(pkt->isInvalidate());
+ }
+ doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
+ false, false);
+ } else {
+ assert(wb_pkt->cmd == MemCmd::CleanEvict);
+ // The cache technically holds the block until the
+ // corresponding CleanEvict message reaches the crossbar
+ // below. Therefore when a snoop encounters a CleanEvict
+ // message we must set assertShared (just like when it
+ // encounters a Writeback) to avoid the snoop filter
+ // prematurely clearing the holder bit in the crossbar
+ // below
+ if (!pkt->needsExclusive())
+ pkt->assertShared();
+ else
+ assert(pkt->isInvalidate());
+ }
+
+ if (pkt->isInvalidate()) {
+ // Invalidation trumps our writeback... discard here
+ // Note: markInService will remove entry from writeback buffer.
+ markInService(wb_entry, false);
+ delete wb_pkt;
+ }
+ }
+
+ // If this was a shared writeback, there may still be
+ // other shared copies above that require invalidation.
+ // We could be more selective and return here if the
+ // request is non-exclusive or if the writeback is
+ // exclusive.
+ handleSnoop(pkt, blk, true, false, false);
+}
+
+bool
+Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
+{
+ // Express snoop responses from master to slave, e.g., from L1 to L2
+ cache->recvTimingSnoopResp(pkt);
+ return true;
+}
+
+Tick
+Cache::recvAtomicSnoop(PacketPtr pkt)
+{
+ // Snoops shouldn't happen when bypassing caches
+ assert(!system->bypassCaches());
+
+ // no need to snoop writebacks or requests that are not in range. In
+ // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
+ // hence there is no need to snoop upwards and determine if they are
+ // present above.
+ if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
+ return 0;
+ }
+
+ CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
+ handleSnoop(pkt, blk, false, false, false);
+ // We consider forwardLatency here because a snoop occurs in atomic mode
+ return forwardLatency * clockPeriod();
+}
+
+
+MSHR *
+Cache::getNextMSHR()
+{
+ // Check both MSHR queue and write buffer for potential requests,
+ // note that null does not mean there is no request, it could
+ // simply be that it is not ready
+ MSHR *miss_mshr = mshrQueue.getNextMSHR();
+ MSHR *write_mshr = writeBuffer.getNextMSHR();
+
+ // If we got a write buffer request ready, first priority is a
+ // full write buffer, otherwhise we favour the miss requests
+ if (write_mshr &&
+ ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
+ !miss_mshr)) {
+ // need to search MSHR queue for conflicting earlier miss.
+ MSHR *conflict_mshr =
+ mshrQueue.findPending(write_mshr->blkAddr,
+ write_mshr->isSecure);
+
+ if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
+ // Service misses in order until conflict is cleared.
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue write
+ return write_mshr;
+ } else if (miss_mshr) {
+ // need to check for conflicting earlier writeback
+ MSHR *conflict_mshr =
+ writeBuffer.findPending(miss_mshr->blkAddr,
+ miss_mshr->isSecure);
+ if (conflict_mshr) {
+ // not sure why we don't check order here... it was in the
+ // original code but commented out.
+
+ // The only way this happens is if we are
+ // doing a write and we didn't have permissions
+ // then subsequently saw a writeback (owned got evicted)
+ // We need to make sure to perform the writeback first
+ // To preserve the dirty data, then we can issue the write
+
+ // should we return write_mshr here instead? I.e. do we
+ // have to flush writes in order? I don't think so... not
+ // for Alpha anyway. Maybe for x86?
+ return conflict_mshr;
+
+ // @todo Note that we ignore the ready time of the conflict here
+ }
+
+ // No conflicts; issue read
+ return miss_mshr;
+ }
+
+ // fall through... no pending requests. Try a prefetch.
+ assert(!miss_mshr && !write_mshr);
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ // If we have a miss queue slot, we can try a prefetch
+ PacketPtr pkt = prefetcher->getPacket();
+ if (pkt) {
+ Addr pf_addr = blockAlign(pkt->getAddr());
+ if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
+ !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
+ !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
+ // Update statistic on number of prefetches issued
+ // (hwpf_mshr_misses)
+ assert(pkt->req->masterId() < system->maxMasters());
+ mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
+
+ // allocate an MSHR and return it, note
+ // that we send the packet straight away, so do not
+ // schedule the send
+ return allocateMissBuffer(pkt, curTick(), false);
+ } else {
+ // free the request and packet
+ delete pkt->req;
+ delete pkt;
+ }
+ }
+ }
+
+ return NULL;
+}
+
+bool
+Cache::isCachedAbove(const PacketPtr pkt) const
+{
+ if (!forwardSnoops)
+ return false;
+ // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
+ // Writeback snoops into upper level caches to check for copies of the
+ // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
+ // packet, the cache can inform the crossbar below of presence or absence
+ // of the block.
+
+ Packet snoop_pkt(pkt, true, false);
+ snoop_pkt.setExpressSnoop();
+ // Assert that packet is either Writeback or CleanEvict and not a prefetch
+ // request because prefetch requests need an MSHR and may generate a snoop
+ // response.
+ assert(pkt->evictingBlock());
+ snoop_pkt.senderState = NULL;
+ cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+ // Writeback/CleanEvict snoops do not generate a separate snoop response.
+ assert(!(snoop_pkt.memInhibitAsserted()));
+ return snoop_pkt.isBlockCached();
+}
+
+PacketPtr
+Cache::getTimingPacket()
+{
+ MSHR *mshr = getNextMSHR();
+
+ if (mshr == NULL) {
+ return NULL;
+ }
+
+ // use request from 1st target
+ PacketPtr tgt_pkt = mshr->getTarget()->pkt;
+ PacketPtr pkt = NULL;
+
+ DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
+ tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
+
+ CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
+
+ if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
+ // We need to check the caches above us to verify that
+ // they don't have a copy of this block in the dirty state
+ // at the moment. Without this check we could get a stale
+ // copy from memory that might get used in place of the
+ // dirty one.
+ Packet snoop_pkt(tgt_pkt, true, false);
+ snoop_pkt.setExpressSnoop();
+ snoop_pkt.senderState = mshr;
+ cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
+
+ // Check to see if the prefetch was squashed by an upper cache (to
+ // prevent us from grabbing the line) or if a Check to see if a
+ // writeback arrived between the time the prefetch was placed in
+ // the MSHRs and when it was selected to be sent or if the
+ // prefetch was squashed by an upper cache.
+
+ // It is important to check memInhibitAsserted before
+ // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
+ // will be sending a response which will arrive at the MSHR
+ // allocated ofr this request. Checking the prefetchSquash first
+ // may result in the MSHR being prematurely deallocated.
+
+ if (snoop_pkt.memInhibitAsserted()) {
+ // If we are getting a non-shared response it is dirty
+ bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
+ markInService(mshr, pending_dirty_resp);
+ DPRINTF(Cache, "Upward snoop of prefetch for addr"
+ " %#x (%s) hit\n",
+ tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
+ return NULL;
+ }
+
+ if (snoop_pkt.isBlockCached() || blk != NULL) {
+ DPRINTF(Cache, "Block present, prefetch squashed by cache. "
+ "Deallocating mshr target %#x.\n",
+ mshr->blkAddr);
+
+ // Deallocate the mshr target
+ if (tgt_pkt->cmd != MemCmd::Writeback) {
+ if (mshr->queue->forceDeallocateTarget(mshr)) {
+ // Clear block if this deallocation resulted freed an
+ // mshr when all had previously been utilized
+ clearBlocked((BlockedCause)(mshr->queue->index));
+ }
+ return NULL;
+ } else {
+ // If this is a Writeback, and the snoops indicate that the blk
+ // is cached above, set the BLOCK_CACHED flag in the Writeback
+ // packet, so that it does not reset the bits corresponding to
+ // this block in the snoop filter below.
+ tgt_pkt->setBlockCached();
+ }
+ }
+ }
+
+ if (mshr->isForwardNoResponse()) {
+ // no response expected, just forward packet as it is
+ assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
+ pkt = tgt_pkt;
+ } else {
+ pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
+
+ mshr->isForward = (pkt == NULL);
+
+ if (mshr->isForward) {
+ // not a cache block request, but a response is expected
+ // make copy of current packet to forward, keep current
+ // copy for response handling
+ pkt = new Packet(tgt_pkt, false, true);
+ if (pkt->isWrite()) {
+ pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
+ }
+ }
+ }
+
+ assert(pkt != NULL);
+ pkt->senderState = mshr;
+ return pkt;
+}
+
+
+Tick
+Cache::nextMSHRReadyTime() const
+{
+ Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
+ writeBuffer.nextMSHRReadyTime());
+
+ // Don't signal prefetch ready time if no MSHRs available
+ // Will signal once enoguh MSHRs are deallocated
+ if (prefetcher && mshrQueue.canPrefetch()) {
+ nextReady = std::min(nextReady,
+ prefetcher->nextPrefetchReadyTime());
+ }
+
+ return nextReady;
+}
+
+void
+Cache::serialize(CheckpointOut &cp) const
+{
+ bool dirty(isDirty());
+
+ if (dirty) {
+ warn("*** The cache still contains dirty data. ***\n");
+ warn(" Make sure to drain the system using the correct flags.\n");
+ warn(" This checkpoint will not restore correctly and dirty data in "
+ "the cache will be lost!\n");
+ }
+
+ // Since we don't checkpoint the data in the cache, any dirty data
+ // will be lost when restoring from a checkpoint of a system that
+ // wasn't drained properly. Flag the checkpoint as invalid if the
+ // cache contains dirty data.
+ bool bad_checkpoint(dirty);
+ SERIALIZE_SCALAR(bad_checkpoint);
+}
+
+void
+Cache::unserialize(CheckpointIn &cp)
+{
+ bool bad_checkpoint;
+ UNSERIALIZE_SCALAR(bad_checkpoint);
+ if (bad_checkpoint) {
+ fatal("Restoring from checkpoints with dirty caches is not supported "
+ "in the classic memory system. Please remove any caches or "
+ " drain them properly before taking checkpoints.\n");
+ }
+}
+
+///////////////
+//
+// CpuSidePort
+//
+///////////////
+
+AddrRangeList
+Cache::CpuSidePort::getAddrRanges() const
+{
+ return cache->getAddrRanges();
+}
+
+bool
+Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
+{
+ assert(!cache->system->bypassCaches());
+
+ bool success = false;
+
+ // always let inhibited requests through, even if blocked,
+ // ultimately we should check if this is an express snoop, but at
+ // the moment that flag is only set in the cache itself
+ if (pkt->memInhibitAsserted()) {
+ // do not change the current retry state
+ bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
+ assert(bypass_success);
+ return true;
+ } else if (blocked || mustSendRetry) {
+ // either already committed to send a retry, or blocked
+ success = false;
+ } else {
+ // pass it on to the cache, and let the cache decide if we
+ // have to retry or not
+ success = cache->recvTimingReq(pkt);
+ }
+
+ // remember if we have to retry
+ mustSendRetry = !success;
+ return success;
+}
+
+Tick
+Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
+{
+ return cache->recvAtomic(pkt);
+}
+
+void
+Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
+{
+ // functional request
+ cache->functionalAccess(pkt, true);
+}
+
+Cache::
+CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
+ const std::string &_label)
+ : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
+{
+}
+
+///////////////
+//
+// MemSidePort
+//
+///////////////
+
+bool
+Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
+{
+ cache->recvTimingResp(pkt);
+ return true;
+}
+
+// Express snooping requests to memside port
+void
+Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
+{
+ // handle snooping requests
+ cache->recvTimingSnoopReq(pkt);
+}
+
+Tick
+Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
+{
+ return cache->recvAtomicSnoop(pkt);
+}
+
+void
+Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
+{
+ // functional snoop (note that in contrast to atomic we don't have
+ // a specific functionalSnoop method, as they have the same
+ // behaviour regardless)
+ cache->functionalAccess(pkt, false);
+}
+
+void
+Cache::CacheReqPacketQueue::sendDeferredPacket()
+{
+ // sanity check
+ assert(!waitingOnRetry);
+
+ // there should never be any deferred request packets in the
+ // queue, instead we resly on the cache to provide the packets
+ // from the MSHR queue or write queue
+ assert(deferredPacketReadyTime() == MaxTick);
+
+ // check for request packets (requests & writebacks)
+ PacketPtr pkt = cache.getTimingPacket();
+ if (pkt == NULL) {
+ // can happen if e.g. we attempt a writeback and fail, but
+ // before the retry, the writeback is eliminated because
+ // we snoop another cache's ReadEx.
+ } else {
+ MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
+ // in most cases getTimingPacket allocates a new packet, and
+ // we must delete it unless it is successfully sent
+ bool delete_pkt = !mshr->isForwardNoResponse();
+
+ // let our snoop responses go first if there are responses to
+ // the same addresses we are about to writeback, note that
+ // this creates a dependency between requests and snoop
+ // responses, but that should not be a problem since there is
+ // a chain already and the key is that the snoop responses can
+ // sink unconditionally
+ if (snoopRespQueue.hasAddr(pkt->getAddr())) {
+ DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
+ Tick when = snoopRespQueue.deferredPacketReadyTime();
+ schedSendEvent(when);
+
+ if (delete_pkt)
+ delete pkt;
+
+ return;
+ }
+
+
+ waitingOnRetry = !masterPort.sendTimingReq(pkt);
+
+ if (waitingOnRetry) {
+ DPRINTF(CachePort, "now waiting on a retry\n");
+ if (delete_pkt) {
+ // we are awaiting a retry, but we
+ // delete the packet and will be creating a new packet
+ // when we get the opportunity
+ delete pkt;
+ }
+ // note that we have now masked any requestBus and
+ // schedSendEvent (we will wait for a retry before
+ // doing anything), and this is so even if we do not
+ // care about this packet and might override it before
+ // it gets retried
+ } else {
+ // As part of the call to sendTimingReq the packet is
+ // forwarded to all neighbouring caches (and any
+ // caches above them) as a snoop. The packet is also
+ // sent to any potential cache below as the
+ // interconnect is not allowed to buffer the
+ // packet. Thus at this point we know if any of the
+ // neighbouring, or the downstream cache is
+ // responding, and if so, if it is with a dirty line
+ // or not.
+ bool pending_dirty_resp = !pkt->sharedAsserted() &&
+ pkt->memInhibitAsserted();
+
+ cache.markInService(mshr, pending_dirty_resp);
+ }
+ }
+
+ // if we succeeded and are not waiting for a retry, schedule the
+ // next send considering when the next MSHR is ready, note that
+ // snoop responses have their own packet queue and thus schedule
+ // their own events
+ if (!waitingOnRetry) {
+ schedSendEvent(cache.nextMSHRReadyTime());
+ }
+}
+Cache::
+MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
+ const std::string &_label)
+ : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
+ _reqQueue(*_cache, *this, _snoopRespQueue, _label),
+ _snoopRespQueue(*_cache, *this, _label), cache(_cache)
+{
+}
diff --git a/src/mem/cache/cache.hh b/src/mem/cache/cache.hh
index 27d4b9ee1..06d78a272 100644
--- a/src/mem/cache/cache.hh
+++ b/src/mem/cache/cache.hh
@@ -49,8 +49,8 @@
* Describes a cache based on template policies.
*/
-#ifndef __CACHE_HH__
-#define __CACHE_HH__
+#ifndef __MEM_CACHE_CACHE_HH__
+#define __MEM_CACHE_CACHE_HH__
#include "base/misc.hh" // fatal, panic, and warn
#include "mem/cache/base.hh"
@@ -491,4 +491,4 @@ class CacheBlkIsDirtyVisitor : public CacheBlkVisitor
bool _isDirty;
};
-#endif // __CACHE_HH__
+#endif // __MEM_CACHE_CACHE_HH__
diff --git a/src/mem/cache/cache_impl.hh b/src/mem/cache/cache_impl.hh
deleted file mode 100644
index dea95d955..000000000
--- a/src/mem/cache/cache_impl.hh
+++ /dev/null
@@ -1,2514 +0,0 @@
-/*
- * Copyright (c) 2010-2015 ARM Limited
- * All rights reserved.
- *
- * The license below extends only to copyright in the software and shall
- * not be construed as granting a license to any other intellectual
- * property including but not limited to intellectual property relating
- * to a hardware implementation of the functionality of the software
- * licensed hereunder. You may use the software subject to the license
- * terms below provided that you ensure that this notice is replicated
- * unmodified and in its entirety in all distributions of the software,
- * modified or unmodified, in source code or in binary form.
- *
- * Copyright (c) 2002-2005 The Regents of The University of Michigan
- * Copyright (c) 2010,2015 Advanced Micro Devices, Inc.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are
- * met: redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer;
- * redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution;
- * neither the name of the copyright holders nor the names of its
- * contributors may be used to endorse or promote products derived from
- * this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- * Authors: Erik Hallnor
- * Dave Greene
- * Nathan Binkert
- * Steve Reinhardt
- * Ron Dreslinski
- * Andreas Sandberg
- */
-
-#ifndef __MEM_CACHE_CACHE_IMPL_HH__
-#define __MEM_CACHE_CACHE_IMPL_HH__
-
-/**
- * @file
- * Cache definitions.
- */
-
-#include "base/misc.hh"
-#include "base/types.hh"
-#include "debug/Cache.hh"
-#include "debug/CachePort.hh"
-#include "debug/CacheTags.hh"
-#include "mem/cache/prefetch/base.hh"
-#include "mem/cache/blk.hh"
-#include "mem/cache/cache.hh"
-#include "mem/cache/mshr.hh"
-#include "sim/sim_exit.hh"
-
-Cache::Cache(const Params *p)
- : BaseCache(p),
- tags(p->tags),
- prefetcher(p->prefetcher),
- doFastWrites(true),
- prefetchOnAccess(p->prefetch_on_access)
-{
- tempBlock = new CacheBlk();
- tempBlock->data = new uint8_t[blkSize];
-
- cpuSidePort = new CpuSidePort(p->name + ".cpu_side", this,
- "CpuSidePort");
- memSidePort = new MemSidePort(p->name + ".mem_side", this,
- "MemSidePort");
-
- tags->setCache(this);
- if (prefetcher)
- prefetcher->setCache(this);
-}
-
-Cache::~Cache()
-{
- delete [] tempBlock->data;
- delete tempBlock;
-
- delete cpuSidePort;
- delete memSidePort;
-}
-
-void
-Cache::regStats()
-{
- BaseCache::regStats();
-}
-
-void
-Cache::cmpAndSwap(CacheBlk *blk, PacketPtr pkt)
-{
- assert(pkt->isRequest());
-
- uint64_t overwrite_val;
- bool overwrite_mem;
- uint64_t condition_val64;
- uint32_t condition_val32;
-
- int offset = tags->extractBlkOffset(pkt->getAddr());
- uint8_t *blk_data = blk->data + offset;
-
- assert(sizeof(uint64_t) >= pkt->getSize());
-
- overwrite_mem = true;
- // keep a copy of our possible write value, and copy what is at the
- // memory address into the packet
- pkt->writeData((uint8_t *)&overwrite_val);
- pkt->setData(blk_data);
-
- if (pkt->req->isCondSwap()) {
- if (pkt->getSize() == sizeof(uint64_t)) {
- condition_val64 = pkt->req->getExtraData();
- overwrite_mem = !std::memcmp(&condition_val64, blk_data,
- sizeof(uint64_t));
- } else if (pkt->getSize() == sizeof(uint32_t)) {
- condition_val32 = (uint32_t)pkt->req->getExtraData();
- overwrite_mem = !std::memcmp(&condition_val32, blk_data,
- sizeof(uint32_t));
- } else
- panic("Invalid size for conditional read/write\n");
- }
-
- if (overwrite_mem) {
- std::memcpy(blk_data, &overwrite_val, pkt->getSize());
- blk->status |= BlkDirty;
- }
-}
-
-
-void
-Cache::satisfyCpuSideRequest(PacketPtr pkt, CacheBlk *blk,
- bool deferred_response, bool pending_downgrade)
-{
- assert(pkt->isRequest());
-
- assert(blk && blk->isValid());
- // Occasionally this is not true... if we are a lower-level cache
- // satisfying a string of Read and ReadEx requests from
- // upper-level caches, a Read will mark the block as shared but we
- // can satisfy a following ReadEx anyway since we can rely on the
- // Read requester(s) to have buffered the ReadEx snoop and to
- // invalidate their blocks after receiving them.
- // assert(!pkt->needsExclusive() || blk->isWritable());
- assert(pkt->getOffset(blkSize) + pkt->getSize() <= blkSize);
-
- // Check RMW operations first since both isRead() and
- // isWrite() will be true for them
- if (pkt->cmd == MemCmd::SwapReq) {
- cmpAndSwap(blk, pkt);
- } else if (pkt->isWrite()) {
- assert(blk->isWritable());
- // Write or WriteLine at the first cache with block in Exclusive
- if (blk->checkWrite(pkt)) {
- pkt->writeDataToBlock(blk->data, blkSize);
- }
- // Always mark the line as dirty even if we are a failed
- // StoreCond so we supply data to any snoops that have
- // appended themselves to this cache before knowing the store
- // will fail.
- blk->status |= BlkDirty;
- DPRINTF(Cache, "%s for %s addr %#llx size %d (write)\n", __func__,
- pkt->cmdString(), pkt->getAddr(), pkt->getSize());
- } else if (pkt->isRead()) {
- if (pkt->isLLSC()) {
- blk->trackLoadLocked(pkt);
- }
- pkt->setDataFromBlock(blk->data, blkSize);
- // determine if this read is from a (coherent) cache, or not
- // by looking at the command type; we could potentially add a
- // packet attribute such as 'FromCache' to make this check a
- // bit cleaner
- if (pkt->cmd == MemCmd::ReadExReq ||
- pkt->cmd == MemCmd::ReadSharedReq ||
- pkt->cmd == MemCmd::ReadCleanReq ||
- pkt->cmd == MemCmd::SCUpgradeFailReq) {
- assert(pkt->getSize() == blkSize);
- // special handling for coherent block requests from
- // upper-level caches
- if (pkt->needsExclusive()) {
- // sanity check
- assert(pkt->cmd == MemCmd::ReadExReq ||
- pkt->cmd == MemCmd::SCUpgradeFailReq);
-
- // if we have a dirty copy, make sure the recipient
- // keeps it marked dirty
- if (blk->isDirty()) {
- pkt->assertMemInhibit();
- }
- // on ReadExReq we give up our copy unconditionally
- if (blk != tempBlock)
- tags->invalidate(blk);
- blk->invalidate();
- } else if (blk->isWritable() && !pending_downgrade &&
- !pkt->sharedAsserted() &&
- pkt->cmd != MemCmd::ReadCleanReq) {
- // we can give the requester an exclusive copy (by not
- // asserting shared line) on a read request if:
- // - we have an exclusive copy at this level (& below)
- // - we don't have a pending snoop from below
- // signaling another read request
- // - no other cache above has a copy (otherwise it
- // would have asseretd shared line on request)
- // - we are not satisfying an instruction fetch (this
- // prevents dirty data in the i-cache)
-
- if (blk->isDirty()) {
- // special considerations if we're owner:
- if (!deferred_response) {
- // if we are responding immediately and can
- // signal that we're transferring ownership
- // along with exclusivity, do so
- pkt->assertMemInhibit();
- blk->status &= ~BlkDirty;
- } else {
- // if we're responding after our own miss,
- // there's a window where the recipient didn't
- // know it was getting ownership and may not
- // have responded to snoops correctly, so we
- // can't pass off ownership *or* exclusivity
- pkt->assertShared();
- }
- }
- } else {
- // otherwise only respond with a shared copy
- pkt->assertShared();
- }
- }
- } else {
- // Upgrade or Invalidate, since we have it Exclusively (E or
- // M), we ack then invalidate.
- assert(pkt->isUpgrade() || pkt->isInvalidate());
- assert(blk != tempBlock);
- tags->invalidate(blk);
- blk->invalidate();
- DPRINTF(Cache, "%s for %s addr %#llx size %d (invalidation)\n",
- __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
- }
-}
-
-
-/////////////////////////////////////////////////////
-//
-// MSHR helper functions
-//
-/////////////////////////////////////////////////////
-
-
-void
-Cache::markInService(MSHR *mshr, bool pending_dirty_resp)
-{
- markInServiceInternal(mshr, pending_dirty_resp);
-}
-
-
-void
-Cache::squash(int threadNum)
-{
- bool unblock = false;
- BlockedCause cause = NUM_BLOCKED_CAUSES;
-
- if (noTargetMSHR && noTargetMSHR->threadNum == threadNum) {
- noTargetMSHR = NULL;
- unblock = true;
- cause = Blocked_NoTargets;
- }
- if (mshrQueue.isFull()) {
- unblock = true;
- cause = Blocked_NoMSHRs;
- }
- mshrQueue.squash(threadNum);
- if (unblock && !mshrQueue.isFull()) {
- clearBlocked(cause);
- }
-}
-
-/////////////////////////////////////////////////////
-//
-// Access path: requests coming in from the CPU side
-//
-/////////////////////////////////////////////////////
-
-bool
-Cache::access(PacketPtr pkt, CacheBlk *&blk, Cycles &lat,
- PacketList &writebacks)
-{
- // sanity check
- assert(pkt->isRequest());
-
- chatty_assert(!(isReadOnly && pkt->isWrite()),
- "Should never see a write in a read-only cache %s\n",
- name());
-
- DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
- pkt->cmdString(), pkt->getAddr(), pkt->getSize());
-
- if (pkt->req->isUncacheable()) {
- DPRINTF(Cache, "%s%s addr %#llx uncacheable\n", pkt->cmdString(),
- pkt->req->isInstFetch() ? " (ifetch)" : "",
- pkt->getAddr());
-
- if (pkt->req->isClearLL())
- tags->clearLocks();
-
- // flush and invalidate any existing block
- CacheBlk *old_blk(tags->findBlock(pkt->getAddr(), pkt->isSecure()));
- if (old_blk && old_blk->isValid()) {
- if (old_blk->isDirty())
- writebacks.push_back(writebackBlk(old_blk));
- else
- writebacks.push_back(cleanEvictBlk(old_blk));
- tags->invalidate(old_blk);
- old_blk->invalidate();
- }
-
- blk = NULL;
- // lookupLatency is the latency in case the request is uncacheable.
- lat = lookupLatency;
- return false;
- }
-
- ContextID id = pkt->req->hasContextId() ?
- pkt->req->contextId() : InvalidContextID;
- // Here lat is the value passed as parameter to accessBlock() function
- // that can modify its value.
- blk = tags->accessBlock(pkt->getAddr(), pkt->isSecure(), lat, id);
-
- DPRINTF(Cache, "%s%s addr %#llx size %d (%s) %s\n", pkt->cmdString(),
- pkt->req->isInstFetch() ? " (ifetch)" : "",
- pkt->getAddr(), pkt->getSize(), pkt->isSecure() ? "s" : "ns",
- blk ? "hit " + blk->print() : "miss");
-
-
- if (pkt->evictingBlock()) {
- // We check for presence of block in above caches before issuing
- // Writeback or CleanEvict to write buffer. Therefore the only
- // possible cases can be of a CleanEvict packet coming from above
- // encountering a Writeback generated in this cache peer cache and
- // waiting in the write buffer. Cases of upper level peer caches
- // generating CleanEvict and Writeback or simply CleanEvict and
- // CleanEvict almost simultaneously will be caught by snoops sent out
- // by crossbar.
- std::vector<MSHR *> outgoing;
- if (writeBuffer.findMatches(pkt->getAddr(), pkt->isSecure(),
- outgoing)) {
- assert(outgoing.size() == 1);
- PacketPtr wbPkt = outgoing[0]->getTarget()->pkt;
- assert(pkt->cmd == MemCmd::CleanEvict &&
- wbPkt->cmd == MemCmd::Writeback);
- // As the CleanEvict is coming from above, it would have snooped
- // into other peer caches of the same level while traversing the
- // crossbar. If a copy of the block had been found, the CleanEvict
- // would have been deleted in the crossbar. Now that the
- // CleanEvict is here we can be sure none of the other upper level
- // caches connected to this cache have the block, so we can clear
- // the BLOCK_CACHED flag in the Writeback if set and discard the
- // CleanEvict by returning true.
- wbPkt->clearBlockCached();
- return true;
- }
- }
-
- // Writeback handling is special case. We can write the block into
- // the cache without having a writeable copy (or any copy at all).
- if (pkt->cmd == MemCmd::Writeback) {
- assert(blkSize == pkt->getSize());
- if (blk == NULL) {
- // need to do a replacement
- blk = allocateBlock(pkt->getAddr(), pkt->isSecure(), writebacks);
- if (blk == NULL) {
- // no replaceable block available: give up, fwd to next level.
- incMissCount(pkt);
- return false;
- }
- tags->insertBlock(pkt, blk);
-
- blk->status = (BlkValid | BlkReadable);
- if (pkt->isSecure()) {
- blk->status |= BlkSecure;
- }
- }
- blk->status |= BlkDirty;
- // if shared is not asserted we got the writeback in modified
- // state, if it is asserted we are in the owned state
- if (!pkt->sharedAsserted()) {
- blk->status |= BlkWritable;
- }
- // nothing else to do; writeback doesn't expect response
- assert(!pkt->needsResponse());
- std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
- DPRINTF(Cache, "%s new state is %s\n", __func__, blk->print());
- incHitCount(pkt);
- return true;
- } else if (pkt->cmd == MemCmd::CleanEvict) {
- if (blk != NULL) {
- // Found the block in the tags, need to stop CleanEvict from
- // propagating further down the hierarchy. Returning true will
- // treat the CleanEvict like a satisfied write request and delete
- // it.
- return true;
- }
- // We didn't find the block here, propagate the CleanEvict further
- // down the memory hierarchy. Returning false will treat the CleanEvict
- // like a Writeback which could not find a replaceable block so has to
- // go to next level.
- return false;
- } else if ((blk != NULL) &&
- (pkt->needsExclusive() ? blk->isWritable()
- : blk->isReadable())) {
- // OK to satisfy access
- incHitCount(pkt);
- satisfyCpuSideRequest(pkt, blk);
- return true;
- }
-
- // Can't satisfy access normally... either no block (blk == NULL)
- // or have block but need exclusive & only have shared.
-
- incMissCount(pkt);
-
- if (blk == NULL && pkt->isLLSC() && pkt->isWrite()) {
- // complete miss on store conditional... just give up now
- pkt->req->setExtraData(0);
- return true;
- }
-
- return false;
-}
-
-
-class ForwardResponseRecord : public Packet::SenderState
-{
- public:
-
- ForwardResponseRecord() {}
-};
-
-void
-Cache::doWritebacks(PacketList& writebacks, Tick forward_time)
-{
- while (!writebacks.empty()) {
- PacketPtr wbPkt = writebacks.front();
- // We use forwardLatency here because we are copying writebacks to
- // write buffer. Call isCachedAbove for both Writebacks and
- // CleanEvicts. If isCachedAbove returns true we set BLOCK_CACHED flag
- // in Writebacks and discard CleanEvicts.
- if (isCachedAbove(wbPkt)) {
- if (wbPkt->cmd == MemCmd::CleanEvict) {
- // Delete CleanEvict because cached copies exist above. The
- // packet destructor will delete the request object because
- // this is a non-snoop request packet which does not require a
- // response.
- delete wbPkt;
- } else {
- // Set BLOCK_CACHED flag in Writeback and send below, so that
- // the Writeback does not reset the bit corresponding to this
- // address in the snoop filter below.
- wbPkt->setBlockCached();
- allocateWriteBuffer(wbPkt, forward_time);
- }
- } else {
- // If the block is not cached above, send packet below. Both
- // CleanEvict and Writeback with BLOCK_CACHED flag cleared will
- // reset the bit corresponding to this address in the snoop filter
- // below.
- allocateWriteBuffer(wbPkt, forward_time);
- }
- writebacks.pop_front();
- }
-}
-
-
-void
-Cache::recvTimingSnoopResp(PacketPtr pkt)
-{
- DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
- pkt->cmdString(), pkt->getAddr(), pkt->getSize());
-
- assert(pkt->isResponse());
-
- // must be cache-to-cache response from upper to lower level
- ForwardResponseRecord *rec =
- dynamic_cast<ForwardResponseRecord *>(pkt->senderState);
- assert(!system->bypassCaches());
-
- if (rec == NULL) {
- // @todo What guarantee do we have that this HardPFResp is
- // actually for this cache, and not a cache closer to the
- // memory?
- assert(pkt->cmd == MemCmd::HardPFResp);
- // Check if it's a prefetch response and handle it. We shouldn't
- // get any other kinds of responses without FRRs.
- DPRINTF(Cache, "Got prefetch response from above for addr %#llx (%s)\n",
- pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
- recvTimingResp(pkt);
- return;
- }
-
- pkt->popSenderState();
- delete rec;
- // forwardLatency is set here because there is a response from an
- // upper level cache.
- // To pay the delay that occurs if the packet comes from the bus,
- // we charge also headerDelay.
- Tick snoop_resp_time = clockEdge(forwardLatency) + pkt->headerDelay;
- // Reset the timing of the packet.
- pkt->headerDelay = pkt->payloadDelay = 0;
- memSidePort->schedTimingSnoopResp(pkt, snoop_resp_time);
-}
-
-void
-Cache::promoteWholeLineWrites(PacketPtr pkt)
-{
- // Cache line clearing instructions
- if (doFastWrites && (pkt->cmd == MemCmd::WriteReq) &&
- (pkt->getSize() == blkSize) && (pkt->getOffset(blkSize) == 0)) {
- pkt->cmd = MemCmd::WriteLineReq;
- DPRINTF(Cache, "packet promoted from Write to WriteLineReq\n");
- }
-}
-
-bool
-Cache::recvTimingReq(PacketPtr pkt)
-{
- DPRINTF(CacheTags, "%s tags: %s\n", __func__, tags->print());
-//@todo Add back in MemDebug Calls
-// MemDebug::cacheAccess(pkt);
-
-
- /// @todo temporary hack to deal with memory corruption issue until
- /// 4-phase transactions are complete
- for (int x = 0; x < pendingDelete.size(); x++)
- delete pendingDelete[x];
- pendingDelete.clear();
-
- assert(pkt->isRequest());
-
- // Just forward the packet if caches are disabled.
- if (system->bypassCaches()) {
- // @todo This should really enqueue the packet rather
- bool M5_VAR_USED success = memSidePort->sendTimingReq(pkt);
- assert(success);
- return true;
- }
-
- promoteWholeLineWrites(pkt);
-
- if (pkt->memInhibitAsserted()) {
- // a cache above us (but not where the packet came from) is
- // responding to the request
- DPRINTF(Cache, "mem inhibited on addr %#llx (%s): not responding\n",
- pkt->getAddr(), pkt->isSecure() ? "s" : "ns");
-
- // if the packet needs exclusive, and the cache that has
- // promised to respond (setting the inhibit flag) is not
- // providing exclusive (it is in O vs M state), we know that
- // there may be other shared copies in the system; go out and
- // invalidate them all
- if (pkt->needsExclusive() && !pkt->isSupplyExclusive()) {
- // create a downstream express snoop with cleared packet
- // flags, there is no need to allocate any data as the
- // packet is merely used to co-ordinate state transitions
- Packet *snoop_pkt = new Packet(pkt, true, false);
-
- // also reset the bus time that the original packet has
- // not yet paid for
- snoop_pkt->headerDelay = snoop_pkt->payloadDelay = 0;
-
- // make this an instantaneous express snoop, and let the
- // other caches in the system know that the packet is
- // inhibited, because we have found the authorative copy
- // (O) that will supply the right data
- snoop_pkt->setExpressSnoop();
- snoop_pkt->assertMemInhibit();
-
- // this express snoop travels towards the memory, and at
- // every crossbar it is snooped upwards thus reaching
- // every cache in the system
- bool M5_VAR_USED success = memSidePort->sendTimingReq(snoop_pkt);
- // express snoops always succeed
- assert(success);
-
- // main memory will delete the packet
- }
-
- /// @todo nominally we should just delete the packet here,
- /// however, until 4-phase stuff we can't because sending
- /// cache is still relying on it.
- pendingDelete.push_back(pkt);
-
- // no need to take any action in this particular cache as the
- // caches along the path to memory are allowed to keep lines
- // in a shared state, and a cache above us already committed
- // to responding
- return true;
- }
-
- // anything that is merely forwarded pays for the forward latency and
- // the delay provided by the crossbar
- Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
-
- // We use lookupLatency here because it is used to specify the latency
- // to access.
- Cycles lat = lookupLatency;
- CacheBlk *blk = NULL;
- bool satisfied = false;
- {
- PacketList writebacks;
- // Note that lat is passed by reference here. The function
- // access() calls accessBlock() which can modify lat value.
- satisfied = access(pkt, blk, lat, writebacks);
-
- // copy writebacks to write buffer here to ensure they logically
- // proceed anything happening below
- doWritebacks(writebacks, forward_time);
- }
-
- // Here we charge the headerDelay that takes into account the latencies
- // of the bus, if the packet comes from it.
- // The latency charged it is just lat that is the value of lookupLatency
- // modified by access() function, or if not just lookupLatency.
- // In case of a hit we are neglecting response latency.
- // In case of a miss we are neglecting forward latency.
- Tick request_time = clockEdge(lat) + pkt->headerDelay;
- // Here we reset the timing of the packet.
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- // track time of availability of next prefetch, if any
- Tick next_pf_time = MaxTick;
-
- bool needsResponse = pkt->needsResponse();
-
- if (satisfied) {
- // should never be satisfying an uncacheable access as we
- // flush and invalidate any existing block as part of the
- // lookup
- assert(!pkt->req->isUncacheable());
-
- // hit (for all other request types)
-
- if (prefetcher && (prefetchOnAccess || (blk && blk->wasPrefetched()))) {
- if (blk)
- blk->status &= ~BlkHWPrefetched;
-
- // Don't notify on SWPrefetch
- if (!pkt->cmd.isSWPrefetch())
- next_pf_time = prefetcher->notify(pkt);
- }
-
- if (needsResponse) {
- pkt->makeTimingResponse();
- // @todo: Make someone pay for this
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- // In this case we are considering request_time that takes
- // into account the delay of the xbar, if any, and just
- // lat, neglecting responseLatency, modelling hit latency
- // just as lookupLatency or or the value of lat overriden
- // by access(), that calls accessBlock() function.
- cpuSidePort->schedTimingResp(pkt, request_time);
- } else {
- /// @todo nominally we should just delete the packet here,
- /// however, until 4-phase stuff we can't because sending cache is
- /// still relying on it. If the block is found in access(),
- /// CleanEvict and Writeback messages will be deleted here as
- /// well.
- pendingDelete.push_back(pkt);
- }
- } else {
- // miss
-
- Addr blk_addr = blockAlign(pkt->getAddr());
-
- // ignore any existing MSHR if we are dealing with an
- // uncacheable request
- MSHR *mshr = pkt->req->isUncacheable() ? nullptr :
- mshrQueue.findMatch(blk_addr, pkt->isSecure());
-
- // Software prefetch handling:
- // To keep the core from waiting on data it won't look at
- // anyway, send back a response with dummy data. Miss handling
- // will continue asynchronously. Unfortunately, the core will
- // insist upon freeing original Packet/Request, so we have to
- // create a new pair with a different lifecycle. Note that this
- // processing happens before any MSHR munging on the behalf of
- // this request because this new Request will be the one stored
- // into the MSHRs, not the original.
- if (pkt->cmd.isSWPrefetch()) {
- assert(needsResponse);
- assert(pkt->req->hasPaddr());
- assert(!pkt->req->isUncacheable());
-
- // There's no reason to add a prefetch as an additional target
- // to an existing MSHR. If an outstanding request is already
- // in progress, there is nothing for the prefetch to do.
- // If this is the case, we don't even create a request at all.
- PacketPtr pf = nullptr;
-
- if (!mshr) {
- // copy the request and create a new SoftPFReq packet
- RequestPtr req = new Request(pkt->req->getPaddr(),
- pkt->req->getSize(),
- pkt->req->getFlags(),
- pkt->req->masterId());
- pf = new Packet(req, pkt->cmd);
- pf->allocate();
- assert(pf->getAddr() == pkt->getAddr());
- assert(pf->getSize() == pkt->getSize());
- }
-
- pkt->makeTimingResponse();
- // for debugging, set all the bits in the response data
- // (also keeps valgrind from complaining when debugging settings
- // print out instruction results)
- std::memset(pkt->getPtr<uint8_t>(), 0xFF, pkt->getSize());
- // request_time is used here, taking into account lat and the delay
- // charged if the packet comes from the xbar.
- cpuSidePort->schedTimingResp(pkt, request_time);
-
- // If an outstanding request is in progress (we found an
- // MSHR) this is set to null
- pkt = pf;
- }
-
- if (mshr) {
- /// MSHR hit
- /// @note writebacks will be checked in getNextMSHR()
- /// for any conflicting requests to the same block
-
- //@todo remove hw_pf here
-
- // Coalesce unless it was a software prefetch (see above).
- if (pkt) {
- assert(pkt->cmd != MemCmd::Writeback);
- // CleanEvicts corresponding to blocks which have outstanding
- // requests in MSHRs can be deleted here.
- if (pkt->cmd == MemCmd::CleanEvict) {
- pendingDelete.push_back(pkt);
- } else {
- DPRINTF(Cache, "%s coalescing MSHR for %s addr %#llx size %d\n",
- __func__, pkt->cmdString(), pkt->getAddr(),
- pkt->getSize());
-
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_hits[pkt->cmdToIndex()][pkt->req->masterId()]++;
- if (mshr->threadNum != 0/*pkt->req->threadId()*/) {
- mshr->threadNum = -1;
- }
- // We use forward_time here because it is the same
- // considering new targets. We have multiple
- // requests for the same address here. It
- // specifies the latency to allocate an internal
- // buffer and to schedule an event to the queued
- // port and also takes into account the additional
- // delay of the xbar.
- mshr->allocateTarget(pkt, forward_time, order++);
- if (mshr->getNumTargets() == numTarget) {
- noTargetMSHR = mshr;
- setBlocked(Blocked_NoTargets);
- // need to be careful with this... if this mshr isn't
- // ready yet (i.e. time > curTick()), we don't want to
- // move it ahead of mshrs that are ready
- // mshrQueue.moveToFront(mshr);
- }
- }
- // We should call the prefetcher reguardless if the request is
- // satisfied or not, reguardless if the request is in the MSHR or
- // not. The request could be a ReadReq hit, but still not
- // satisfied (potentially because of a prior write to the same
- // cache line. So, even when not satisfied, tehre is an MSHR
- // already allocated for this, we need to let the prefetcher know
- // about the request
- if (prefetcher) {
- // Don't notify on SWPrefetch
- if (!pkt->cmd.isSWPrefetch())
- next_pf_time = prefetcher->notify(pkt);
- }
- }
- } else {
- // no MSHR
- assert(pkt->req->masterId() < system->maxMasters());
- if (pkt->req->isUncacheable()) {
- mshr_uncacheable[pkt->cmdToIndex()][pkt->req->masterId()]++;
- } else {
- mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
- }
-
- if (pkt->evictingBlock() ||
- (pkt->req->isUncacheable() && pkt->isWrite())) {
- // We use forward_time here because there is an
- // uncached memory write, forwarded to WriteBuffer.
- allocateWriteBuffer(pkt, forward_time);
- } else {
- if (blk && blk->isValid()) {
- // should have flushed and have no valid block
- assert(!pkt->req->isUncacheable());
-
- // If we have a write miss to a valid block, we
- // need to mark the block non-readable. Otherwise
- // if we allow reads while there's an outstanding
- // write miss, the read could return stale data
- // out of the cache block... a more aggressive
- // system could detect the overlap (if any) and
- // forward data out of the MSHRs, but we don't do
- // that yet. Note that we do need to leave the
- // block valid so that it stays in the cache, in
- // case we get an upgrade response (and hence no
- // new data) when the write miss completes.
- // As long as CPUs do proper store/load forwarding
- // internally, and have a sufficiently weak memory
- // model, this is probably unnecessary, but at some
- // point it must have seemed like we needed it...
- assert(pkt->needsExclusive());
- assert(!blk->isWritable());
- blk->status &= ~BlkReadable;
- }
- // Here we are using forward_time, modelling the latency of
- // a miss (outbound) just as forwardLatency, neglecting the
- // lookupLatency component.
- allocateMissBuffer(pkt, forward_time);
- }
-
- if (prefetcher) {
- // Don't notify on SWPrefetch
- if (!pkt->cmd.isSWPrefetch())
- next_pf_time = prefetcher->notify(pkt);
- }
- }
- }
-
- if (next_pf_time != MaxTick)
- schedMemSideSendEvent(next_pf_time);
-
- return true;
-}
-
-
-// See comment in cache.hh.
-PacketPtr
-Cache::getBusPacket(PacketPtr cpu_pkt, CacheBlk *blk,
- bool needsExclusive) const
-{
- bool blkValid = blk && blk->isValid();
-
- if (cpu_pkt->req->isUncacheable()) {
- // note that at the point we see the uncacheable request we
- // flush any block, but there could be an outstanding MSHR,
- // and the cache could have filled again before we actually
- // send out the forwarded uncacheable request (blk could thus
- // be non-null)
- return NULL;
- }
-
- if (!blkValid &&
- (cpu_pkt->isUpgrade() ||
- cpu_pkt->evictingBlock())) {
- // Writebacks that weren't allocated in access() and upgrades
- // from upper-level caches that missed completely just go
- // through.
- return NULL;
- }
-
- assert(cpu_pkt->needsResponse());
-
- MemCmd cmd;
- // @TODO make useUpgrades a parameter.
- // Note that ownership protocols require upgrade, otherwise a
- // write miss on a shared owned block will generate a ReadExcl,
- // which will clobber the owned copy.
- const bool useUpgrades = true;
- if (blkValid && useUpgrades) {
- // only reason to be here is that blk is shared
- // (read-only) and we need exclusive
- assert(needsExclusive);
- assert(!blk->isWritable());
- cmd = cpu_pkt->isLLSC() ? MemCmd::SCUpgradeReq : MemCmd::UpgradeReq;
- } else if (cpu_pkt->cmd == MemCmd::SCUpgradeFailReq ||
- cpu_pkt->cmd == MemCmd::StoreCondFailReq) {
- // Even though this SC will fail, we still need to send out the
- // request and get the data to supply it to other snoopers in the case
- // where the determination the StoreCond fails is delayed due to
- // all caches not being on the same local bus.
- cmd = MemCmd::SCUpgradeFailReq;
- } else if (cpu_pkt->cmd == MemCmd::WriteLineReq) {
- // forward as invalidate to all other caches, this gives us
- // the line in exclusive state, and invalidates all other
- // copies
- cmd = MemCmd::InvalidateReq;
- } else {
- // block is invalid
- cmd = needsExclusive ? MemCmd::ReadExReq :
- (isReadOnly ? MemCmd::ReadCleanReq : MemCmd::ReadSharedReq);
- }
- PacketPtr pkt = new Packet(cpu_pkt->req, cmd, blkSize);
-
- // if there are sharers in the upper levels, pass that info downstream
- if (cpu_pkt->sharedAsserted()) {
- // note that cpu_pkt may have spent a considerable time in the
- // MSHR queue and that the information could possibly be out
- // of date, however, there is no harm in conservatively
- // assuming the block is shared
- pkt->assertShared();
- DPRINTF(Cache, "%s passing shared from %s to %s addr %#llx size %d\n",
- __func__, cpu_pkt->cmdString(), pkt->cmdString(),
- pkt->getAddr(), pkt->getSize());
- }
-
- // the packet should be block aligned
- assert(pkt->getAddr() == blockAlign(pkt->getAddr()));
-
- pkt->allocate();
- DPRINTF(Cache, "%s created %s from %s for addr %#llx size %d\n",
- __func__, pkt->cmdString(), cpu_pkt->cmdString(), pkt->getAddr(),
- pkt->getSize());
- return pkt;
-}
-
-
-Tick
-Cache::recvAtomic(PacketPtr pkt)
-{
- // We are in atomic mode so we pay just for lookupLatency here.
- Cycles lat = lookupLatency;
- // @TODO: make this a parameter
- bool last_level_cache = false;
-
- // Forward the request if the system is in cache bypass mode.
- if (system->bypassCaches())
- return ticksToCycles(memSidePort->sendAtomic(pkt));
-
- promoteWholeLineWrites(pkt);
-
- if (pkt->memInhibitAsserted()) {
- // have to invalidate ourselves and any lower caches even if
- // upper cache will be responding
- if (pkt->isInvalidate()) {
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
- if (blk && blk->isValid()) {
- tags->invalidate(blk);
- blk->invalidate();
- DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx (%s):"
- " invalidating\n",
- pkt->cmdString(), pkt->getAddr(),
- pkt->isSecure() ? "s" : "ns");
- }
- if (!last_level_cache) {
- DPRINTF(Cache, "forwarding mem-inhibited %s on %#llx (%s)\n",
- pkt->cmdString(), pkt->getAddr(),
- pkt->isSecure() ? "s" : "ns");
- lat += ticksToCycles(memSidePort->sendAtomic(pkt));
- }
- } else {
- DPRINTF(Cache, "rcvd mem-inhibited %s on %#llx: not responding\n",
- pkt->cmdString(), pkt->getAddr());
- }
-
- return lat * clockPeriod();
- }
-
- // should assert here that there are no outstanding MSHRs or
- // writebacks... that would mean that someone used an atomic
- // access in timing mode
-
- CacheBlk *blk = NULL;
- PacketList writebacks;
- bool satisfied = access(pkt, blk, lat, writebacks);
-
- // handle writebacks resulting from the access here to ensure they
- // logically proceed anything happening below
- while (!writebacks.empty()){
- PacketPtr wbPkt = writebacks.front();
- memSidePort->sendAtomic(wbPkt);
- writebacks.pop_front();
- delete wbPkt;
- }
-
- if (!satisfied) {
- // MISS
-
- PacketPtr bus_pkt = getBusPacket(pkt, blk, pkt->needsExclusive());
-
- bool is_forward = (bus_pkt == NULL);
-
- if (is_forward) {
- // just forwarding the same request to the next level
- // no local cache operation involved
- bus_pkt = pkt;
- }
-
- DPRINTF(Cache, "Sending an atomic %s for %#llx (%s)\n",
- bus_pkt->cmdString(), bus_pkt->getAddr(),
- bus_pkt->isSecure() ? "s" : "ns");
-
-#if TRACING_ON
- CacheBlk::State old_state = blk ? blk->status : 0;
-#endif
-
- lat += ticksToCycles(memSidePort->sendAtomic(bus_pkt));
-
- // We are now dealing with the response handling
- DPRINTF(Cache, "Receive response: %s for addr %#llx (%s) in state %i\n",
- bus_pkt->cmdString(), bus_pkt->getAddr(),
- bus_pkt->isSecure() ? "s" : "ns",
- old_state);
-
- // If packet was a forward, the response (if any) is already
- // in place in the bus_pkt == pkt structure, so we don't need
- // to do anything. Otherwise, use the separate bus_pkt to
- // generate response to pkt and then delete it.
- if (!is_forward) {
- if (pkt->needsResponse()) {
- assert(bus_pkt->isResponse());
- if (bus_pkt->isError()) {
- pkt->makeAtomicResponse();
- pkt->copyError(bus_pkt);
- } else if (pkt->cmd == MemCmd::InvalidateReq) {
- if (blk) {
- // invalidate response to a cache that received
- // an invalidate request
- satisfyCpuSideRequest(pkt, blk);
- }
- } else if (pkt->cmd == MemCmd::WriteLineReq) {
- // note the use of pkt, not bus_pkt here.
-
- // write-line request to the cache that promoted
- // the write to a whole line
- blk = handleFill(pkt, blk, writebacks);
- satisfyCpuSideRequest(pkt, blk);
- } else if (bus_pkt->isRead() ||
- bus_pkt->cmd == MemCmd::UpgradeResp) {
- // we're updating cache state to allow us to
- // satisfy the upstream request from the cache
- blk = handleFill(bus_pkt, blk, writebacks);
- satisfyCpuSideRequest(pkt, blk);
- } else {
- // we're satisfying the upstream request without
- // modifying cache state, e.g., a write-through
- pkt->makeAtomicResponse();
- }
- }
- delete bus_pkt;
- }
- }
-
- // Note that we don't invoke the prefetcher at all in atomic mode.
- // It's not clear how to do it properly, particularly for
- // prefetchers that aggressively generate prefetch candidates and
- // rely on bandwidth contention to throttle them; these will tend
- // to pollute the cache in atomic mode since there is no bandwidth
- // contention. If we ever do want to enable prefetching in atomic
- // mode, though, this is the place to do it... see timingAccess()
- // for an example (though we'd want to issue the prefetch(es)
- // immediately rather than calling requestMemSideBus() as we do
- // there).
-
- // Handle writebacks (from the response handling) if needed
- while (!writebacks.empty()){
- PacketPtr wbPkt = writebacks.front();
- memSidePort->sendAtomic(wbPkt);
- writebacks.pop_front();
- delete wbPkt;
- }
-
- if (pkt->needsResponse()) {
- pkt->makeAtomicResponse();
- }
-
- return lat * clockPeriod();
-}
-
-
-void
-Cache::functionalAccess(PacketPtr pkt, bool fromCpuSide)
-{
- if (system->bypassCaches()) {
- // Packets from the memory side are snoop request and
- // shouldn't happen in bypass mode.
- assert(fromCpuSide);
-
- // The cache should be flushed if we are in cache bypass mode,
- // so we don't need to check if we need to update anything.
- memSidePort->sendFunctional(pkt);
- return;
- }
-
- Addr blk_addr = blockAlign(pkt->getAddr());
- bool is_secure = pkt->isSecure();
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
- MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
-
- pkt->pushLabel(name());
-
- CacheBlkPrintWrapper cbpw(blk);
-
- // Note that just because an L2/L3 has valid data doesn't mean an
- // L1 doesn't have a more up-to-date modified copy that still
- // needs to be found. As a result we always update the request if
- // we have it, but only declare it satisfied if we are the owner.
-
- // see if we have data at all (owned or otherwise)
- bool have_data = blk && blk->isValid()
- && pkt->checkFunctional(&cbpw, blk_addr, is_secure, blkSize,
- blk->data);
-
- // data we have is dirty if marked as such or if valid & ownership
- // pending due to outstanding UpgradeReq
- bool have_dirty =
- have_data && (blk->isDirty() ||
- (mshr && mshr->inService && mshr->isPendingDirty()));
-
- bool done = have_dirty
- || cpuSidePort->checkFunctional(pkt)
- || mshrQueue.checkFunctional(pkt, blk_addr)
- || writeBuffer.checkFunctional(pkt, blk_addr)
- || memSidePort->checkFunctional(pkt);
-
- DPRINTF(Cache, "functional %s %#llx (%s) %s%s%s\n",
- pkt->cmdString(), pkt->getAddr(), is_secure ? "s" : "ns",
- (blk && blk->isValid()) ? "valid " : "",
- have_data ? "data " : "", done ? "done " : "");
-
- // We're leaving the cache, so pop cache->name() label
- pkt->popLabel();
-
- if (done) {
- pkt->makeResponse();
- } else {
- // if it came as a request from the CPU side then make sure it
- // continues towards the memory side
- if (fromCpuSide) {
- memSidePort->sendFunctional(pkt);
- } else if (forwardSnoops && cpuSidePort->isSnooping()) {
- // if it came from the memory side, it must be a snoop request
- // and we should only forward it if we are forwarding snoops
- cpuSidePort->sendFunctionalSnoop(pkt);
- }
- }
-}
-
-
-/////////////////////////////////////////////////////
-//
-// Response handling: responses from the memory side
-//
-/////////////////////////////////////////////////////
-
-
-void
-Cache::recvTimingResp(PacketPtr pkt)
-{
- assert(pkt->isResponse());
-
- // all header delay should be paid for by the crossbar, unless
- // this is a prefetch response from above
- panic_if(pkt->headerDelay != 0 && pkt->cmd != MemCmd::HardPFResp,
- "%s saw a non-zero packet delay\n", name());
-
- MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
- bool is_error = pkt->isError();
-
- assert(mshr);
-
- if (is_error) {
- DPRINTF(Cache, "Cache received packet with error for addr %#llx (%s), "
- "cmd: %s\n", pkt->getAddr(), pkt->isSecure() ? "s" : "ns",
- pkt->cmdString());
- }
-
- DPRINTF(Cache, "Handling response %s for addr %#llx size %d (%s)\n",
- pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
- pkt->isSecure() ? "s" : "ns");
-
- MSHRQueue *mq = mshr->queue;
- bool wasFull = mq->isFull();
-
- if (mshr == noTargetMSHR) {
- // we always clear at least one target
- clearBlocked(Blocked_NoTargets);
- noTargetMSHR = NULL;
- }
-
- // Initial target is used just for stats
- MSHR::Target *initial_tgt = mshr->getTarget();
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
- int stats_cmd_idx = initial_tgt->pkt->cmdToIndex();
- Tick miss_latency = curTick() - initial_tgt->recvTime;
- PacketList writebacks;
- // We need forward_time here because we have a call of
- // allocateWriteBuffer() that need this parameter to specify the
- // time to request the bus. In this case we use forward latency
- // because there is a writeback. We pay also here for headerDelay
- // that is charged of bus latencies if the packet comes from the
- // bus.
- Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
-
- if (pkt->req->isUncacheable()) {
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_uncacheable_lat[stats_cmd_idx][pkt->req->masterId()] +=
- miss_latency;
- } else {
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_miss_latency[stats_cmd_idx][pkt->req->masterId()] +=
- miss_latency;
- }
-
- bool is_fill = !mshr->isForward &&
- (pkt->isRead() || pkt->cmd == MemCmd::UpgradeResp);
-
- if (is_fill && !is_error) {
- DPRINTF(Cache, "Block for addr %#llx being updated in Cache\n",
- pkt->getAddr());
-
- // give mshr a chance to do some dirty work
- mshr->handleFill(pkt, blk);
-
- blk = handleFill(pkt, blk, writebacks);
- assert(blk != NULL);
- }
-
- // allow invalidation responses originating from write-line
- // requests to be discarded
- bool discard_invalidate = false;
-
- // First offset for critical word first calculations
- int initial_offset = initial_tgt->pkt->getOffset(blkSize);
-
- while (mshr->hasTargets()) {
- MSHR::Target *target = mshr->getTarget();
- Packet *tgt_pkt = target->pkt;
-
- switch (target->source) {
- case MSHR::Target::FromCPU:
- Tick completion_time;
- // Here we charge on completion_time the delay of the xbar if the
- // packet comes from it, charged on headerDelay.
- completion_time = pkt->headerDelay;
-
- // Software prefetch handling for cache closest to core
- if (tgt_pkt->cmd.isSWPrefetch()) {
- // a software prefetch would have already been ack'd immediately
- // with dummy data so the core would be able to retire it.
- // this request completes right here, so we deallocate it.
- delete tgt_pkt->req;
- delete tgt_pkt;
- break; // skip response
- }
-
- // unlike the other packet flows, where data is found in other
- // caches or memory and brought back, write-line requests always
- // have the data right away, so the above check for "is fill?"
- // cannot actually be determined until examining the stored MSHR
- // state. We "catch up" with that logic here, which is duplicated
- // from above.
- if (tgt_pkt->cmd == MemCmd::WriteLineReq) {
- assert(!is_error);
-
- // NB: we use the original packet here and not the response!
- mshr->handleFill(tgt_pkt, blk);
- blk = handleFill(tgt_pkt, blk, writebacks);
- assert(blk != NULL);
-
- // treat as a fill, and discard the invalidation
- // response
- is_fill = true;
- discard_invalidate = true;
- }
-
- if (is_fill) {
- satisfyCpuSideRequest(tgt_pkt, blk,
- true, mshr->hasPostDowngrade());
-
- // How many bytes past the first request is this one
- int transfer_offset =
- tgt_pkt->getOffset(blkSize) - initial_offset;
- if (transfer_offset < 0) {
- transfer_offset += blkSize;
- }
-
- // If not critical word (offset) return payloadDelay.
- // responseLatency is the latency of the return path
- // from lower level caches/memory to an upper level cache or
- // the core.
- completion_time += clockEdge(responseLatency) +
- (transfer_offset ? pkt->payloadDelay : 0);
-
- assert(!tgt_pkt->req->isUncacheable());
-
- assert(tgt_pkt->req->masterId() < system->maxMasters());
- missLatency[tgt_pkt->cmdToIndex()][tgt_pkt->req->masterId()] +=
- completion_time - target->recvTime;
- } else if (pkt->cmd == MemCmd::UpgradeFailResp) {
- // failed StoreCond upgrade
- assert(tgt_pkt->cmd == MemCmd::StoreCondReq ||
- tgt_pkt->cmd == MemCmd::StoreCondFailReq ||
- tgt_pkt->cmd == MemCmd::SCUpgradeFailReq);
- // responseLatency is the latency of the return path
- // from lower level caches/memory to an upper level cache or
- // the core.
- completion_time += clockEdge(responseLatency) +
- pkt->payloadDelay;
- tgt_pkt->req->setExtraData(0);
- } else {
- // not a cache fill, just forwarding response
- // responseLatency is the latency of the return path
- // from lower level cahces/memory to the core.
- completion_time += clockEdge(responseLatency) +
- pkt->payloadDelay;
- if (pkt->isRead() && !is_error) {
- // sanity check
- assert(pkt->getAddr() == tgt_pkt->getAddr());
- assert(pkt->getSize() >= tgt_pkt->getSize());
-
- tgt_pkt->setData(pkt->getConstPtr<uint8_t>());
- }
- }
- tgt_pkt->makeTimingResponse();
- // if this packet is an error copy that to the new packet
- if (is_error)
- tgt_pkt->copyError(pkt);
- if (tgt_pkt->cmd == MemCmd::ReadResp &&
- (pkt->isInvalidate() || mshr->hasPostInvalidate())) {
- // If intermediate cache got ReadRespWithInvalidate,
- // propagate that. Response should not have
- // isInvalidate() set otherwise.
- tgt_pkt->cmd = MemCmd::ReadRespWithInvalidate;
- DPRINTF(Cache, "%s updated cmd to %s for addr %#llx\n",
- __func__, tgt_pkt->cmdString(), tgt_pkt->getAddr());
- }
- // Reset the bus additional time as it is now accounted for
- tgt_pkt->headerDelay = tgt_pkt->payloadDelay = 0;
- cpuSidePort->schedTimingResp(tgt_pkt, completion_time);
- break;
-
- case MSHR::Target::FromPrefetcher:
- assert(tgt_pkt->cmd == MemCmd::HardPFReq);
- if (blk)
- blk->status |= BlkHWPrefetched;
- delete tgt_pkt->req;
- delete tgt_pkt;
- break;
-
- case MSHR::Target::FromSnoop:
- // I don't believe that a snoop can be in an error state
- assert(!is_error);
- // response to snoop request
- DPRINTF(Cache, "processing deferred snoop...\n");
- assert(!(pkt->isInvalidate() && !mshr->hasPostInvalidate()));
- handleSnoop(tgt_pkt, blk, true, true, mshr->hasPostInvalidate());
- break;
-
- default:
- panic("Illegal target->source enum %d\n", target->source);
- }
-
- mshr->popTarget();
- }
-
- if (blk && blk->isValid()) {
- // an invalidate response stemming from a write line request
- // should not invalidate the block, so check if the
- // invalidation should be discarded
- if ((pkt->isInvalidate() || mshr->hasPostInvalidate()) &&
- !discard_invalidate) {
- assert(blk != tempBlock);
- tags->invalidate(blk);
- blk->invalidate();
- } else if (mshr->hasPostDowngrade()) {
- blk->status &= ~BlkWritable;
- }
- }
-
- if (mshr->promoteDeferredTargets()) {
- // avoid later read getting stale data while write miss is
- // outstanding.. see comment in timingAccess()
- if (blk) {
- blk->status &= ~BlkReadable;
- }
- mq = mshr->queue;
- mq->markPending(mshr);
- schedMemSideSendEvent(clockEdge() + pkt->payloadDelay);
- } else {
- mq->deallocate(mshr);
- if (wasFull && !mq->isFull()) {
- clearBlocked((BlockedCause)mq->index);
- }
-
- // Request the bus for a prefetch if this deallocation freed enough
- // MSHRs for a prefetch to take place
- if (prefetcher && mq == &mshrQueue && mshrQueue.canPrefetch()) {
- Tick next_pf_time = std::max(prefetcher->nextPrefetchReadyTime(),
- clockEdge());
- if (next_pf_time != MaxTick)
- schedMemSideSendEvent(next_pf_time);
- }
- }
- // reset the xbar additional timinig as it is now accounted for
- pkt->headerDelay = pkt->payloadDelay = 0;
-
- // copy writebacks to write buffer
- doWritebacks(writebacks, forward_time);
-
- // if we used temp block, check to see if its valid and then clear it out
- if (blk == tempBlock && tempBlock->isValid()) {
- // We use forwardLatency here because we are copying
- // Writebacks/CleanEvicts to write buffer. It specifies the latency to
- // allocate an internal buffer and to schedule an event to the
- // queued port.
- if (blk->isDirty()) {
- PacketPtr wbPkt = writebackBlk(blk);
- allocateWriteBuffer(wbPkt, forward_time);
- // Set BLOCK_CACHED flag if cached above.
- if (isCachedAbove(wbPkt))
- wbPkt->setBlockCached();
- } else {
- PacketPtr wcPkt = cleanEvictBlk(blk);
- // Check to see if block is cached above. If not allocate
- // write buffer
- if (isCachedAbove(wcPkt))
- delete wcPkt;
- else
- allocateWriteBuffer(wcPkt, forward_time);
- }
- blk->invalidate();
- }
-
- DPRINTF(Cache, "Leaving %s with %s for addr %#llx\n", __func__,
- pkt->cmdString(), pkt->getAddr());
- delete pkt;
-}
-
-PacketPtr
-Cache::writebackBlk(CacheBlk *blk)
-{
- chatty_assert(!isReadOnly, "Writeback from read-only cache");
- assert(blk && blk->isValid() && blk->isDirty());
-
- writebacks[Request::wbMasterId]++;
-
- Request *writebackReq =
- new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
- Request::wbMasterId);
- if (blk->isSecure())
- writebackReq->setFlags(Request::SECURE);
-
- writebackReq->taskId(blk->task_id);
- blk->task_id= ContextSwitchTaskId::Unknown;
- blk->tickInserted = curTick();
-
- PacketPtr writeback = new Packet(writebackReq, MemCmd::Writeback);
- if (blk->isWritable()) {
- // not asserting shared means we pass the block in modified
- // state, mark our own block non-writeable
- blk->status &= ~BlkWritable;
- } else {
- // we are in the owned state, tell the receiver
- writeback->assertShared();
- }
-
- writeback->allocate();
- std::memcpy(writeback->getPtr<uint8_t>(), blk->data, blkSize);
-
- blk->status &= ~BlkDirty;
- return writeback;
-}
-
-PacketPtr
-Cache::cleanEvictBlk(CacheBlk *blk)
-{
- assert(blk && blk->isValid() && !blk->isDirty());
- // Creating a zero sized write, a message to the snoop filter
- Request *req =
- new Request(tags->regenerateBlkAddr(blk->tag, blk->set), blkSize, 0,
- Request::wbMasterId);
- if (blk->isSecure())
- req->setFlags(Request::SECURE);
-
- req->taskId(blk->task_id);
- blk->task_id = ContextSwitchTaskId::Unknown;
- blk->tickInserted = curTick();
-
- PacketPtr pkt = new Packet(req, MemCmd::CleanEvict);
- pkt->allocate();
- DPRINTF(Cache, "%s%s %x Create CleanEvict\n", pkt->cmdString(),
- pkt->req->isInstFetch() ? " (ifetch)" : "",
- pkt->getAddr());
-
- return pkt;
-}
-
-void
-Cache::memWriteback()
-{
- CacheBlkVisitorWrapper visitor(*this, &Cache::writebackVisitor);
- tags->forEachBlk(visitor);
-}
-
-void
-Cache::memInvalidate()
-{
- CacheBlkVisitorWrapper visitor(*this, &Cache::invalidateVisitor);
- tags->forEachBlk(visitor);
-}
-
-bool
-Cache::isDirty() const
-{
- CacheBlkIsDirtyVisitor visitor;
- tags->forEachBlk(visitor);
-
- return visitor.isDirty();
-}
-
-bool
-Cache::writebackVisitor(CacheBlk &blk)
-{
- if (blk.isDirty()) {
- assert(blk.isValid());
-
- Request request(tags->regenerateBlkAddr(blk.tag, blk.set),
- blkSize, 0, Request::funcMasterId);
- request.taskId(blk.task_id);
-
- Packet packet(&request, MemCmd::WriteReq);
- packet.dataStatic(blk.data);
-
- memSidePort->sendFunctional(&packet);
-
- blk.status &= ~BlkDirty;
- }
-
- return true;
-}
-
-bool
-Cache::invalidateVisitor(CacheBlk &blk)
-{
-
- if (blk.isDirty())
- warn_once("Invalidating dirty cache lines. Expect things to break.\n");
-
- if (blk.isValid()) {
- assert(!blk.isDirty());
- tags->invalidate(&blk);
- blk.invalidate();
- }
-
- return true;
-}
-
-CacheBlk*
-Cache::allocateBlock(Addr addr, bool is_secure, PacketList &writebacks)
-{
- CacheBlk *blk = tags->findVictim(addr);
-
- // It is valid to return NULL if there is no victim
- if (!blk)
- return nullptr;
-
- if (blk->isValid()) {
- Addr repl_addr = tags->regenerateBlkAddr(blk->tag, blk->set);
- MSHR *repl_mshr = mshrQueue.findMatch(repl_addr, blk->isSecure());
- if (repl_mshr) {
- // must be an outstanding upgrade request
- // on a block we're about to replace...
- assert(!blk->isWritable() || blk->isDirty());
- assert(repl_mshr->needsExclusive());
- // too hard to replace block with transient state
- // allocation failed, block not inserted
- return NULL;
- } else {
- DPRINTF(Cache, "replacement: replacing %#llx (%s) with %#llx (%s): %s\n",
- repl_addr, blk->isSecure() ? "s" : "ns",
- addr, is_secure ? "s" : "ns",
- blk->isDirty() ? "writeback" : "clean");
-
- // Will send up Writeback/CleanEvict snoops via isCachedAbove
- // when pushing this writeback list into the write buffer.
- if (blk->isDirty()) {
- // Save writeback packet for handling by caller
- writebacks.push_back(writebackBlk(blk));
- } else {
- writebacks.push_back(cleanEvictBlk(blk));
- }
- }
- }
-
- return blk;
-}
-
-
-// Note that the reason we return a list of writebacks rather than
-// inserting them directly in the write buffer is that this function
-// is called by both atomic and timing-mode accesses, and in atomic
-// mode we don't mess with the write buffer (we just perform the
-// writebacks atomically once the original request is complete).
-CacheBlk*
-Cache::handleFill(PacketPtr pkt, CacheBlk *blk, PacketList &writebacks)
-{
- assert(pkt->isResponse() || pkt->cmd == MemCmd::WriteLineReq);
- Addr addr = pkt->getAddr();
- bool is_secure = pkt->isSecure();
-#if TRACING_ON
- CacheBlk::State old_state = blk ? blk->status : 0;
-#endif
-
- // When handling a fill, discard any CleanEvicts for the
- // same address in write buffer.
- Addr M5_VAR_USED blk_addr = blockAlign(pkt->getAddr());
- std::vector<MSHR *> M5_VAR_USED wbs;
- assert (!writeBuffer.findMatches(blk_addr, is_secure, wbs));
-
- if (blk == NULL) {
- // better have read new data...
- assert(pkt->hasData());
-
- // only read responses and write-line requests have data;
- // note that we don't write the data here for write-line - that
- // happens in the subsequent satisfyCpuSideRequest.
- assert(pkt->isRead() || pkt->cmd == MemCmd::WriteLineReq);
-
- // need to do a replacement
- blk = allocateBlock(addr, is_secure, writebacks);
- if (blk == NULL) {
- // No replaceable block... just use temporary storage to
- // complete the current request and then get rid of it
- assert(!tempBlock->isValid());
- blk = tempBlock;
- tempBlock->set = tags->extractSet(addr);
- tempBlock->tag = tags->extractTag(addr);
- // @todo: set security state as well...
- DPRINTF(Cache, "using temp block for %#llx (%s)\n", addr,
- is_secure ? "s" : "ns");
- } else {
- tags->insertBlock(pkt, blk);
- }
-
- // we should never be overwriting a valid block
- assert(!blk->isValid());
- } else {
- // existing block... probably an upgrade
- assert(blk->tag == tags->extractTag(addr));
- // either we're getting new data or the block should already be valid
- assert(pkt->hasData() || blk->isValid());
- // don't clear block status... if block is already dirty we
- // don't want to lose that
- }
-
- if (is_secure)
- blk->status |= BlkSecure;
- blk->status |= BlkValid | BlkReadable;
-
- if (!pkt->sharedAsserted()) {
- // we could get non-shared responses from memory (rather than
- // a cache) even in a read-only cache, note that we set this
- // bit even for a read-only cache as we use it to represent
- // the exclusive state
- blk->status |= BlkWritable;
-
- // If we got this via cache-to-cache transfer (i.e., from a
- // cache that was an owner) and took away that owner's copy,
- // then we need to write it back. Normally this happens
- // anyway as a side effect of getting a copy to write it, but
- // there are cases (such as failed store conditionals or
- // compare-and-swaps) where we'll demand an exclusive copy but
- // end up not writing it.
- if (pkt->memInhibitAsserted()) {
- blk->status |= BlkDirty;
-
- chatty_assert(!isReadOnly, "Should never see dirty snoop response "
- "in read-only cache %s\n", name());
- }
- }
-
- DPRINTF(Cache, "Block addr %#llx (%s) moving from state %x to %s\n",
- addr, is_secure ? "s" : "ns", old_state, blk->print());
-
- // if we got new data, copy it in (checking for a read response
- // and a response that has data is the same in the end)
- if (pkt->isRead()) {
- // sanity checks
- assert(pkt->hasData());
- assert(pkt->getSize() == blkSize);
-
- std::memcpy(blk->data, pkt->getConstPtr<uint8_t>(), blkSize);
- }
- // We pay for fillLatency here.
- blk->whenReady = clockEdge() + fillLatency * clockPeriod() +
- pkt->payloadDelay;
-
- return blk;
-}
-
-
-/////////////////////////////////////////////////////
-//
-// Snoop path: requests coming in from the memory side
-//
-/////////////////////////////////////////////////////
-
-void
-Cache::doTimingSupplyResponse(PacketPtr req_pkt, const uint8_t *blk_data,
- bool already_copied, bool pending_inval)
-{
- // sanity check
- assert(req_pkt->isRequest());
- assert(req_pkt->needsResponse());
-
- DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
- req_pkt->cmdString(), req_pkt->getAddr(), req_pkt->getSize());
- // timing-mode snoop responses require a new packet, unless we
- // already made a copy...
- PacketPtr pkt = req_pkt;
- if (!already_copied)
- // do not clear flags, and allocate space for data if the
- // packet needs it (the only packets that carry data are read
- // responses)
- pkt = new Packet(req_pkt, false, req_pkt->isRead());
-
- assert(req_pkt->req->isUncacheable() || req_pkt->isInvalidate() ||
- pkt->sharedAsserted());
- pkt->makeTimingResponse();
- if (pkt->isRead()) {
- pkt->setDataFromBlock(blk_data, blkSize);
- }
- if (pkt->cmd == MemCmd::ReadResp && pending_inval) {
- // Assume we defer a response to a read from a far-away cache
- // A, then later defer a ReadExcl from a cache B on the same
- // bus as us. We'll assert MemInhibit in both cases, but in
- // the latter case MemInhibit will keep the invalidation from
- // reaching cache A. This special response tells cache A that
- // it gets the block to satisfy its read, but must immediately
- // invalidate it.
- pkt->cmd = MemCmd::ReadRespWithInvalidate;
- }
- // Here we consider forward_time, paying for just forward latency and
- // also charging the delay provided by the xbar.
- // forward_time is used as send_time in next allocateWriteBuffer().
- Tick forward_time = clockEdge(forwardLatency) + pkt->headerDelay;
- // Here we reset the timing of the packet.
- pkt->headerDelay = pkt->payloadDelay = 0;
- DPRINTF(Cache, "%s created response: %s addr %#llx size %d tick: %lu\n",
- __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize(),
- forward_time);
- memSidePort->schedTimingSnoopResp(pkt, forward_time, true);
-}
-
-void
-Cache::handleSnoop(PacketPtr pkt, CacheBlk *blk, bool is_timing,
- bool is_deferred, bool pending_inval)
-{
- DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
- pkt->cmdString(), pkt->getAddr(), pkt->getSize());
- // deferred snoops can only happen in timing mode
- assert(!(is_deferred && !is_timing));
- // pending_inval only makes sense on deferred snoops
- assert(!(pending_inval && !is_deferred));
- assert(pkt->isRequest());
-
- // the packet may get modified if we or a forwarded snooper
- // responds in atomic mode, so remember a few things about the
- // original packet up front
- bool invalidate = pkt->isInvalidate();
- bool M5_VAR_USED needs_exclusive = pkt->needsExclusive();
-
- if (forwardSnoops) {
- // first propagate snoop upward to see if anyone above us wants to
- // handle it. save & restore packet src since it will get
- // rewritten to be relative to cpu-side bus (if any)
- bool alreadyResponded = pkt->memInhibitAsserted();
- if (is_timing) {
- // copy the packet so that we can clear any flags before
- // forwarding it upwards, we also allocate data (passing
- // the pointer along in case of static data), in case
- // there is a snoop hit in upper levels
- Packet snoopPkt(pkt, true, true);
- snoopPkt.setExpressSnoop();
- snoopPkt.pushSenderState(new ForwardResponseRecord());
- // the snoop packet does not need to wait any additional
- // time
- snoopPkt.headerDelay = snoopPkt.payloadDelay = 0;
- cpuSidePort->sendTimingSnoopReq(&snoopPkt);
- if (snoopPkt.memInhibitAsserted()) {
- // cache-to-cache response from some upper cache
- assert(!alreadyResponded);
- pkt->assertMemInhibit();
- } else {
- // no cache (or anyone else for that matter) will
- // respond, so delete the ForwardResponseRecord here
- delete snoopPkt.popSenderState();
- }
- if (snoopPkt.sharedAsserted()) {
- pkt->assertShared();
- }
- // If this request is a prefetch or clean evict and an upper level
- // signals block present, make sure to propagate the block
- // presence to the requester.
- if (snoopPkt.isBlockCached()) {
- pkt->setBlockCached();
- }
- } else {
- cpuSidePort->sendAtomicSnoop(pkt);
- if (!alreadyResponded && pkt->memInhibitAsserted()) {
- // cache-to-cache response from some upper cache:
- // forward response to original requester
- assert(pkt->isResponse());
- }
- }
- }
-
- if (!blk || !blk->isValid()) {
- DPRINTF(Cache, "%s snoop miss for %s addr %#llx size %d\n",
- __func__, pkt->cmdString(), pkt->getAddr(), pkt->getSize());
- return;
- } else {
- DPRINTF(Cache, "%s snoop hit for %s for addr %#llx size %d, "
- "old state is %s\n", __func__, pkt->cmdString(),
- pkt->getAddr(), pkt->getSize(), blk->print());
- }
-
- chatty_assert(!(isReadOnly && blk->isDirty()),
- "Should never have a dirty block in a read-only cache %s\n",
- name());
-
- // We may end up modifying both the block state and the packet (if
- // we respond in atomic mode), so just figure out what to do now
- // and then do it later. If we find dirty data while snooping for
- // an invalidate, we don't need to send a response. The
- // invalidation itself is taken care of below.
- bool respond = blk->isDirty() && pkt->needsResponse() &&
- pkt->cmd != MemCmd::InvalidateReq;
- bool have_exclusive = blk->isWritable();
-
- // Invalidate any prefetch's from below that would strip write permissions
- // MemCmd::HardPFReq is only observed by upstream caches. After missing
- // above and in it's own cache, a new MemCmd::ReadReq is created that
- // downstream caches observe.
- if (pkt->mustCheckAbove()) {
- DPRINTF(Cache, "Found addr %#llx in upper level cache for snoop %s from"
- " lower cache\n", pkt->getAddr(), pkt->cmdString());
- pkt->setBlockCached();
- return;
- }
-
- if (!pkt->req->isUncacheable() && pkt->isRead() && !invalidate) {
- assert(!needs_exclusive);
- pkt->assertShared();
- int bits_to_clear = BlkWritable;
- const bool haveOwnershipState = true; // for now
- if (!haveOwnershipState) {
- // if we don't support pure ownership (dirty && !writable),
- // have to clear dirty bit here, assume memory snarfs data
- // on cache-to-cache xfer
- bits_to_clear |= BlkDirty;
- }
- blk->status &= ~bits_to_clear;
- }
-
- if (respond) {
- // prevent anyone else from responding, cache as well as
- // memory, and also prevent any memory from even seeing the
- // request (with current inhibited semantics), note that this
- // applies both to reads and writes and that for writes it
- // works thanks to the fact that we still have dirty data and
- // will write it back at a later point
- pkt->assertMemInhibit();
- if (have_exclusive) {
- // in the case of an uncacheable request there is no need
- // to set the exclusive flag, but since the recipient does
- // not care there is no harm in doing so
- pkt->setSupplyExclusive();
- }
- if (is_timing) {
- doTimingSupplyResponse(pkt, blk->data, is_deferred, pending_inval);
- } else {
- pkt->makeAtomicResponse();
- pkt->setDataFromBlock(blk->data, blkSize);
- }
- }
-
- if (!respond && is_timing && is_deferred) {
- // if it's a deferred timing snoop then we've made a copy of
- // both the request and the packet, and so if we're not using
- // those copies to respond and delete them here
- DPRINTF(Cache, "Deleting pkt %p and request %p for cmd %s addr: %p\n",
- pkt, pkt->req, pkt->cmdString(), pkt->getAddr());
-
- // the packets needs a response (just not from us), so we also
- // need to delete the request and not rely on the packet
- // destructor
- assert(pkt->needsResponse());
- delete pkt->req;
- delete pkt;
- }
-
- // Do this last in case it deallocates block data or something
- // like that
- if (invalidate) {
- if (blk != tempBlock)
- tags->invalidate(blk);
- blk->invalidate();
- }
-
- DPRINTF(Cache, "new state is %s\n", blk->print());
-}
-
-
-void
-Cache::recvTimingSnoopReq(PacketPtr pkt)
-{
- DPRINTF(Cache, "%s for %s addr %#llx size %d\n", __func__,
- pkt->cmdString(), pkt->getAddr(), pkt->getSize());
-
- // Snoops shouldn't happen when bypassing caches
- assert(!system->bypassCaches());
-
- // no need to snoop writebacks or requests that are not in range
- if (!inRange(pkt->getAddr())) {
- return;
- }
-
- bool is_secure = pkt->isSecure();
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), is_secure);
-
- Addr blk_addr = blockAlign(pkt->getAddr());
- MSHR *mshr = mshrQueue.findMatch(blk_addr, is_secure);
-
- // Inform request(Prefetch, CleanEvict or Writeback) from below of
- // MSHR hit, set setBlockCached.
- if (mshr && pkt->mustCheckAbove()) {
- DPRINTF(Cache, "Setting block cached for %s from"
- "lower cache on mshr hit %#x\n",
- pkt->cmdString(), pkt->getAddr());
- pkt->setBlockCached();
- return;
- }
-
- // Let the MSHR itself track the snoop and decide whether we want
- // to go ahead and do the regular cache snoop
- if (mshr && mshr->handleSnoop(pkt, order++)) {
- DPRINTF(Cache, "Deferring snoop on in-service MSHR to blk %#llx (%s)."
- "mshrs: %s\n", blk_addr, is_secure ? "s" : "ns",
- mshr->print());
-
- if (mshr->getNumTargets() > numTarget)
- warn("allocating bonus target for snoop"); //handle later
- return;
- }
-
- //We also need to check the writeback buffers and handle those
- std::vector<MSHR *> writebacks;
- if (writeBuffer.findMatches(blk_addr, is_secure, writebacks)) {
- DPRINTF(Cache, "Snoop hit in writeback to addr %#llx (%s)\n",
- pkt->getAddr(), is_secure ? "s" : "ns");
-
- // Look through writebacks for any cachable writes.
- // We should only ever find a single match
- assert(writebacks.size() == 1);
- MSHR *wb_entry = writebacks[0];
- // Expect to see only Writebacks and/or CleanEvicts here, both of
- // which should not be generated for uncacheable data.
- assert(!wb_entry->isUncacheable());
- // There should only be a single request responsible for generating
- // Writebacks/CleanEvicts.
- assert(wb_entry->getNumTargets() == 1);
- PacketPtr wb_pkt = wb_entry->getTarget()->pkt;
- assert(wb_pkt->evictingBlock());
-
- if (pkt->evictingBlock()) {
- // if the block is found in the write queue, set the BLOCK_CACHED
- // flag for Writeback/CleanEvict snoop. On return the snoop will
- // propagate the BLOCK_CACHED flag in Writeback packets and prevent
- // any CleanEvicts from travelling down the memory hierarchy.
- pkt->setBlockCached();
- DPRINTF(Cache, "Squashing %s from lower cache on writequeue hit"
- " %#x\n", pkt->cmdString(), pkt->getAddr());
- return;
- }
-
- if (wb_pkt->cmd == MemCmd::Writeback) {
- assert(!pkt->memInhibitAsserted());
- pkt->assertMemInhibit();
- if (!pkt->needsExclusive()) {
- pkt->assertShared();
- // the writeback is no longer passing exclusivity (the
- // receiving cache should consider the block owned
- // rather than modified)
- wb_pkt->assertShared();
- } else {
- // if we're not asserting the shared line, we need to
- // invalidate our copy. we'll do that below as long as
- // the packet's invalidate flag is set...
- assert(pkt->isInvalidate());
- }
- doTimingSupplyResponse(pkt, wb_pkt->getConstPtr<uint8_t>(),
- false, false);
- } else {
- assert(wb_pkt->cmd == MemCmd::CleanEvict);
- // The cache technically holds the block until the
- // corresponding CleanEvict message reaches the crossbar
- // below. Therefore when a snoop encounters a CleanEvict
- // message we must set assertShared (just like when it
- // encounters a Writeback) to avoid the snoop filter
- // prematurely clearing the holder bit in the crossbar
- // below
- if (!pkt->needsExclusive())
- pkt->assertShared();
- else
- assert(pkt->isInvalidate());
- }
-
- if (pkt->isInvalidate()) {
- // Invalidation trumps our writeback... discard here
- // Note: markInService will remove entry from writeback buffer.
- markInService(wb_entry, false);
- delete wb_pkt;
- }
- }
-
- // If this was a shared writeback, there may still be
- // other shared copies above that require invalidation.
- // We could be more selective and return here if the
- // request is non-exclusive or if the writeback is
- // exclusive.
- handleSnoop(pkt, blk, true, false, false);
-}
-
-bool
-Cache::CpuSidePort::recvTimingSnoopResp(PacketPtr pkt)
-{
- // Express snoop responses from master to slave, e.g., from L1 to L2
- cache->recvTimingSnoopResp(pkt);
- return true;
-}
-
-Tick
-Cache::recvAtomicSnoop(PacketPtr pkt)
-{
- // Snoops shouldn't happen when bypassing caches
- assert(!system->bypassCaches());
-
- // no need to snoop writebacks or requests that are not in range. In
- // atomic we have no Writebacks/CleanEvicts queued and no prefetches,
- // hence there is no need to snoop upwards and determine if they are
- // present above.
- if (pkt->evictingBlock() || !inRange(pkt->getAddr())) {
- return 0;
- }
-
- CacheBlk *blk = tags->findBlock(pkt->getAddr(), pkt->isSecure());
- handleSnoop(pkt, blk, false, false, false);
- // We consider forwardLatency here because a snoop occurs in atomic mode
- return forwardLatency * clockPeriod();
-}
-
-
-MSHR *
-Cache::getNextMSHR()
-{
- // Check both MSHR queue and write buffer for potential requests,
- // note that null does not mean there is no request, it could
- // simply be that it is not ready
- MSHR *miss_mshr = mshrQueue.getNextMSHR();
- MSHR *write_mshr = writeBuffer.getNextMSHR();
-
- // If we got a write buffer request ready, first priority is a
- // full write buffer, otherwhise we favour the miss requests
- if (write_mshr &&
- ((writeBuffer.isFull() && writeBuffer.inServiceEntries == 0) ||
- !miss_mshr)) {
- // need to search MSHR queue for conflicting earlier miss.
- MSHR *conflict_mshr =
- mshrQueue.findPending(write_mshr->blkAddr,
- write_mshr->isSecure);
-
- if (conflict_mshr && conflict_mshr->order < write_mshr->order) {
- // Service misses in order until conflict is cleared.
- return conflict_mshr;
-
- // @todo Note that we ignore the ready time of the conflict here
- }
-
- // No conflicts; issue write
- return write_mshr;
- } else if (miss_mshr) {
- // need to check for conflicting earlier writeback
- MSHR *conflict_mshr =
- writeBuffer.findPending(miss_mshr->blkAddr,
- miss_mshr->isSecure);
- if (conflict_mshr) {
- // not sure why we don't check order here... it was in the
- // original code but commented out.
-
- // The only way this happens is if we are
- // doing a write and we didn't have permissions
- // then subsequently saw a writeback (owned got evicted)
- // We need to make sure to perform the writeback first
- // To preserve the dirty data, then we can issue the write
-
- // should we return write_mshr here instead? I.e. do we
- // have to flush writes in order? I don't think so... not
- // for Alpha anyway. Maybe for x86?
- return conflict_mshr;
-
- // @todo Note that we ignore the ready time of the conflict here
- }
-
- // No conflicts; issue read
- return miss_mshr;
- }
-
- // fall through... no pending requests. Try a prefetch.
- assert(!miss_mshr && !write_mshr);
- if (prefetcher && mshrQueue.canPrefetch()) {
- // If we have a miss queue slot, we can try a prefetch
- PacketPtr pkt = prefetcher->getPacket();
- if (pkt) {
- Addr pf_addr = blockAlign(pkt->getAddr());
- if (!tags->findBlock(pf_addr, pkt->isSecure()) &&
- !mshrQueue.findMatch(pf_addr, pkt->isSecure()) &&
- !writeBuffer.findMatch(pf_addr, pkt->isSecure())) {
- // Update statistic on number of prefetches issued
- // (hwpf_mshr_misses)
- assert(pkt->req->masterId() < system->maxMasters());
- mshr_misses[pkt->cmdToIndex()][pkt->req->masterId()]++;
-
- // allocate an MSHR and return it, note
- // that we send the packet straight away, so do not
- // schedule the send
- return allocateMissBuffer(pkt, curTick(), false);
- } else {
- // free the request and packet
- delete pkt->req;
- delete pkt;
- }
- }
- }
-
- return NULL;
-}
-
-bool
-Cache::isCachedAbove(const PacketPtr pkt) const
-{
- if (!forwardSnoops)
- return false;
- // Mirroring the flow of HardPFReqs, the cache sends CleanEvict and
- // Writeback snoops into upper level caches to check for copies of the
- // same block. Using the BLOCK_CACHED flag with the Writeback/CleanEvict
- // packet, the cache can inform the crossbar below of presence or absence
- // of the block.
-
- Packet snoop_pkt(pkt, true, false);
- snoop_pkt.setExpressSnoop();
- // Assert that packet is either Writeback or CleanEvict and not a prefetch
- // request because prefetch requests need an MSHR and may generate a snoop
- // response.
- assert(pkt->evictingBlock());
- snoop_pkt.senderState = NULL;
- cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
- // Writeback/CleanEvict snoops do not generate a separate snoop response.
- assert(!(snoop_pkt.memInhibitAsserted()));
- return snoop_pkt.isBlockCached();
-}
-
-PacketPtr
-Cache::getTimingPacket()
-{
- MSHR *mshr = getNextMSHR();
-
- if (mshr == NULL) {
- return NULL;
- }
-
- // use request from 1st target
- PacketPtr tgt_pkt = mshr->getTarget()->pkt;
- PacketPtr pkt = NULL;
-
- DPRINTF(CachePort, "%s %s for addr %#llx size %d\n", __func__,
- tgt_pkt->cmdString(), tgt_pkt->getAddr(), tgt_pkt->getSize());
-
- CacheBlk *blk = tags->findBlock(mshr->blkAddr, mshr->isSecure);
-
- if (tgt_pkt->cmd == MemCmd::HardPFReq && forwardSnoops) {
- // We need to check the caches above us to verify that
- // they don't have a copy of this block in the dirty state
- // at the moment. Without this check we could get a stale
- // copy from memory that might get used in place of the
- // dirty one.
- Packet snoop_pkt(tgt_pkt, true, false);
- snoop_pkt.setExpressSnoop();
- snoop_pkt.senderState = mshr;
- cpuSidePort->sendTimingSnoopReq(&snoop_pkt);
-
- // Check to see if the prefetch was squashed by an upper cache (to
- // prevent us from grabbing the line) or if a Check to see if a
- // writeback arrived between the time the prefetch was placed in
- // the MSHRs and when it was selected to be sent or if the
- // prefetch was squashed by an upper cache.
-
- // It is important to check memInhibitAsserted before
- // prefetchSquashed. If another cache has asserted MEM_INGIBIT, it
- // will be sending a response which will arrive at the MSHR
- // allocated ofr this request. Checking the prefetchSquash first
- // may result in the MSHR being prematurely deallocated.
-
- if (snoop_pkt.memInhibitAsserted()) {
- // If we are getting a non-shared response it is dirty
- bool pending_dirty_resp = !snoop_pkt.sharedAsserted();
- markInService(mshr, pending_dirty_resp);
- DPRINTF(Cache, "Upward snoop of prefetch for addr"
- " %#x (%s) hit\n",
- tgt_pkt->getAddr(), tgt_pkt->isSecure()? "s": "ns");
- return NULL;
- }
-
- if (snoop_pkt.isBlockCached() || blk != NULL) {
- DPRINTF(Cache, "Block present, prefetch squashed by cache. "
- "Deallocating mshr target %#x.\n",
- mshr->blkAddr);
-
- // Deallocate the mshr target
- if (tgt_pkt->cmd != MemCmd::Writeback) {
- if (mshr->queue->forceDeallocateTarget(mshr)) {
- // Clear block if this deallocation resulted freed an
- // mshr when all had previously been utilized
- clearBlocked((BlockedCause)(mshr->queue->index));
- }
- return NULL;
- } else {
- // If this is a Writeback, and the snoops indicate that the blk
- // is cached above, set the BLOCK_CACHED flag in the Writeback
- // packet, so that it does not reset the bits corresponding to
- // this block in the snoop filter below.
- tgt_pkt->setBlockCached();
- }
- }
- }
-
- if (mshr->isForwardNoResponse()) {
- // no response expected, just forward packet as it is
- assert(tags->findBlock(mshr->blkAddr, mshr->isSecure) == NULL);
- pkt = tgt_pkt;
- } else {
- pkt = getBusPacket(tgt_pkt, blk, mshr->needsExclusive());
-
- mshr->isForward = (pkt == NULL);
-
- if (mshr->isForward) {
- // not a cache block request, but a response is expected
- // make copy of current packet to forward, keep current
- // copy for response handling
- pkt = new Packet(tgt_pkt, false, true);
- if (pkt->isWrite()) {
- pkt->setData(tgt_pkt->getConstPtr<uint8_t>());
- }
- }
- }
-
- assert(pkt != NULL);
- pkt->senderState = mshr;
- return pkt;
-}
-
-
-Tick
-Cache::nextMSHRReadyTime() const
-{
- Tick nextReady = std::min(mshrQueue.nextMSHRReadyTime(),
- writeBuffer.nextMSHRReadyTime());
-
- // Don't signal prefetch ready time if no MSHRs available
- // Will signal once enoguh MSHRs are deallocated
- if (prefetcher && mshrQueue.canPrefetch()) {
- nextReady = std::min(nextReady,
- prefetcher->nextPrefetchReadyTime());
- }
-
- return nextReady;
-}
-
-void
-Cache::serialize(CheckpointOut &cp) const
-{
- bool dirty(isDirty());
-
- if (dirty) {
- warn("*** The cache still contains dirty data. ***\n");
- warn(" Make sure to drain the system using the correct flags.\n");
- warn(" This checkpoint will not restore correctly and dirty data in "
- "the cache will be lost!\n");
- }
-
- // Since we don't checkpoint the data in the cache, any dirty data
- // will be lost when restoring from a checkpoint of a system that
- // wasn't drained properly. Flag the checkpoint as invalid if the
- // cache contains dirty data.
- bool bad_checkpoint(dirty);
- SERIALIZE_SCALAR(bad_checkpoint);
-}
-
-void
-Cache::unserialize(CheckpointIn &cp)
-{
- bool bad_checkpoint;
- UNSERIALIZE_SCALAR(bad_checkpoint);
- if (bad_checkpoint) {
- fatal("Restoring from checkpoints with dirty caches is not supported "
- "in the classic memory system. Please remove any caches or "
- " drain them properly before taking checkpoints.\n");
- }
-}
-
-///////////////
-//
-// CpuSidePort
-//
-///////////////
-
-AddrRangeList
-Cache::CpuSidePort::getAddrRanges() const
-{
- return cache->getAddrRanges();
-}
-
-bool
-Cache::CpuSidePort::recvTimingReq(PacketPtr pkt)
-{
- assert(!cache->system->bypassCaches());
-
- bool success = false;
-
- // always let inhibited requests through, even if blocked,
- // ultimately we should check if this is an express snoop, but at
- // the moment that flag is only set in the cache itself
- if (pkt->memInhibitAsserted()) {
- // do not change the current retry state
- bool M5_VAR_USED bypass_success = cache->recvTimingReq(pkt);
- assert(bypass_success);
- return true;
- } else if (blocked || mustSendRetry) {
- // either already committed to send a retry, or blocked
- success = false;
- } else {
- // pass it on to the cache, and let the cache decide if we
- // have to retry or not
- success = cache->recvTimingReq(pkt);
- }
-
- // remember if we have to retry
- mustSendRetry = !success;
- return success;
-}
-
-Tick
-Cache::CpuSidePort::recvAtomic(PacketPtr pkt)
-{
- return cache->recvAtomic(pkt);
-}
-
-void
-Cache::CpuSidePort::recvFunctional(PacketPtr pkt)
-{
- // functional request
- cache->functionalAccess(pkt, true);
-}
-
-Cache::
-CpuSidePort::CpuSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label)
- : BaseCache::CacheSlavePort(_name, _cache, _label), cache(_cache)
-{
-}
-
-///////////////
-//
-// MemSidePort
-//
-///////////////
-
-bool
-Cache::MemSidePort::recvTimingResp(PacketPtr pkt)
-{
- cache->recvTimingResp(pkt);
- return true;
-}
-
-// Express snooping requests to memside port
-void
-Cache::MemSidePort::recvTimingSnoopReq(PacketPtr pkt)
-{
- // handle snooping requests
- cache->recvTimingSnoopReq(pkt);
-}
-
-Tick
-Cache::MemSidePort::recvAtomicSnoop(PacketPtr pkt)
-{
- return cache->recvAtomicSnoop(pkt);
-}
-
-void
-Cache::MemSidePort::recvFunctionalSnoop(PacketPtr pkt)
-{
- // functional snoop (note that in contrast to atomic we don't have
- // a specific functionalSnoop method, as they have the same
- // behaviour regardless)
- cache->functionalAccess(pkt, false);
-}
-
-void
-Cache::CacheReqPacketQueue::sendDeferredPacket()
-{
- // sanity check
- assert(!waitingOnRetry);
-
- // there should never be any deferred request packets in the
- // queue, instead we resly on the cache to provide the packets
- // from the MSHR queue or write queue
- assert(deferredPacketReadyTime() == MaxTick);
-
- // check for request packets (requests & writebacks)
- PacketPtr pkt = cache.getTimingPacket();
- if (pkt == NULL) {
- // can happen if e.g. we attempt a writeback and fail, but
- // before the retry, the writeback is eliminated because
- // we snoop another cache's ReadEx.
- } else {
- MSHR *mshr = dynamic_cast<MSHR*>(pkt->senderState);
- // in most cases getTimingPacket allocates a new packet, and
- // we must delete it unless it is successfully sent
- bool delete_pkt = !mshr->isForwardNoResponse();
-
- // let our snoop responses go first if there are responses to
- // the same addresses we are about to writeback, note that
- // this creates a dependency between requests and snoop
- // responses, but that should not be a problem since there is
- // a chain already and the key is that the snoop responses can
- // sink unconditionally
- if (snoopRespQueue.hasAddr(pkt->getAddr())) {
- DPRINTF(CachePort, "Waiting for snoop response to be sent\n");
- Tick when = snoopRespQueue.deferredPacketReadyTime();
- schedSendEvent(when);
-
- if (delete_pkt)
- delete pkt;
-
- return;
- }
-
-
- waitingOnRetry = !masterPort.sendTimingReq(pkt);
-
- if (waitingOnRetry) {
- DPRINTF(CachePort, "now waiting on a retry\n");
- if (delete_pkt) {
- // we are awaiting a retry, but we
- // delete the packet and will be creating a new packet
- // when we get the opportunity
- delete pkt;
- }
- // note that we have now masked any requestBus and
- // schedSendEvent (we will wait for a retry before
- // doing anything), and this is so even if we do not
- // care about this packet and might override it before
- // it gets retried
- } else {
- // As part of the call to sendTimingReq the packet is
- // forwarded to all neighbouring caches (and any
- // caches above them) as a snoop. The packet is also
- // sent to any potential cache below as the
- // interconnect is not allowed to buffer the
- // packet. Thus at this point we know if any of the
- // neighbouring, or the downstream cache is
- // responding, and if so, if it is with a dirty line
- // or not.
- bool pending_dirty_resp = !pkt->sharedAsserted() &&
- pkt->memInhibitAsserted();
-
- cache.markInService(mshr, pending_dirty_resp);
- }
- }
-
- // if we succeeded and are not waiting for a retry, schedule the
- // next send considering when the next MSHR is ready, note that
- // snoop responses have their own packet queue and thus schedule
- // their own events
- if (!waitingOnRetry) {
- schedSendEvent(cache.nextMSHRReadyTime());
- }
-}
-
-Cache::
-MemSidePort::MemSidePort(const std::string &_name, Cache *_cache,
- const std::string &_label)
- : BaseCache::CacheMasterPort(_name, _cache, _reqQueue, _snoopRespQueue),
- _reqQueue(*_cache, *this, _snoopRespQueue, _label),
- _snoopRespQueue(*_cache, *this, _label), cache(_cache)
-{
-}
-
-#endif//__MEM_CACHE_CACHE_IMPL_HH__