summaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
authorNuwan Jayasena <Nuwan.Jayasena@amd.com>2012-07-10 22:51:53 -0700
committerNuwan Jayasena <Nuwan.Jayasena@amd.com>2012-07-10 22:51:53 -0700
commit1740c4c448a65dee8b27dcdcdccdc1a6e8b4d6b6 (patch)
treef804e0cbaae1e2bf7b0037e1b88851c2b64dfd60 /src
parent4a52a6ea2d84933a1ac8418fe2ba9222832a690d (diff)
downloadgem5-1740c4c448a65dee8b27dcdcdccdc1a6e8b4d6b6.tar.xz
ruby: memory controllers now inherit from an abstract "MemoryControl" class
Diffstat (limited to 'src')
-rw-r--r--src/mem/ruby/system/MemoryControl.cc641
-rw-r--r--src/mem/ruby/system/MemoryControl.hh135
-rw-r--r--src/mem/ruby/system/MemoryControl.py22
-rw-r--r--src/mem/ruby/system/RubyMemoryControl.cc698
-rw-r--r--src/mem/ruby/system/RubyMemoryControl.hh174
-rw-r--r--src/mem/ruby/system/RubyMemoryControl.py54
-rw-r--r--src/mem/ruby/system/SConscript2
-rw-r--r--src/mem/slicc/symbols/StateMachine.py2
8 files changed, 976 insertions, 752 deletions
diff --git a/src/mem/ruby/system/MemoryControl.cc b/src/mem/ruby/system/MemoryControl.cc
index 4e5ebdbe9..cf6a618e0 100644
--- a/src/mem/ruby/system/MemoryControl.cc
+++ b/src/mem/ruby/system/MemoryControl.cc
@@ -1,5 +1,6 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * Copyright (c) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -26,86 +27,9 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-/*
- * Description: This module simulates a basic DDR-style memory controller
- * (and can easily be extended to do FB-DIMM as well).
- *
- * This module models a single channel, connected to any number of
- * DIMMs with any number of ranks of DRAMs each. If you want multiple
- * address/data channels, you need to instantiate multiple copies of
- * this module.
- *
- * Each memory request is placed in a queue associated with a specific
- * memory bank. This queue is of finite size; if the queue is full
- * the request will back up in an (infinite) common queue and will
- * effectively throttle the whole system. This sort of behavior is
- * intended to be closer to real system behavior than if we had an
- * infinite queue on each bank. If you want the latter, just make
- * the bank queues unreasonably large.
- *
- * The head item on a bank queue is issued when all of the
- * following are true:
- * the bank is available
- * the address path to the DIMM is available
- * the data path to or from the DIMM is available
- *
- * Note that we are not concerned about fixed offsets in time. The bank
- * will not be used at the same moment as the address path, but since
- * there is no queue in the DIMM or the DRAM it will be used at a constant
- * number of cycles later, so it is treated as if it is used at the same
- * time.
- *
- * We are assuming closed bank policy; that is, we automatically close
- * each bank after a single read or write. Adding an option for open
- * bank policy is for future work.
- *
- * We are assuming "posted CAS"; that is, we send the READ or WRITE
- * immediately after the ACTIVATE. This makes scheduling the address
- * bus trivial; we always schedule a fixed set of cycles. For DDR-400,
- * this is a set of two cycles; for some configurations such as
- * DDR-800 the parameter tRRD forces this to be set to three cycles.
- *
- * We assume a four-bit-time transfer on the data wires. This is
- * the minimum burst length for DDR-2. This would correspond
- * to (for example) a memory where each DIMM is 72 bits wide
- * and DIMMs are ganged in pairs to deliver 64 bytes at a shot.
- * This gives us the same occupancy on the data wires as on the
- * address wires (for the two-address-cycle case).
- *
- * The only non-trivial scheduling problem is the data wires.
- * A write will use the wires earlier in the operation than a read
- * will; typically one cycle earlier as seen at the DRAM, but earlier
- * by a worst-case round-trip wire delay when seen at the memory controller.
- * So, while reads from one rank can be scheduled back-to-back
- * every two cycles, and writes (to any rank) scheduled every two cycles,
- * when a read is followed by a write we need to insert a bubble.
- * Furthermore, consecutive reads from two different ranks may need
- * to insert a bubble due to skew between when one DRAM stops driving the
- * wires and when the other one starts. (These bubbles are parameters.)
- *
- * This means that when some number of reads and writes are at the
- * heads of their queues, reads could starve writes, and/or reads
- * to the same rank could starve out other requests, since the others
- * would never see the data bus ready.
- * For this reason, we have implemented an anti-starvation feature.
- * A group of requests is marked "old", and a counter is incremented
- * each cycle as long as any request from that batch has not issued.
- * if the counter reaches twice the bank busy time, we hold off any
- * newer requests until all of the "old" requests have issued.
- *
- * We also model tFAW. This is an obscure DRAM parameter that says
- * that no more than four activate requests can happen within a window
- * of a certain size. For most configurations this does not come into play,
- * or has very little effect, but it could be used to throttle the power
- * consumption of the DRAM. In this implementation (unlike in a DRAM
- * data sheet) TFAW is measured in memory bus cycles; i.e. if TFAW = 16
- * then no more than four activates may happen within any 16 cycle window.
- * Refreshes are included in the activates.
- *
- */
-
#include "base/cast.hh"
#include "base/cprintf.hh"
+#include "mem/ruby/common/Address.hh"
#include "mem/ruby/common/Consumer.hh"
#include "mem/ruby/common/Global.hh"
#include "mem/ruby/network/Network.hh"
@@ -113,564 +37,17 @@
#include "mem/ruby/slicc_interface/NetworkMessage.hh"
#include "mem/ruby/slicc_interface/RubySlicc_ComponentMapping.hh"
#include "mem/ruby/system/MemoryControl.hh"
+#include "mem/ruby/system/RubyMemoryControl.hh"
+#include "mem/ruby/system/System.hh"
using namespace std;
+MemoryControl::MemoryControl(const Params *p) : SimObject(p), m_event(this) {};
+MemoryControl::~MemoryControl() {};
-class Consumer;
-
-// Value to reset watchdog timer to.
-// If we're idle for this many memory control cycles,
-// shut down our clock (our rescheduling of ourselves).
-// Refresh shuts down as well.
-// When we restart, we'll be in a different phase
-// with respect to ruby cycles, so this introduces
-// a slight inaccuracy. But it is necessary or the
-// ruby tester never terminates because the event
-// queue is never empty.
-#define IDLECOUNT_MAX_VALUE 1000
-
-// Output operator definition
-
-ostream&
-operator<<(ostream& out, const MemoryControl& obj)
-{
- obj.print(out);
- out << flush;
- return out;
-}
-
-
-// ****************************************************************
-
-// CONSTRUCTOR
-MemoryControl::MemoryControl(const Params *p)
- : SimObject(p), m_event(this)
-{
- m_mem_bus_cycle_multiplier = p->mem_bus_cycle_multiplier;
- m_banks_per_rank = p->banks_per_rank;
- m_ranks_per_dimm = p->ranks_per_dimm;
- m_dimms_per_channel = p->dimms_per_channel;
- m_bank_bit_0 = p->bank_bit_0;
- m_rank_bit_0 = p->rank_bit_0;
- m_dimm_bit_0 = p->dimm_bit_0;
- m_bank_queue_size = p->bank_queue_size;
- m_bank_busy_time = p->bank_busy_time;
- m_rank_rank_delay = p->rank_rank_delay;
- m_read_write_delay = p->read_write_delay;
- m_basic_bus_busy_time = p->basic_bus_busy_time;
- m_mem_ctl_latency = p->mem_ctl_latency;
- m_refresh_period = p->refresh_period;
- m_tFaw = p->tFaw;
- m_mem_random_arbitrate = p->mem_random_arbitrate;
- m_mem_fixed_delay = p->mem_fixed_delay;
-
- m_profiler_ptr = new MemCntrlProfiler(name(),
- m_banks_per_rank,
- m_ranks_per_dimm,
- m_dimms_per_channel);
-}
-
-void
-MemoryControl::init()
-{
- m_msg_counter = 0;
-
- assert(m_tFaw <= 62); // must fit in a uint64 shift register
-
- m_total_banks = m_banks_per_rank * m_ranks_per_dimm * m_dimms_per_channel;
- m_total_ranks = m_ranks_per_dimm * m_dimms_per_channel;
- m_refresh_period_system = m_refresh_period / m_total_banks;
-
- m_bankQueues = new list<MemoryNode> [m_total_banks];
- assert(m_bankQueues);
-
- m_bankBusyCounter = new int [m_total_banks];
- assert(m_bankBusyCounter);
-
- m_oldRequest = new int [m_total_banks];
- assert(m_oldRequest);
-
- for (int i = 0; i < m_total_banks; i++) {
- m_bankBusyCounter[i] = 0;
- m_oldRequest[i] = 0;
- }
-
- m_busBusyCounter_Basic = 0;
- m_busBusyCounter_Write = 0;
- m_busBusyCounter_ReadNewRank = 0;
- m_busBusy_WhichRank = 0;
-
- m_roundRobin = 0;
- m_refresh_count = 1;
- m_need_refresh = 0;
- m_refresh_bank = 0;
- m_idleCount = 0;
- m_ageCounter = 0;
-
- // Each tfaw shift register keeps a moving bit pattern
- // which shows when recent activates have occurred.
- // m_tfaw_count keeps track of how many 1 bits are set
- // in each shift register. When m_tfaw_count is >= 4,
- // new activates are not allowed.
- m_tfaw_shift = new uint64[m_total_ranks];
- m_tfaw_count = new int[m_total_ranks];
- for (int i = 0; i < m_total_ranks; i++) {
- m_tfaw_shift[i] = 0;
- m_tfaw_count[i] = 0;
- }
-}
-
-MemoryControl::~MemoryControl()
-{
- delete [] m_bankQueues;
- delete [] m_bankBusyCounter;
- delete [] m_oldRequest;
- delete m_profiler_ptr;
-}
-
-// enqueue new request from directory
-void
-MemoryControl::enqueue(const MsgPtr& message, int latency)
-{
- Time current_time = g_eventQueue_ptr->getTime();
- Time arrival_time = current_time + latency;
- const MemoryMsg* memMess = safe_cast<const MemoryMsg*>(message.get());
- physical_address_t addr = memMess->getAddress().getAddress();
- MemoryRequestType type = memMess->getType();
- bool is_mem_read = (type == MemoryRequestType_MEMORY_READ);
- MemoryNode thisReq(arrival_time, message, addr, is_mem_read, !is_mem_read);
- enqueueMemRef(thisReq);
-}
-
-// Alternate entry point used when we already have a MemoryNode
-// structure built.
-void
-MemoryControl::enqueueMemRef(MemoryNode& memRef)
-{
- m_msg_counter++;
- memRef.m_msg_counter = m_msg_counter;
- physical_address_t addr = memRef.m_addr;
- int bank = getBank(addr);
-
- DPRINTF(RubyMemory,
- "New memory request%7d: %#08x %c arrived at %10d bank = %3x sched %c\n",
- m_msg_counter, addr, memRef.m_is_mem_read ? 'R':'W',
- memRef.m_time * g_eventQueue_ptr->getClock(),
- bank, m_event.scheduled() ? 'Y':'N');
-
- m_profiler_ptr->profileMemReq(bank);
- m_input_queue.push_back(memRef);
-
- if (!m_event.scheduled()) {
- schedule(m_event, curTick() + 1);
- }
-}
-
-// dequeue, peek, and isReady are used to transfer completed requests
-// back to the directory
-void
-MemoryControl::dequeue()
-{
- assert(isReady());
- m_response_queue.pop_front();
-}
-
-const Message*
-MemoryControl::peek()
-{
- MemoryNode node = peekNode();
- Message* msg_ptr = node.m_msgptr.get();
- assert(msg_ptr != NULL);
- return msg_ptr;
-}
-
-MemoryNode
-MemoryControl::peekNode()
-{
- assert(isReady());
- MemoryNode req = m_response_queue.front();
- DPRINTF(RubyMemory, "Peek: memory request%7d: %#08x %c sched %c\n",
- req.m_msg_counter, req.m_addr, req.m_is_mem_read ? 'R':'W',
- m_event.scheduled() ? 'Y':'N');
-
- return req;
-}
-
-bool
-MemoryControl::isReady()
-{
- return ((!m_response_queue.empty()) &&
- (m_response_queue.front().m_time <= g_eventQueue_ptr->getTime()));
-}
-
-void
-MemoryControl::setConsumer(Consumer* consumer_ptr)
-{
- m_consumer_ptr = consumer_ptr;
-}
-
-void
-MemoryControl::print(ostream& out) const
-{
-}
-
-void
-MemoryControl::printConfig(ostream& out)
-{
- out << "Memory Control " << name() << ":" << endl;
- out << " Ruby cycles per memory cycle: " << m_mem_bus_cycle_multiplier
- << endl;
- out << " Basic read latency: " << m_mem_ctl_latency << endl;
- if (m_mem_fixed_delay) {
- out << " Fixed Latency mode: Added cycles = " << m_mem_fixed_delay
- << endl;
- } else {
- out << " Bank busy time: " << m_bank_busy_time << " memory cycles"
- << endl;
- out << " Memory channel busy time: " << m_basic_bus_busy_time << endl;
- out << " Dead cycles between reads to different ranks: "
- << m_rank_rank_delay << endl;
- out << " Dead cycle between a read and a write: "
- << m_read_write_delay << endl;
- out << " tFaw (four-activate) window: " << m_tFaw << endl;
- }
- out << " Banks per rank: " << m_banks_per_rank << endl;
- out << " Ranks per DIMM: " << m_ranks_per_dimm << endl;
- out << " DIMMs per channel: " << m_dimms_per_channel << endl;
- out << " LSB of bank field in address: " << m_bank_bit_0 << endl;
- out << " LSB of rank field in address: " << m_rank_bit_0 << endl;
- out << " LSB of DIMM field in address: " << m_dimm_bit_0 << endl;
- out << " Max size of each bank queue: " << m_bank_queue_size << endl;
- out << " Refresh period (within one bank): " << m_refresh_period << endl;
- out << " Arbitration randomness: " << m_mem_random_arbitrate << endl;
-}
-
-void
-MemoryControl::clearStats() const
-{
- m_profiler_ptr->clearStats();
-}
-
-void
-MemoryControl::printStats(ostream& out) const
-{
- m_profiler_ptr->printStats(out);
-}
-
-// Queue up a completed request to send back to directory
-void
-MemoryControl::enqueueToDirectory(MemoryNode req, int latency)
-{
- Time arrival_time = g_eventQueue_ptr->getTime()
- + (latency * m_mem_bus_cycle_multiplier);
- req.m_time = arrival_time;
- m_response_queue.push_back(req);
-
- DPRINTF(RubyMemory, "Enqueueing msg %#08x %c back to directory at %15d\n",
- req.m_addr, req.m_is_mem_read ? 'R':'W',
- arrival_time * g_eventQueue_ptr->getClock());
-
- // schedule the wake up
- g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time);
-}
-
-// getBank returns an integer that is unique for each
-// bank across this memory controller.
-int
-MemoryControl::getBank(physical_address_t addr)
-{
- int dimm = (addr >> m_dimm_bit_0) & (m_dimms_per_channel - 1);
- int rank = (addr >> m_rank_bit_0) & (m_ranks_per_dimm - 1);
- int bank = (addr >> m_bank_bit_0) & (m_banks_per_rank - 1);
- return (dimm * m_ranks_per_dimm * m_banks_per_rank)
- + (rank * m_banks_per_rank)
- + bank;
-}
-
-// getRank returns an integer that is unique for each rank
-// and independent of individual bank.
-int
-MemoryControl::getRank(int bank)
-{
- int rank = (bank / m_banks_per_rank);
- assert (rank < (m_ranks_per_dimm * m_dimms_per_channel));
- return rank;
-}
-
-// queueReady determines if the head item in a bank queue
-// can be issued this cycle
-bool
-MemoryControl::queueReady(int bank)
-{
- if ((m_bankBusyCounter[bank] > 0) && !m_mem_fixed_delay) {
- m_profiler_ptr->profileMemBankBusy();
-
- DPRINTF(RubyMemory, "bank %x busy %d\n", bank, m_bankBusyCounter[bank]);
- return false;
- }
-
- if (m_mem_random_arbitrate >= 2) {
- if ((random() % 100) < m_mem_random_arbitrate) {
- m_profiler_ptr->profileMemRandBusy();
- return false;
- }
- }
-
- if (m_mem_fixed_delay)
- return true;
-
- if ((m_ageCounter > (2 * m_bank_busy_time)) && !m_oldRequest[bank]) {
- m_profiler_ptr->profileMemNotOld();
- return false;
- }
-
- if (m_busBusyCounter_Basic == m_basic_bus_busy_time) {
- // Another bank must have issued this same cycle. For
- // profiling, we count this as an arb wait rather than a bus
- // wait. This is a little inaccurate since it MIGHT have also
- // been blocked waiting for a read-write or a read-read
- // instead, but it's pretty close.
- m_profiler_ptr->profileMemArbWait(1);
- return false;
- }
-
- if (m_busBusyCounter_Basic > 0) {
- m_profiler_ptr->profileMemBusBusy();
- return false;
- }
-
- int rank = getRank(bank);
- if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW) {
- m_profiler_ptr->profileMemTfawBusy();
- return false;
- }
-
- bool write = !m_bankQueues[bank].front().m_is_mem_read;
- if (write && (m_busBusyCounter_Write > 0)) {
- m_profiler_ptr->profileMemReadWriteBusy();
- return false;
- }
-
- if (!write && (rank != m_busBusy_WhichRank)
- && (m_busBusyCounter_ReadNewRank > 0)) {
- m_profiler_ptr->profileMemDataBusBusy();
- return false;
- }
-
- return true;
-}
-
-// issueRefresh checks to see if this bank has a refresh scheduled
-// and, if so, does the refresh and returns true
-bool
-MemoryControl::issueRefresh(int bank)
-{
- if (!m_need_refresh || (m_refresh_bank != bank))
- return false;
- if (m_bankBusyCounter[bank] > 0)
- return false;
- // Note that m_busBusyCounter will prevent multiple issues during
- // the same cycle, as well as on different but close cycles:
- if (m_busBusyCounter_Basic > 0)
- return false;
- int rank = getRank(bank);
- if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW)
- return false;
-
- // Issue it:
- DPRINTF(RubyMemory, "Refresh bank %3x\n", bank);
-
- m_profiler_ptr->profileMemRefresh();
- m_need_refresh--;
- m_refresh_bank++;
- if (m_refresh_bank >= m_total_banks)
- m_refresh_bank = 0;
- m_bankBusyCounter[bank] = m_bank_busy_time;
- m_busBusyCounter_Basic = m_basic_bus_busy_time;
- m_busBusyCounter_Write = m_basic_bus_busy_time;
- m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
- markTfaw(rank);
- return true;
-}
-
-// Mark the activate in the tFaw shift register
-void
-MemoryControl::markTfaw(int rank)
-{
- if (m_tFaw) {
- m_tfaw_shift[rank] |= (1 << (m_tFaw-1));
- m_tfaw_count[rank]++;
- }
-}
-
-// Issue a memory request: Activate the bank, reserve the address and
-// data buses, and queue the request for return to the requesting
-// processor after a fixed latency.
-void
-MemoryControl::issueRequest(int bank)
-{
- int rank = getRank(bank);
- MemoryNode req = m_bankQueues[bank].front();
- m_bankQueues[bank].pop_front();
-
- DPRINTF(RubyMemory, "Mem issue request%7d: %#08x %c "
- "bank=%3x sched %c\n", req.m_msg_counter, req.m_addr,
- req.m_is_mem_read? 'R':'W',
- bank, m_event.scheduled() ? 'Y':'N');
-
- if (req.m_msgptr) { // don't enqueue L3 writebacks
- enqueueToDirectory(req, m_mem_ctl_latency + m_mem_fixed_delay);
- }
- m_oldRequest[bank] = 0;
- markTfaw(rank);
- m_bankBusyCounter[bank] = m_bank_busy_time;
- m_busBusy_WhichRank = rank;
- if (req.m_is_mem_read) {
- m_profiler_ptr->profileMemRead();
- m_busBusyCounter_Basic = m_basic_bus_busy_time;
- m_busBusyCounter_Write = m_basic_bus_busy_time + m_read_write_delay;
- m_busBusyCounter_ReadNewRank =
- m_basic_bus_busy_time + m_rank_rank_delay;
- } else {
- m_profiler_ptr->profileMemWrite();
- m_busBusyCounter_Basic = m_basic_bus_busy_time;
- m_busBusyCounter_Write = m_basic_bus_busy_time;
- m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
- }
-}
-
-// executeCycle: This function is called once per memory clock cycle
-// to simulate all the periodic hardware.
-void
-MemoryControl::executeCycle()
-{
- // Keep track of time by counting down the busy counters:
- for (int bank=0; bank < m_total_banks; bank++) {
- if (m_bankBusyCounter[bank] > 0) m_bankBusyCounter[bank]--;
- }
- if (m_busBusyCounter_Write > 0)
- m_busBusyCounter_Write--;
- if (m_busBusyCounter_ReadNewRank > 0)
- m_busBusyCounter_ReadNewRank--;
- if (m_busBusyCounter_Basic > 0)
- m_busBusyCounter_Basic--;
-
- // Count down the tFAW shift registers:
- for (int rank=0; rank < m_total_ranks; rank++) {
- if (m_tfaw_shift[rank] & 1) m_tfaw_count[rank]--;
- m_tfaw_shift[rank] >>= 1;
- }
-
- // After time period expires, latch an indication that we need a refresh.
- // Disable refresh if in mem_fixed_delay mode.
- if (!m_mem_fixed_delay) m_refresh_count--;
- if (m_refresh_count == 0) {
- m_refresh_count = m_refresh_period_system;
-
- // Are we overrunning our ability to refresh?
- assert(m_need_refresh < 10);
- m_need_refresh++;
- }
-
- // If this batch of requests is all done, make a new batch:
- m_ageCounter++;
- int anyOld = 0;
- for (int bank=0; bank < m_total_banks; bank++) {
- anyOld |= m_oldRequest[bank];
- }
- if (!anyOld) {
- for (int bank=0; bank < m_total_banks; bank++) {
- if (!m_bankQueues[bank].empty()) m_oldRequest[bank] = 1;
- }
- m_ageCounter = 0;
- }
-
- // If randomness desired, re-randomize round-robin position each cycle
- if (m_mem_random_arbitrate) {
- m_roundRobin = random() % m_total_banks;
- }
-
- // For each channel, scan round-robin, and pick an old, ready
- // request and issue it. Treat a refresh request as if it were at
- // the head of its bank queue. After we issue something, keep
- // scanning the queues just to gather statistics about how many
- // are waiting. If in mem_fixed_delay mode, we can issue more
- // than one request per cycle.
- int queueHeads = 0;
- int banksIssued = 0;
- for (int i = 0; i < m_total_banks; i++) {
- m_roundRobin++;
- if (m_roundRobin >= m_total_banks) m_roundRobin = 0;
- issueRefresh(m_roundRobin);
- int qs = m_bankQueues[m_roundRobin].size();
- if (qs > 1) {
- m_profiler_ptr->profileMemBankQ(qs-1);
- }
- if (qs > 0) {
- // we're not idle if anything is queued
- m_idleCount = IDLECOUNT_MAX_VALUE;
- queueHeads++;
- if (queueReady(m_roundRobin)) {
- issueRequest(m_roundRobin);
- banksIssued++;
- if (m_mem_fixed_delay) {
- m_profiler_ptr->profileMemWaitCycles(m_mem_fixed_delay);
- }
- }
- }
- }
-
- // memWaitCycles is a redundant catch-all for the specific
- // counters in queueReady
- m_profiler_ptr->profileMemWaitCycles(queueHeads - banksIssued);
-
- // Check input queue and move anything to bank queues if not full.
- // Since this is done here at the end of the cycle, there will
- // always be at least one cycle of latency in the bank queue. We
- // deliberately move at most one request per cycle (to simulate
- // typical hardware). Note that if one bank queue fills up, other
- // requests can get stuck behind it here.
- if (!m_input_queue.empty()) {
- // we're not idle if anything is pending
- m_idleCount = IDLECOUNT_MAX_VALUE;
- MemoryNode req = m_input_queue.front();
- int bank = getBank(req.m_addr);
- if (m_bankQueues[bank].size() < m_bank_queue_size) {
- m_input_queue.pop_front();
- m_bankQueues[bank].push_back(req);
- }
- m_profiler_ptr->profileMemInputQ(m_input_queue.size());
- }
-}
-
-unsigned int
-MemoryControl::drain(Event *de)
-{
- DPRINTF(RubyMemory, "MemoryController drain\n");
- if(m_event.scheduled()) {
- deschedule(m_event);
- }
- return 0;
-}
-
-// wakeup: This function is called once per memory controller clock cycle.
-void
-MemoryControl::wakeup()
-{
- DPRINTF(RubyMemory, "MemoryController wakeup\n");
- // execute everything
- executeCycle();
-
- m_idleCount--;
- if (m_idleCount > 0) {
- assert(!m_event.scheduled());
- schedule(m_event, curTick() + m_mem_bus_cycle_multiplier);
- }
-}
-
-MemoryControl *
+RubyMemoryControl *
RubyMemoryControlParams::create()
{
- return new MemoryControl(this);
+ return new RubyMemoryControl(this);
}
+
diff --git a/src/mem/ruby/system/MemoryControl.hh b/src/mem/ruby/system/MemoryControl.hh
index 48ce8a8e0..eb3de8aef 100644
--- a/src/mem/ruby/system/MemoryControl.hh
+++ b/src/mem/ruby/system/MemoryControl.hh
@@ -1,5 +1,6 @@
/*
* Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * Copyright (c) 2012 Advanced Micro Devices, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
@@ -26,8 +27,8 @@
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
-#ifndef __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
-#define __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
+#ifndef __MEM_RUBY_SYSTEM_ABSTRACT_MEMORY_CONTROL_HH__
+#define __MEM_RUBY_SYSTEM_ABSTRACT_MEMORY_CONTROL_HH__
#include <iostream>
#include <list>
@@ -39,13 +40,9 @@
#include "mem/ruby/slicc_interface/Message.hh"
#include "mem/ruby/system/AbstractMemOrCache.hh"
#include "mem/ruby/system/MemoryNode.hh"
-#include "params/RubyMemoryControl.hh"
+#include "mem/ruby/system/System.hh"
#include "sim/sim_object.hh"
-// This constant is part of the definition of tFAW; see
-// the comments in header to MemoryControl.cc
-#define ACTIVATE_PER_TFAW 4
-
//////////////////////////////////////////////////////////////////////////////
class Consumer;
@@ -54,45 +51,50 @@ class MemoryControl :
public SimObject, public Consumer, public AbstractMemOrCache
{
public:
-
- typedef RubyMemoryControlParams Params;
MemoryControl(const Params *p);
- void init();
+ virtual void init() = 0;
~MemoryControl();
- unsigned int drain(Event *de);
+ unsigned int drain(Event *de) = 0;
- void wakeup();
+ virtual void wakeup() = 0;
- void setConsumer(Consumer* consumer_ptr);
- Consumer* getConsumer() { return m_consumer_ptr; };
- void setDescription(const std::string& name) { m_description = name; };
- std::string getDescription() { return m_description; };
+ virtual void setConsumer(Consumer* consumer_ptr) = 0;
+ virtual Consumer* getConsumer() = 0;
+ virtual void setDescription(const std::string& name) = 0;
+ virtual std::string getDescription() = 0;
// Called from the directory:
- void enqueue(const MsgPtr& message, int latency );
- void enqueueMemRef(MemoryNode& memRef);
- void dequeue();
- const Message* peek();
- MemoryNode peekNode();
- bool isReady();
- bool areNSlotsAvailable(int n) { return true; }; // infinite queue length
+ virtual void enqueue(const MsgPtr& message, int latency ) = 0;
+ virtual void enqueueMemRef(MemoryNode& memRef) = 0;
+ virtual void dequeue() = 0;
+ virtual const Message* peek() = 0;
+ virtual MemoryNode peekNode() = 0;
+ virtual bool isReady() = 0;
+ virtual bool areNSlotsAvailable(int n) = 0; // infinite queue length
//// Called from L3 cache:
//void writeBack(physical_address_t addr);
- void printConfig(std::ostream& out);
- void print(std::ostream& out) const;
- void clearStats() const;
- void printStats(std::ostream& out) const;
+ virtual void printConfig(std::ostream& out) = 0;
+ virtual void print(std::ostream& out) const = 0;
+ virtual void clearStats() const = 0;
+ virtual void printStats(std::ostream& out) const = 0;
+
+ virtual void regStats() {};
+
+ virtual const int getChannel(const physical_address_t addr) const = 0;
+ virtual const int getBank(const physical_address_t addr) const = 0;
+ virtual const int getRank(const physical_address_t addr) const = 0;
+ virtual const int getRow(const physical_address_t addr) const = 0;
//added by SS
- int getBanksPerRank() { return m_banks_per_rank; };
- int getRanksPerDimm() { return m_ranks_per_dimm; };
- int getDimmsPerChannel() { return m_dimms_per_channel; }
+ virtual int getBanksPerRank() = 0;
+ virtual int getRanksPerDimm() = 0;
+ virtual int getDimmsPerChannel() = 0;
- private:
+protected:
class MemCntrlEvent : public Event
{
public:
@@ -106,76 +108,7 @@ class MemoryControl :
MemoryControl* mem_cntrl;
};
- void enqueueToDirectory(MemoryNode req, int latency);
- int getBank(physical_address_t addr);
- int getRank(int bank);
- bool queueReady(int bank);
- void issueRequest(int bank);
- bool issueRefresh(int bank);
- void markTfaw(int rank);
- void executeCycle();
-
- // Private copy constructor and assignment operator
- MemoryControl (const MemoryControl& obj);
- MemoryControl& operator=(const MemoryControl& obj);
-
- // data members
- Consumer* m_consumer_ptr; // Consumer to signal a wakeup()
- std::string m_description;
- int m_msg_counter;
-
- int m_mem_bus_cycle_multiplier;
- int m_banks_per_rank;
- int m_ranks_per_dimm;
- int m_dimms_per_channel;
- int m_bank_bit_0;
- int m_rank_bit_0;
- int m_dimm_bit_0;
- unsigned int m_bank_queue_size;
- int m_bank_busy_time;
- int m_rank_rank_delay;
- int m_read_write_delay;
- int m_basic_bus_busy_time;
- int m_mem_ctl_latency;
- int m_refresh_period;
- int m_mem_random_arbitrate;
- int m_tFaw;
- int m_mem_fixed_delay;
-
- int m_total_banks;
- int m_total_ranks;
- int m_refresh_period_system;
-
- // queues where memory requests live
- std::list<MemoryNode> m_response_queue;
- std::list<MemoryNode> m_input_queue;
- std::list<MemoryNode>* m_bankQueues;
-
- // Each entry indicates number of address-bus cycles until bank
- // is reschedulable:
- int* m_bankBusyCounter;
- int* m_oldRequest;
-
- uint64* m_tfaw_shift;
- int* m_tfaw_count;
-
- // Each of these indicates number of address-bus cycles until
- // we can issue a new request of the corresponding type:
- int m_busBusyCounter_Write;
- int m_busBusyCounter_ReadNewRank;
- int m_busBusyCounter_Basic;
-
- int m_busBusy_WhichRank; // which rank last granted
- int m_roundRobin; // which bank queue was last granted
- int m_refresh_count; // cycles until next refresh
- int m_need_refresh; // set whenever m_refresh_count goes to zero
- int m_refresh_bank; // which bank to refresh next
- int m_ageCounter; // age of old requests; to detect starvation
- int m_idleCount; // watchdog timer for shutting down
-
- MemCntrlProfiler* m_profiler_ptr;
-
MemCntrlEvent m_event;
};
-#endif // __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
+#endif // __MEM_RUBY_SYSTEM_ABSTRACT_MEMORY_CONTROL_HH__
diff --git a/src/mem/ruby/system/MemoryControl.py b/src/mem/ruby/system/MemoryControl.py
index 8144e70fc..dafd0a789 100644
--- a/src/mem/ruby/system/MemoryControl.py
+++ b/src/mem/ruby/system/MemoryControl.py
@@ -30,24 +30,10 @@
from m5.params import *
from m5.SimObject import SimObject
-class RubyMemoryControl(SimObject):
- type = 'RubyMemoryControl'
+class MemoryControl(SimObject):
+ abstract = True
+ type = 'MemoryControl'
cxx_class = 'MemoryControl'
version = Param.Int("");
+
mem_bus_cycle_multiplier = Param.Int(10, "");
- banks_per_rank = Param.Int(8, "");
- ranks_per_dimm = Param.Int(2, "");
- dimms_per_channel = Param.Int(2, "");
- bank_bit_0 = Param.Int(8, "");
- rank_bit_0 = Param.Int(11, "");
- dimm_bit_0 = Param.Int(12, "");
- bank_queue_size = Param.Int(12, "");
- bank_busy_time = Param.Int(11, "");
- rank_rank_delay = Param.Int(1, "");
- read_write_delay = Param.Int(2, "");
- basic_bus_busy_time = Param.Int(2, "");
- mem_ctl_latency = Param.Int(12, "");
- refresh_period = Param.Int(1560, "");
- tFaw = Param.Int(0, "");
- mem_random_arbitrate = Param.Int(0, "");
- mem_fixed_delay = Param.Int(0, "");
diff --git a/src/mem/ruby/system/RubyMemoryControl.cc b/src/mem/ruby/system/RubyMemoryControl.cc
new file mode 100644
index 000000000..e777762e3
--- /dev/null
+++ b/src/mem/ruby/system/RubyMemoryControl.cc
@@ -0,0 +1,698 @@
+/*
+ * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * Copyright (c) 2012 Advanced Micro Devices, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * Description: This module simulates a basic DDR-style memory controller
+ * (and can easily be extended to do FB-DIMM as well).
+ *
+ * This module models a single channel, connected to any number of
+ * DIMMs with any number of ranks of DRAMs each. If you want multiple
+ * address/data channels, you need to instantiate multiple copies of
+ * this module.
+ *
+ * Each memory request is placed in a queue associated with a specific
+ * memory bank. This queue is of finite size; if the queue is full
+ * the request will back up in an (infinite) common queue and will
+ * effectively throttle the whole system. This sort of behavior is
+ * intended to be closer to real system behavior than if we had an
+ * infinite queue on each bank. If you want the latter, just make
+ * the bank queues unreasonably large.
+ *
+ * The head item on a bank queue is issued when all of the
+ * following are true:
+ * the bank is available
+ * the address path to the DIMM is available
+ * the data path to or from the DIMM is available
+ *
+ * Note that we are not concerned about fixed offsets in time. The bank
+ * will not be used at the same moment as the address path, but since
+ * there is no queue in the DIMM or the DRAM it will be used at a constant
+ * number of cycles later, so it is treated as if it is used at the same
+ * time.
+ *
+ * We are assuming closed bank policy; that is, we automatically close
+ * each bank after a single read or write. Adding an option for open
+ * bank policy is for future work.
+ *
+ * We are assuming "posted CAS"; that is, we send the READ or WRITE
+ * immediately after the ACTIVATE. This makes scheduling the address
+ * bus trivial; we always schedule a fixed set of cycles. For DDR-400,
+ * this is a set of two cycles; for some configurations such as
+ * DDR-800 the parameter tRRD forces this to be set to three cycles.
+ *
+ * We assume a four-bit-time transfer on the data wires. This is
+ * the minimum burst length for DDR-2. This would correspond
+ * to (for example) a memory where each DIMM is 72 bits wide
+ * and DIMMs are ganged in pairs to deliver 64 bytes at a shot.
+ * This gives us the same occupancy on the data wires as on the
+ * address wires (for the two-address-cycle case).
+ *
+ * The only non-trivial scheduling problem is the data wires.
+ * A write will use the wires earlier in the operation than a read
+ * will; typically one cycle earlier as seen at the DRAM, but earlier
+ * by a worst-case round-trip wire delay when seen at the memory controller.
+ * So, while reads from one rank can be scheduled back-to-back
+ * every two cycles, and writes (to any rank) scheduled every two cycles,
+ * when a read is followed by a write we need to insert a bubble.
+ * Furthermore, consecutive reads from two different ranks may need
+ * to insert a bubble due to skew between when one DRAM stops driving the
+ * wires and when the other one starts. (These bubbles are parameters.)
+ *
+ * This means that when some number of reads and writes are at the
+ * heads of their queues, reads could starve writes, and/or reads
+ * to the same rank could starve out other requests, since the others
+ * would never see the data bus ready.
+ * For this reason, we have implemented an anti-starvation feature.
+ * A group of requests is marked "old", and a counter is incremented
+ * each cycle as long as any request from that batch has not issued.
+ * if the counter reaches twice the bank busy time, we hold off any
+ * newer requests until all of the "old" requests have issued.
+ *
+ * We also model tFAW. This is an obscure DRAM parameter that says
+ * that no more than four activate requests can happen within a window
+ * of a certain size. For most configurations this does not come into play,
+ * or has very little effect, but it could be used to throttle the power
+ * consumption of the DRAM. In this implementation (unlike in a DRAM
+ * data sheet) TFAW is measured in memory bus cycles; i.e. if TFAW = 16
+ * then no more than four activates may happen within any 16 cycle window.
+ * Refreshes are included in the activates.
+ *
+ */
+
+#include "base/cast.hh"
+#include "base/cprintf.hh"
+#include "mem/ruby/common/Address.hh"
+#include "mem/ruby/common/Consumer.hh"
+#include "mem/ruby/common/Global.hh"
+#include "mem/ruby/network/Network.hh"
+#include "mem/ruby/profiler/Profiler.hh"
+#include "mem/ruby/slicc_interface/NetworkMessage.hh"
+#include "mem/ruby/slicc_interface/RubySlicc_ComponentMapping.hh"
+#include "mem/ruby/system/RubyMemoryControl.hh"
+#include "mem/ruby/system/System.hh"
+
+using namespace std;
+
+class Consumer;
+
+// Value to reset watchdog timer to.
+// If we're idle for this many memory control cycles,
+// shut down our clock (our rescheduling of ourselves).
+// Refresh shuts down as well.
+// When we restart, we'll be in a different phase
+// with respect to ruby cycles, so this introduces
+// a slight inaccuracy. But it is necessary or the
+// ruby tester never terminates because the event
+// queue is never empty.
+#define IDLECOUNT_MAX_VALUE 1000
+
+// Output operator definition
+
+ostream&
+operator<<(ostream& out, const RubyMemoryControl& obj)
+{
+ obj.print(out);
+ out << flush;
+ return out;
+}
+
+
+// ****************************************************************
+
+// CONSTRUCTOR
+RubyMemoryControl::RubyMemoryControl(const Params *p)
+ : MemoryControl(p)
+{
+ m_mem_bus_cycle_multiplier = p->mem_bus_cycle_multiplier;
+ m_banks_per_rank = p->banks_per_rank;
+ m_ranks_per_dimm = p->ranks_per_dimm;
+ m_dimms_per_channel = p->dimms_per_channel;
+ m_bank_bit_0 = p->bank_bit_0;
+ m_rank_bit_0 = p->rank_bit_0;
+ m_dimm_bit_0 = p->dimm_bit_0;
+ m_bank_queue_size = p->bank_queue_size;
+ m_bank_busy_time = p->bank_busy_time;
+ m_rank_rank_delay = p->rank_rank_delay;
+ m_read_write_delay = p->read_write_delay;
+ m_basic_bus_busy_time = p->basic_bus_busy_time;
+ m_mem_ctl_latency = p->mem_ctl_latency;
+ m_refresh_period = p->refresh_period;
+ m_tFaw = p->tFaw;
+ m_mem_random_arbitrate = p->mem_random_arbitrate;
+ m_mem_fixed_delay = p->mem_fixed_delay;
+
+ m_profiler_ptr = new MemCntrlProfiler(name(),
+ m_banks_per_rank,
+ m_ranks_per_dimm,
+ m_dimms_per_channel);
+}
+
+void
+RubyMemoryControl::init()
+{
+ m_msg_counter = 0;
+
+ assert(m_tFaw <= 62); // must fit in a uint64 shift register
+
+ m_total_banks = m_banks_per_rank * m_ranks_per_dimm * m_dimms_per_channel;
+ m_total_ranks = m_ranks_per_dimm * m_dimms_per_channel;
+ m_refresh_period_system = m_refresh_period / m_total_banks;
+
+ m_bankQueues = new list<MemoryNode> [m_total_banks];
+ assert(m_bankQueues);
+
+ m_bankBusyCounter = new int [m_total_banks];
+ assert(m_bankBusyCounter);
+
+ m_oldRequest = new int [m_total_banks];
+ assert(m_oldRequest);
+
+ for (int i = 0; i < m_total_banks; i++) {
+ m_bankBusyCounter[i] = 0;
+ m_oldRequest[i] = 0;
+ }
+
+ m_busBusyCounter_Basic = 0;
+ m_busBusyCounter_Write = 0;
+ m_busBusyCounter_ReadNewRank = 0;
+ m_busBusy_WhichRank = 0;
+
+ m_roundRobin = 0;
+ m_refresh_count = 1;
+ m_need_refresh = 0;
+ m_refresh_bank = 0;
+ m_idleCount = 0;
+ m_ageCounter = 0;
+
+ // Each tfaw shift register keeps a moving bit pattern
+ // which shows when recent activates have occurred.
+ // m_tfaw_count keeps track of how many 1 bits are set
+ // in each shift register. When m_tfaw_count is >= 4,
+ // new activates are not allowed.
+ m_tfaw_shift = new uint64[m_total_ranks];
+ m_tfaw_count = new int[m_total_ranks];
+ for (int i = 0; i < m_total_ranks; i++) {
+ m_tfaw_shift[i] = 0;
+ m_tfaw_count[i] = 0;
+ }
+}
+
+RubyMemoryControl::~RubyMemoryControl()
+{
+ delete [] m_bankQueues;
+ delete [] m_bankBusyCounter;
+ delete [] m_oldRequest;
+ delete m_profiler_ptr;
+}
+
+// enqueue new request from directory
+void
+RubyMemoryControl::enqueue(const MsgPtr& message, int latency)
+{
+ Time current_time = g_eventQueue_ptr->getTime();
+ Time arrival_time = current_time + latency;
+ const MemoryMsg* memMess = safe_cast<const MemoryMsg*>(message.get());
+ physical_address_t addr = memMess->getAddress().getAddress();
+ MemoryRequestType type = memMess->getType();
+ bool is_mem_read = (type == MemoryRequestType_MEMORY_READ);
+ MemoryNode thisReq(arrival_time, message, addr, is_mem_read, !is_mem_read);
+ enqueueMemRef(thisReq);
+}
+
+// Alternate entry point used when we already have a MemoryNode
+// structure built.
+void
+RubyMemoryControl::enqueueMemRef(MemoryNode& memRef)
+{
+ m_msg_counter++;
+ memRef.m_msg_counter = m_msg_counter;
+ physical_address_t addr = memRef.m_addr;
+ int bank = getBank(addr);
+
+ DPRINTF(RubyMemory,
+ "New memory request%7d: %#08x %c arrived at %10d bank = %3x sched %c\n",
+ m_msg_counter, addr, memRef.m_is_mem_read ? 'R':'W',
+ memRef.m_time * g_eventQueue_ptr->getClock(),
+ bank, m_event.scheduled() ? 'Y':'N');
+
+ m_profiler_ptr->profileMemReq(bank);
+ m_input_queue.push_back(memRef);
+
+ if (!m_event.scheduled()) {
+ schedule(m_event, curTick() + 1);
+ }
+}
+
+// dequeue, peek, and isReady are used to transfer completed requests
+// back to the directory
+void
+RubyMemoryControl::dequeue()
+{
+ assert(isReady());
+ m_response_queue.pop_front();
+}
+
+const Message*
+RubyMemoryControl::peek()
+{
+ MemoryNode node = peekNode();
+ Message* msg_ptr = node.m_msgptr.get();
+ assert(msg_ptr != NULL);
+ return msg_ptr;
+}
+
+MemoryNode
+RubyMemoryControl::peekNode()
+{
+ assert(isReady());
+ MemoryNode req = m_response_queue.front();
+ DPRINTF(RubyMemory, "Peek: memory request%7d: %#08x %c sched %c\n",
+ req.m_msg_counter, req.m_addr, req.m_is_mem_read ? 'R':'W',
+ m_event.scheduled() ? 'Y':'N');
+
+ return req;
+}
+
+bool
+RubyMemoryControl::isReady()
+{
+ return ((!m_response_queue.empty()) &&
+ (m_response_queue.front().m_time <= g_eventQueue_ptr->getTime()));
+}
+
+void
+RubyMemoryControl::setConsumer(Consumer* consumer_ptr)
+{
+ m_consumer_ptr = consumer_ptr;
+}
+
+void
+RubyMemoryControl::print(ostream& out) const
+{
+}
+
+void
+RubyMemoryControl::printConfig(ostream& out)
+{
+ out << "Memory Control " << name() << ":" << endl;
+ out << " Ruby cycles per memory cycle: " << m_mem_bus_cycle_multiplier
+ << endl;
+ out << " Basic read latency: " << m_mem_ctl_latency << endl;
+ if (m_mem_fixed_delay) {
+ out << " Fixed Latency mode: Added cycles = " << m_mem_fixed_delay
+ << endl;
+ } else {
+ out << " Bank busy time: " << m_bank_busy_time << " memory cycles"
+ << endl;
+ out << " Memory channel busy time: " << m_basic_bus_busy_time << endl;
+ out << " Dead cycles between reads to different ranks: "
+ << m_rank_rank_delay << endl;
+ out << " Dead cycle between a read and a write: "
+ << m_read_write_delay << endl;
+ out << " tFaw (four-activate) window: " << m_tFaw << endl;
+ }
+ out << " Banks per rank: " << m_banks_per_rank << endl;
+ out << " Ranks per DIMM: " << m_ranks_per_dimm << endl;
+ out << " DIMMs per channel: " << m_dimms_per_channel << endl;
+ out << " LSB of bank field in address: " << m_bank_bit_0 << endl;
+ out << " LSB of rank field in address: " << m_rank_bit_0 << endl;
+ out << " LSB of DIMM field in address: " << m_dimm_bit_0 << endl;
+ out << " Max size of each bank queue: " << m_bank_queue_size << endl;
+ out << " Refresh period (within one bank): " << m_refresh_period << endl;
+ out << " Arbitration randomness: " << m_mem_random_arbitrate << endl;
+}
+
+void
+RubyMemoryControl::clearStats() const
+{
+ m_profiler_ptr->clearStats();
+}
+
+void
+RubyMemoryControl::printStats(ostream& out) const
+{
+ m_profiler_ptr->printStats(out);
+}
+
+// Queue up a completed request to send back to directory
+void
+RubyMemoryControl::enqueueToDirectory(MemoryNode req, int latency)
+{
+ Time arrival_time = g_eventQueue_ptr->getTime()
+ + (latency * m_mem_bus_cycle_multiplier);
+ req.m_time = arrival_time;
+ m_response_queue.push_back(req);
+
+ DPRINTF(RubyMemory, "Enqueueing msg %#08x %c back to directory at %15d\n",
+ req.m_addr, req.m_is_mem_read ? 'R':'W',
+ arrival_time * g_eventQueue_ptr->getClock());
+
+ // schedule the wake up
+ g_eventQueue_ptr->scheduleEventAbsolute(m_consumer_ptr, arrival_time);
+}
+
+// getBank returns an integer that is unique for each
+// bank across this memory controller.
+const int
+RubyMemoryControl::getBank(const physical_address_t addr) const
+{
+ int dimm = (addr >> m_dimm_bit_0) & (m_dimms_per_channel - 1);
+ int rank = (addr >> m_rank_bit_0) & (m_ranks_per_dimm - 1);
+ int bank = (addr >> m_bank_bit_0) & (m_banks_per_rank - 1);
+ return (dimm * m_ranks_per_dimm * m_banks_per_rank)
+ + (rank * m_banks_per_rank)
+ + bank;
+}
+
+const int
+RubyMemoryControl::getRank(const physical_address_t addr) const
+{
+ int bank = getBank(addr);
+ int rank = (bank / m_banks_per_rank);
+ assert (rank < (m_ranks_per_dimm * m_dimms_per_channel));
+ return rank;
+}
+
+// getRank returns an integer that is unique for each rank
+// and independent of individual bank.
+const int
+RubyMemoryControl::getRank(int bank) const
+{
+ int rank = (bank / m_banks_per_rank);
+ assert (rank < (m_ranks_per_dimm * m_dimms_per_channel));
+ return rank;
+}
+
+// Not used!
+const int
+RubyMemoryControl::getChannel(const physical_address_t addr) const
+{
+ assert(false);
+ return -1;
+}
+
+// Not used!
+const int
+RubyMemoryControl::getRow(const physical_address_t addr) const
+{
+ assert(false);
+ return -1;
+}
+
+// queueReady determines if the head item in a bank queue
+// can be issued this cycle
+bool
+RubyMemoryControl::queueReady(int bank)
+{
+ if ((m_bankBusyCounter[bank] > 0) && !m_mem_fixed_delay) {
+ m_profiler_ptr->profileMemBankBusy();
+
+ DPRINTF(RubyMemory, "bank %x busy %d\n", bank, m_bankBusyCounter[bank]);
+ return false;
+ }
+
+ if (m_mem_random_arbitrate >= 2) {
+ if ((random() % 100) < m_mem_random_arbitrate) {
+ m_profiler_ptr->profileMemRandBusy();
+ return false;
+ }
+ }
+
+ if (m_mem_fixed_delay)
+ return true;
+
+ if ((m_ageCounter > (2 * m_bank_busy_time)) && !m_oldRequest[bank]) {
+ m_profiler_ptr->profileMemNotOld();
+ return false;
+ }
+
+ if (m_busBusyCounter_Basic == m_basic_bus_busy_time) {
+ // Another bank must have issued this same cycle. For
+ // profiling, we count this as an arb wait rather than a bus
+ // wait. This is a little inaccurate since it MIGHT have also
+ // been blocked waiting for a read-write or a read-read
+ // instead, but it's pretty close.
+ m_profiler_ptr->profileMemArbWait(1);
+ return false;
+ }
+
+ if (m_busBusyCounter_Basic > 0) {
+ m_profiler_ptr->profileMemBusBusy();
+ return false;
+ }
+
+ int rank = getRank(bank);
+ if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW) {
+ m_profiler_ptr->profileMemTfawBusy();
+ return false;
+ }
+
+ bool write = !m_bankQueues[bank].front().m_is_mem_read;
+ if (write && (m_busBusyCounter_Write > 0)) {
+ m_profiler_ptr->profileMemReadWriteBusy();
+ return false;
+ }
+
+ if (!write && (rank != m_busBusy_WhichRank)
+ && (m_busBusyCounter_ReadNewRank > 0)) {
+ m_profiler_ptr->profileMemDataBusBusy();
+ return false;
+ }
+
+ return true;
+}
+
+// issueRefresh checks to see if this bank has a refresh scheduled
+// and, if so, does the refresh and returns true
+bool
+RubyMemoryControl::issueRefresh(int bank)
+{
+ if (!m_need_refresh || (m_refresh_bank != bank))
+ return false;
+ if (m_bankBusyCounter[bank] > 0)
+ return false;
+ // Note that m_busBusyCounter will prevent multiple issues during
+ // the same cycle, as well as on different but close cycles:
+ if (m_busBusyCounter_Basic > 0)
+ return false;
+ int rank = getRank(bank);
+ if (m_tfaw_count[rank] >= ACTIVATE_PER_TFAW)
+ return false;
+
+ // Issue it:
+ DPRINTF(RubyMemory, "Refresh bank %3x\n", bank);
+
+ m_profiler_ptr->profileMemRefresh();
+ m_need_refresh--;
+ m_refresh_bank++;
+ if (m_refresh_bank >= m_total_banks)
+ m_refresh_bank = 0;
+ m_bankBusyCounter[bank] = m_bank_busy_time;
+ m_busBusyCounter_Basic = m_basic_bus_busy_time;
+ m_busBusyCounter_Write = m_basic_bus_busy_time;
+ m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
+ markTfaw(rank);
+ return true;
+}
+
+// Mark the activate in the tFaw shift register
+void
+RubyMemoryControl::markTfaw(int rank)
+{
+ if (m_tFaw) {
+ m_tfaw_shift[rank] |= (1 << (m_tFaw-1));
+ m_tfaw_count[rank]++;
+ }
+}
+
+// Issue a memory request: Activate the bank, reserve the address and
+// data buses, and queue the request for return to the requesting
+// processor after a fixed latency.
+void
+RubyMemoryControl::issueRequest(int bank)
+{
+ int rank = getRank(bank);
+ MemoryNode req = m_bankQueues[bank].front();
+ m_bankQueues[bank].pop_front();
+
+ DPRINTF(RubyMemory, "Mem issue request%7d: %#08x %c "
+ "bank=%3x sched %c\n", req.m_msg_counter, req.m_addr,
+ req.m_is_mem_read? 'R':'W',
+ bank, m_event.scheduled() ? 'Y':'N');
+
+ if (req.m_msgptr) { // don't enqueue L3 writebacks
+ enqueueToDirectory(req, m_mem_ctl_latency + m_mem_fixed_delay);
+ }
+ m_oldRequest[bank] = 0;
+ markTfaw(rank);
+ m_bankBusyCounter[bank] = m_bank_busy_time;
+ m_busBusy_WhichRank = rank;
+ if (req.m_is_mem_read) {
+ m_profiler_ptr->profileMemRead();
+ m_busBusyCounter_Basic = m_basic_bus_busy_time;
+ m_busBusyCounter_Write = m_basic_bus_busy_time + m_read_write_delay;
+ m_busBusyCounter_ReadNewRank =
+ m_basic_bus_busy_time + m_rank_rank_delay;
+ } else {
+ m_profiler_ptr->profileMemWrite();
+ m_busBusyCounter_Basic = m_basic_bus_busy_time;
+ m_busBusyCounter_Write = m_basic_bus_busy_time;
+ m_busBusyCounter_ReadNewRank = m_basic_bus_busy_time;
+ }
+}
+
+// executeCycle: This function is called once per memory clock cycle
+// to simulate all the periodic hardware.
+void
+RubyMemoryControl::executeCycle()
+{
+ // Keep track of time by counting down the busy counters:
+ for (int bank=0; bank < m_total_banks; bank++) {
+ if (m_bankBusyCounter[bank] > 0) m_bankBusyCounter[bank]--;
+ }
+ if (m_busBusyCounter_Write > 0)
+ m_busBusyCounter_Write--;
+ if (m_busBusyCounter_ReadNewRank > 0)
+ m_busBusyCounter_ReadNewRank--;
+ if (m_busBusyCounter_Basic > 0)
+ m_busBusyCounter_Basic--;
+
+ // Count down the tFAW shift registers:
+ for (int rank=0; rank < m_total_ranks; rank++) {
+ if (m_tfaw_shift[rank] & 1) m_tfaw_count[rank]--;
+ m_tfaw_shift[rank] >>= 1;
+ }
+
+ // After time period expires, latch an indication that we need a refresh.
+ // Disable refresh if in mem_fixed_delay mode.
+ if (!m_mem_fixed_delay) m_refresh_count--;
+ if (m_refresh_count == 0) {
+ m_refresh_count = m_refresh_period_system;
+
+ // Are we overrunning our ability to refresh?
+ assert(m_need_refresh < 10);
+ m_need_refresh++;
+ }
+
+ // If this batch of requests is all done, make a new batch:
+ m_ageCounter++;
+ int anyOld = 0;
+ for (int bank=0; bank < m_total_banks; bank++) {
+ anyOld |= m_oldRequest[bank];
+ }
+ if (!anyOld) {
+ for (int bank=0; bank < m_total_banks; bank++) {
+ if (!m_bankQueues[bank].empty()) m_oldRequest[bank] = 1;
+ }
+ m_ageCounter = 0;
+ }
+
+ // If randomness desired, re-randomize round-robin position each cycle
+ if (m_mem_random_arbitrate) {
+ m_roundRobin = random() % m_total_banks;
+ }
+
+ // For each channel, scan round-robin, and pick an old, ready
+ // request and issue it. Treat a refresh request as if it were at
+ // the head of its bank queue. After we issue something, keep
+ // scanning the queues just to gather statistics about how many
+ // are waiting. If in mem_fixed_delay mode, we can issue more
+ // than one request per cycle.
+ int queueHeads = 0;
+ int banksIssued = 0;
+ for (int i = 0; i < m_total_banks; i++) {
+ m_roundRobin++;
+ if (m_roundRobin >= m_total_banks) m_roundRobin = 0;
+ issueRefresh(m_roundRobin);
+ int qs = m_bankQueues[m_roundRobin].size();
+ if (qs > 1) {
+ m_profiler_ptr->profileMemBankQ(qs-1);
+ }
+ if (qs > 0) {
+ // we're not idle if anything is queued
+ m_idleCount = IDLECOUNT_MAX_VALUE;
+ queueHeads++;
+ if (queueReady(m_roundRobin)) {
+ issueRequest(m_roundRobin);
+ banksIssued++;
+ if (m_mem_fixed_delay) {
+ m_profiler_ptr->profileMemWaitCycles(m_mem_fixed_delay);
+ }
+ }
+ }
+ }
+
+ // memWaitCycles is a redundant catch-all for the specific
+ // counters in queueReady
+ m_profiler_ptr->profileMemWaitCycles(queueHeads - banksIssued);
+
+ // Check input queue and move anything to bank queues if not full.
+ // Since this is done here at the end of the cycle, there will
+ // always be at least one cycle of latency in the bank queue. We
+ // deliberately move at most one request per cycle (to simulate
+ // typical hardware). Note that if one bank queue fills up, other
+ // requests can get stuck behind it here.
+ if (!m_input_queue.empty()) {
+ // we're not idle if anything is pending
+ m_idleCount = IDLECOUNT_MAX_VALUE;
+ MemoryNode req = m_input_queue.front();
+ int bank = getBank(req.m_addr);
+ if (m_bankQueues[bank].size() < m_bank_queue_size) {
+ m_input_queue.pop_front();
+ m_bankQueues[bank].push_back(req);
+ }
+ m_profiler_ptr->profileMemInputQ(m_input_queue.size());
+ }
+}
+
+unsigned int
+RubyMemoryControl::drain(Event *de)
+{
+ DPRINTF(RubyMemory, "MemoryController drain\n");
+ if(m_event.scheduled()) {
+ deschedule(m_event);
+ }
+ return 0;
+}
+
+// wakeup: This function is called once per memory controller clock cycle.
+void
+RubyMemoryControl::wakeup()
+{
+ DPRINTF(RubyMemory, "MemoryController wakeup\n");
+ // execute everything
+ executeCycle();
+
+ m_idleCount--;
+ if (m_idleCount > 0) {
+ assert(!m_event.scheduled());
+ schedule(m_event, curTick() + m_mem_bus_cycle_multiplier);
+ }
+}
+
diff --git a/src/mem/ruby/system/RubyMemoryControl.hh b/src/mem/ruby/system/RubyMemoryControl.hh
new file mode 100644
index 000000000..2480865ea
--- /dev/null
+++ b/src/mem/ruby/system/RubyMemoryControl.hh
@@ -0,0 +1,174 @@
+/*
+ * Copyright (c) 1999-2008 Mark D. Hill and David A. Wood
+ * Copyright (c) 2012 Advanced Micro Devices, Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met: redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer;
+ * redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution;
+ * neither the name of the copyright holders nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
+#define __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
+
+#include <iostream>
+#include <list>
+#include <string>
+
+#include "mem/protocol/MemoryMsg.hh"
+#include "mem/ruby/common/Address.hh"
+#include "mem/ruby/common/Consumer.hh"
+#include "mem/ruby/common/Global.hh"
+#include "mem/ruby/profiler/MemCntrlProfiler.hh"
+#include "mem/ruby/slicc_interface/Message.hh"
+#include "mem/ruby/system/AbstractMemOrCache.hh"
+#include "mem/ruby/system/MemoryControl.hh"
+#include "mem/ruby/system/MemoryNode.hh"
+#include "mem/ruby/system/System.hh"
+#include "params/RubyMemoryControl.hh"
+#include "sim/sim_object.hh"
+
+// This constant is part of the definition of tFAW; see
+// the comments in header to RubyMemoryControl.cc
+#define ACTIVATE_PER_TFAW 4
+
+//////////////////////////////////////////////////////////////////////////////
+
+class RubyMemoryControl : public MemoryControl
+{
+ public:
+ typedef RubyMemoryControlParams Params;
+ RubyMemoryControl(const Params *p);
+ void init();
+
+ ~RubyMemoryControl();
+
+ unsigned int drain(Event *de);
+
+ void wakeup();
+
+ void setConsumer(Consumer* consumer_ptr);
+ Consumer* getConsumer() { return m_consumer_ptr; };
+ void setDescription(const std::string& name) { m_description = name; };
+ std::string getDescription() { return m_description; };
+
+ // Called from the directory:
+ void enqueue(const MsgPtr& message, int latency );
+ void enqueueMemRef(MemoryNode& memRef);
+ void dequeue();
+ const Message* peek();
+ MemoryNode peekNode();
+ bool isReady();
+ bool areNSlotsAvailable(int n) { return true; }; // infinite queue length
+
+ //// Called from L3 cache:
+ //void writeBack(physical_address_t addr);
+
+ void printConfig(std::ostream& out);
+ void print(std::ostream& out) const;
+ void clearStats() const;
+ void printStats(std::ostream& out) const;
+
+ const int getBank(const physical_address_t addr) const;
+ const int getRank(const physical_address_t addr) const;
+
+ // not used in Ruby memory controller
+ const int getChannel(const physical_address_t addr) const;
+ const int getRow(const physical_address_t addr) const;
+
+ //added by SS
+ int getBanksPerRank() { return m_banks_per_rank; };
+ int getRanksPerDimm() { return m_ranks_per_dimm; };
+ int getDimmsPerChannel() { return m_dimms_per_channel; }
+
+
+ private:
+ void enqueueToDirectory(MemoryNode req, int latency);
+ const int getRank(int bank) const;
+ bool queueReady(int bank);
+ void issueRequest(int bank);
+ bool issueRefresh(int bank);
+ void markTfaw(int rank);
+ void executeCycle();
+
+ // Private copy constructor and assignment operator
+ RubyMemoryControl (const RubyMemoryControl& obj);
+ RubyMemoryControl& operator=(const RubyMemoryControl& obj);
+
+ // data members
+ Consumer* m_consumer_ptr; // Consumer to signal a wakeup()
+ std::string m_description;
+ int m_msg_counter;
+
+ int m_mem_bus_cycle_multiplier;
+ int m_banks_per_rank;
+ int m_ranks_per_dimm;
+ int m_dimms_per_channel;
+ int m_bank_bit_0;
+ int m_rank_bit_0;
+ int m_dimm_bit_0;
+ unsigned int m_bank_queue_size;
+ int m_bank_busy_time;
+ int m_rank_rank_delay;
+ int m_read_write_delay;
+ int m_basic_bus_busy_time;
+ int m_mem_ctl_latency;
+ int m_refresh_period;
+ int m_mem_random_arbitrate;
+ int m_tFaw;
+ int m_mem_fixed_delay;
+
+ int m_total_banks;
+ int m_total_ranks;
+ int m_refresh_period_system;
+
+ // queues where memory requests live
+ std::list<MemoryNode> m_response_queue;
+ std::list<MemoryNode> m_input_queue;
+ std::list<MemoryNode>* m_bankQueues;
+
+ // Each entry indicates number of address-bus cycles until bank
+ // is reschedulable:
+ int* m_bankBusyCounter;
+ int* m_oldRequest;
+
+ uint64* m_tfaw_shift;
+ int* m_tfaw_count;
+
+ // Each of these indicates number of address-bus cycles until
+ // we can issue a new request of the corresponding type:
+ int m_busBusyCounter_Write;
+ int m_busBusyCounter_ReadNewRank;
+ int m_busBusyCounter_Basic;
+
+ int m_busBusy_WhichRank; // which rank last granted
+ int m_roundRobin; // which bank queue was last granted
+ int m_refresh_count; // cycles until next refresh
+ int m_need_refresh; // set whenever m_refresh_count goes to zero
+ int m_refresh_bank; // which bank to refresh next
+ int m_ageCounter; // age of old requests; to detect starvation
+ int m_idleCount; // watchdog timer for shutting down
+
+ MemCntrlProfiler* m_profiler_ptr;
+};
+
+#endif // __MEM_RUBY_SYSTEM_MEMORY_CONTROL_HH__
diff --git a/src/mem/ruby/system/RubyMemoryControl.py b/src/mem/ruby/system/RubyMemoryControl.py
new file mode 100644
index 000000000..f79ed9b18
--- /dev/null
+++ b/src/mem/ruby/system/RubyMemoryControl.py
@@ -0,0 +1,54 @@
+# Copyright (c) 2009 Advanced Micro Devices, Inc.
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met: redistributions of source code must retain the above copyright
+# notice, this list of conditions and the following disclaimer;
+# redistributions in binary form must reproduce the above copyright
+# notice, this list of conditions and the following disclaimer in the
+# documentation and/or other materials provided with the distribution;
+# neither the name of the copyright holders nor the names of its
+# contributors may be used to endorse or promote products derived from
+# this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+#
+# Authors: Steve Reinhardt
+# Brad Beckmann
+
+from m5.params import *
+from m5.SimObject import SimObject
+from MemoryControl import MemoryControl
+
+class RubyMemoryControl(MemoryControl):
+ type = 'RubyMemoryControl'
+ cxx_class = 'RubyMemoryControl'
+ version = Param.Int("");
+
+ banks_per_rank = Param.Int(8, "");
+ ranks_per_dimm = Param.Int(2, "");
+ dimms_per_channel = Param.Int(2, "");
+ bank_bit_0 = Param.Int(8, "");
+ rank_bit_0 = Param.Int(11, "");
+ dimm_bit_0 = Param.Int(12, "");
+ bank_queue_size = Param.Int(12, "");
+ bank_busy_time = Param.Int(11, "");
+ rank_rank_delay = Param.Int(1, "");
+ read_write_delay = Param.Int(2, "");
+ basic_bus_busy_time = Param.Int(2, "");
+ mem_ctl_latency = Param.Int(12, "");
+ refresh_period = Param.Int(1560, "");
+ tFaw = Param.Int(0, "");
+ mem_random_arbitrate = Param.Int(0, "");
+ mem_fixed_delay = Param.Int(0, "");
diff --git a/src/mem/ruby/system/SConscript b/src/mem/ruby/system/SConscript
index cbb1da3b1..baa877b39 100644
--- a/src/mem/ruby/system/SConscript
+++ b/src/mem/ruby/system/SConscript
@@ -39,6 +39,7 @@ SimObject('DirectoryMemory.py')
SimObject('MemoryControl.py')
SimObject('WireBuffer.py')
SimObject('RubySystem.py')
+SimObject('RubyMemoryControl.py')
Source('DMASequencer.cc')
Source('DirectoryMemory.cc')
@@ -46,6 +47,7 @@ Source('SparseMemory.cc')
Source('CacheMemory.cc')
Source('MemoryControl.cc')
Source('WireBuffer.cc')
+Source('RubyMemoryControl.cc')
Source('MemoryNode.cc')
Source('PersistentTable.cc')
Source('RubyPort.cc')
diff --git a/src/mem/slicc/symbols/StateMachine.py b/src/mem/slicc/symbols/StateMachine.py
index 41348ba6d..8f4676c42 100644
--- a/src/mem/slicc/symbols/StateMachine.py
+++ b/src/mem/slicc/symbols/StateMachine.py
@@ -39,7 +39,7 @@ python_class_map = {"int": "Int",
"WireBuffer": "RubyWireBuffer",
"Sequencer": "RubySequencer",
"DirectoryMemory": "RubyDirectoryMemory",
- "MemoryControl": "RubyMemoryControl",
+ "MemoryControl": "MemoryControl",
"DMASequencer": "DMASequencer"
}